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The problem

It is well known that idealized neurons can form
attractor (Hopfield) networks:

•

•

+1

+1

-1

-1

2-neuron Hopfield network with fixed points
                at (+1, -1) and (-1, +1).

A beautiful model, but simplifications have been made:
•  Symmetric
•  Units are +1 or -1
•  All-all coupling
•  Neurons are simple:  no voltage gated channels ...
•  Coupling is simple:  no synapses or dendrites ...

       What about real, spiking, excitatory and
inhibitory neurons with synaptic, non-symmetric
           coupling and sparse connectivity?
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The Issues

   Randomly connected excitatory and inhibitory neurons
(often) have a globally attacting fixed point at low firing rate

Structured connectivity can embed memories
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All neurons,
background
rate

Some neurons,
high rate

Constraints:

1. If no memories are active, network fires at
background rate.

2. At most, one memory can be active at a time.

i. Non-symmetric connectivity.
ii. Sparse connectivity.

low rates
~few Hz

} Important

} Not so
important

Boundary
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 r

at
e

Can these constraints be satisfied?



The Prescription

Start with a randomly connected network:

Excitatory

Inhibitory

}

Embed memories:

Excitatory, involved in memory

Inhibitory

Excitatory, not involved in memory

Stronger
Weaker

Weaker

No change

No change



Analysis

Take the limit f (fraction of neurons in a memory) → 0.

•  Each memory is all-excitatory network;
•  Since f → 0, background firing rate is independent of

 firing rate of memory neurons.

Can use (relatively) standard graphical techniques:

νmem, in

ε (strength of memory)
very small

Stable equilibrium at background firing rate.

Gain functions:  output firing rate of memory
neurons as a function of input rate.

ν m
em

, o
ut

When strength of memory (i.e., the increase in connection
strength among some subpopulation of neurons) is small,
there is only one equilibrium and no memory is embedded.

νm
em

, in

νm
em

, o
ut

=



Two possibilities as ε increases:

positive inflection

Good:  Memory is
embedded at high
firing rate without
disturbing the
background.

Bad:

1. Fluctuations typically
destabilize new
background.

2. Threshold is low -- this
is a problem if you only
want one memory to be
active at a time.

2a. It’s also a problem if
you want to avoid
epilepsy ...

νmem, in

ν m
em

, o
ut

νmem, in

ν m
em

, o
ut

Stable equilibrium.

Gain functions:  outupt firing rate of memory
neurons as a function of input rate.

Unstable equilibrium.

ε big

ε small

ε big

ε small



E
xc

it
at

or
y 

ga
in

  f
un

ct
io

n 
(H

z)

Excitatory input
  firing rate (Hz)

30

15

0
30150

            At equilibrium, no positive inflection

For details see:  Latham et al, "Intrinsic dynamics in
neuronal networks. I. Theory."  Available at

 http://culture.neurobio.ucla.edu/~pel/

Gain curve from simulation with 10,000 θ-neurons



Input firing rate
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Possible mechanisms for a positive inflection:

• NMDA receptors,
• Paired-pulse facilitation.



Inhibitory Excitatory

Memory
neurons

Non-memory
neurons

ν↓

ν↑

To enhance this effect, adjust connectivity so that
the pool of inhibitory neurons that is firing at a
relatively lower rate preferentially connects to the
memory neurons:
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10,000 spiking θ-neurons -- no NMDA channels

ε=0.1

ε=0.2

ε=0.3

ε=0.4

ε=0.5

ε=0.6
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Simulations



10,000 spiking θ-neurons with
pseudo-NMDA receptors
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...
Spikes

One of 64 memories activated

Two memories activated

For these parameters, network is sensitive to degredation
of input.  For a memory to last indefinitely:

> 90% of the memory neurons must be activated
< 15% of non-memory neurons can be activated
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(h
z)

Time (s)

~10% jump

τ=100 ms

memories 2-11

memory 1

memory 1
memory 2

memories 3-11



Summary

• Can embed memories if the gain curve (input
firing rate versus output firing rate) has a positive
inflection at the backgound firing rate.

• This will require something like NMDA channels or
paired-pulse facilitation, for which the effective
connection strength increases with post-synaptic
voltage.

The picture:

connection strength, ε

No memories    At most
one memory
   at a time

Two or more
   memories
    at a time}

     Desired regime.
  In our simulations,
this regime was small

0

Simulations with more realistic neurons are necessary!!

  Memory (ies)
permanently on



Mean Field Analysis

Equilibrium firing rate equations:

Sources of randomness:

1. W and c -- random connectivity.
2. Non-active memories (see Chapter 10 of Hertz,

Krogh and Palmer).

ν  = Φ (∑ J  ν )
 j iji ji

Sparse, random
connectivity matrix

Sparse, random
matrix of 0s and 1s.

Strength of
memory

Determines which
neurons are active
during memory µ
(vector of 1s and 0s)

Number of
neurons in
memory µ

Fraction of
neurons in
memory µ;
post-synaptic
normalization

J  = W   +  c  ∑ N  ε  η  (η   - f )ij ij ij
µ

µ
µ
i jµ µ

-1
Connectivity:

µ



Define overlaps:

m  = N  ∑ η  ν
i i i

µµ

Perform suitable averaging, arrive at mean-field
equations when 1 neuron is active:

m  = Φ (C ν + C m )  µ
µ

0
µ

Average is over random connectivity
and non-active memories

Warning:  the existence of excitatory neurons
adds considerable algebra, but not much new
conceptually.

Mean firing
rate (which has
its own equilibrium
equation)

µ
-1
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Mean field prediction

Simulations

        Increasing
    variance in
  connectivity
matrix

Excitatory and inhibitory network

Firing-rate-model simulations -- no memories

Mean field prediction
Simulations

SEM (n=100)

All excitatory network

20 1
Standard deviation of elements
     of connectivity matrix (J)
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