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Abstract

Sauer’s Lemma is extended to classes HN of binary-valued functions h on [n] =
{1, . . . , n} which have a margin less than or equal to N on all x ∈ [n] with h(x) = 1,
where the margin µh(x) of h at x ∈ [n] is defined as the largest non-negative integer
a such that h is constant on the interval Ia(x) = [x− a, x + a] ⊆ [n]. Estimates are
obtained for the cardinality of classes of binary valued functions with a margin of
at least N on a positive sample S ⊆ [n].
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1 Introduction

Estimation of the complexity of classes of binary-valued functions has been
behind much of recent developments in the theory of learning. In a seminal
paper Vapnik and Chervonenkis [1971] applied the law of large numbers uni-
formly over an infinite class G of binary functions, i.e., indicator functions of
sets A in a general domain X, and showed that the complexity of the problem
of learning pattern recognition from randomly drawn samples can be charac-
terized in terms of a combinatorial quantity called the growth function of G
which is defined as follows:

Definition 1 Let X be any domain and G a class of functions g : X → {0, 1}.
For a set A = {a1, . . . , ak} ⊂ X denote by gA = [g(a1), . . . , g(ak)] and GA ≡
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{gA : g ∈ G}. The growth function φG(k) is defined as

φG(k) ≡ max
A⊂X:|A|=k

|GA|.

The Vapnik-Chervonenkis dimension of G, denoted as V C(G), plays an im-
portant role in controlling the rate of increase of φG(k) with respect to k. It
is defined as follows:

Definition 2 The VC-dimension of G is defined as

VC(G) ≡ max{|A| : A ⊂ X, |GA| = 2|A|}.

If the maximum does not exists let VC(G) = ∞.

Consider a finite set A ⊂ X, |A| = n and suppose VC(G) = d < n. Then GA

may be viewed as a class F of binary vectors, i.e., functions f : [n] → {0, 1}
where [n] ≡ {1, . . . , n} with VC(F) ≤ d.

Recently there has been interest in learning pattern recognition, e.g., binary
classification, by empirical risk minimization under a complexity regularizing
constraint, for instance by maximizing the margin that functions have on a
sample [Vapnik 1998]. While the class of interest in such problems consists of
binary functions the standard analysis approach [Anthony and Bartlett 1999]
estimates the growth rate (or more precisely the covering number) of a related
class of real-valued functions that have a large sample margin. In this paper
we consider a different approach which deals directly with the binary function
class. To do that we define a suitable margin parameter for binary functions.
We deal with classes F on [n] (as defined above) and estimate the complexity
of subclasses of F which consist of functions that have a large sample margin.
Our approach extends the following result of Vapnik and Chervonenkis [1971],
Sauer [1972].

Lemma 1 Let F be a class of binary functions on [n] and suppose VC(F) = d.
Then

|F| ≤
d∑

k=0

(
n

k

)
≡ S(d, n).

We note that the bound is tight as for all d, n ≥ 1 there exist classes F ⊆ 2[n]

of VC-dimension d which achieve the equality.

Consider the following definition of functional margin which naturally suits
binary-valued functions (for definitions of margin of real-valued functions see
Vapnik [1998]).

Definition 3 The margin µf (x) of f ∈ F on an element x ∈ [n] is the
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largest non-negative integer a such that f has a constant value on the interval
set Ia(x) = {x− a, . . . , x + a} provided that Ia(x) ⊆ [n].

The sample-margin µS(f) of f on a subset S ⊆ [n] is defined as

µS(f) ≡ min
x∈S

µf (x).

More generally, this definition applies also to classes on other domains X if
there is a linear ordering on X.

2 Motivation

In recent years, in search for better learning algorithms, it has been discov-
ered [see for instance Vapnik 1998, Anthony and Bartlett 1999] that learning
classes of real-valued functions that are restricted to have a large margin on a
randomly drawn training sample leads to improvements in the generalization
error rate. The improved error bounds arise due to tighter bounds on the cov-
ering number of such classes (a quantity analogous to the growth-function of
binary function classes) which decreases as the sample-margin value increases.
For this reason, samples on which the target function (the one to be learned)
has a large margin are of considerable worth. In [Ratsaby 2006] estimates of
the complexity of such samples as a function of the margin parameter and sam-
ple size have been obtained. While the underlying motivation of our work has
its roots in statistical learning theory our interest here is in the combinatorial
complexity of constrained VC-classes (see also Ratsaby [2007]).

An outline of the paper is as follows: in Section 3 we state and prove several
auxiliary lemmas. In Section 4 the main result, Theorem 1, is stated and proved
based on an extension of Lemma 1 to a class HN of functions constrained to
have a margin less than or equal to N . In Section 5, this is used to obtain an
estimate (Lemmas 4 and 5) on the cardinality of classes HN(S) and HN(S∗)
of large-margin functions. Being dependent on the margin parameter N , these
estimates are analogous to standard bounds on the covering number of real-
valued function classes of finite-pseudo-dimension (or fatγ dimension) under a
similar margin constraint [Anthony and Bartlett 1999, Ch. 12].

3 Technical results

Denote by I(E) the indicator function which equals 1 if the expression E is
true and 0 otherwise. We start with an auxiliary lemma:
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Lemma 2 For 0 ≤ m ≤ n, N ≥ 0, let wm,N(n) be the number of standard
(one-dimensional) ordered partitions of a nonnegative integer n into m parts
each no larger than N . Then

wm,N(n) =


I(n = 0) if m = 0

n∑
i=0,N+1,2(N+1),...

(−1)i/(N+1)

(
m

i/(N + 1)

)(
n− i + m− 1

n− i

)
if m ≥ 1.

Remark 1 While our interest is in [n] = {1, . . . , n}, we allow wm,N(n) to be
defined on n = 0 for use by Lemma 3.

Proof: The generating function (g.f.) for wm,N(n) is

W (x) =
∑
n≥0

wm,N(n)xn =

(
1− xN+1

1− x

)m

.

When m = 0 the only non-zero coefficient is of x0 and it equals 1 so w0,N(n) =

I(n = 0). Let T (x) = (1− xN+1)m and S(x) =
(

1
1−x

)m
. Then

T (x) =
m∑

i=0

(−1)i

(
m

i

)
xi(N+1)

which generates the sequence tN(n) =
(

m
n/(N+1)

)
(−1)n/(N+1)I(n mod (N +1) =

0). Similarly, for m ≥ 1, it is easy to show S(x) generates s(n) =
(

n+m−1
n

)
. The

product W (x) = T (x)S(x) generates their convolution tN(n) ? s(n), namely,

wm,N(n) =
n∑

i=0,N+1,2(N+1),...

(−1)i/(N+1)

(
m

i/(N + 1)

)(
n− i + m− 1

n− i

)
.

�

Remark 2 This expression may alternatively be expressed as

wm,N(n) =
m∑

k=0

(−1)k

(
m

k

)(
n + m− 1− k(N + 1)

m− 1

)
,

over m ≥ 1.

Before proceeding to the main theorem we have two additional lemmas.

Lemma 3 Let the integer 1 ≤ N ≤ n and consider the class F consisting of
all binary-valued functions f on [n] which take the value 1 on no more than
r ≤ n elements of [n] and whose margin on any element x ∈ [n] such that
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f(x) = 1 satisfies µf (x) ≤ N . Then

|F | =
r∑

k=0

n∑
m=1

c(k, n− k; m, N) ≡ β(N)
r (n)

where

c(k, n− k; m,N) =

(
n− k

m− 1

)
(wm,2N(k −m + 1) + wm−1,2N(k −m− 2N)) .

(1)

Remark 3 Note that β(N)
r (n) = S(r, n) if r < 2N + 1. This follows from the

standard identity [Graham et al. 1994](
n

k

)
=

n∑
m=1

(
k

m− 1

)(
n− k

m− 1

)
.

Proof: Consider the integer pair [k, n − k], where n ≥ 1 and 0 ≤ k ≤ n.
A two-dimensional ordered m-partition of [k, n − k] is an ordered partition
into m two-dimensional parts, [aj, bj] where 0 ≤ aj, bj ≤ n but not both are
zero and where

∑m
j=1[aj, bj] = [k, n − k]. For instance, [2, 1] = [0, 1] + [2, 0] =

[1, 1] + [1, 0] = [2, 0] + [0, 1] are three partitions of [2, 1] into two parts (for
more examples see Andrews [1998] ).

Suppose we add the constraint that only a1 or bm may be zero while all remain-
ing aj, bk ≥ 1, 2 ≤ j ≤ m, 1 ≤ k ≤ m− 1. Denote any partition that satisfies
this as valid. For instance, let k = 2, m = 3 then the valid m-partitions
of [k, n − k] are: {[0, 1][1, 1][1, n − 4]},{[0, 1][1, 2][1, n − 5]}, . . .,{[0, 1][1, n −
3][1, 0]}, {[0, 2][1, 1][1, n− 5]}, {[0, 2][1, 2][1, n− 6]}, . . ., {[0, 2][1, n− 4][1, 0]},
. . . , {[0, n− 3][1, 1][1, 0]}. For [k, n− k], let Pn,k be the collection of all valid
partitions of [k, n− k].

Let Fk denote all binary functions on [n] which take the value 1 over exactly
k elements of [n]. Define the mapping Π : Fk → Pn,k where for any f ∈ Fk

the partition Π(f) is defined by the following procedure: Start from the first
element of [n], i.e., 1. If f takes the value 1 on it then let a1 be the length of
the constant 1-segment, i.e., the set of all elements starting from 1 on which
f takes the constant value 1. Otherwise if f takes the value 0 let a1 = 0. Then
let b1 be the length of the subsequent 0-segment on which f takes the value
0. Let [a1, b1] be the first part of Π(f). Next, repeat the following: if there is
at least one more element of [n] which has not been included in the preceding
segment, then let aj be the length of the next 1-segment and bj the length of
the subsequent 0-segment. Let [aj, bj], j = 1, . . . ,m, be the resulting sequence
of parts where m is the total number of parts. Only the last part may have a
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zero valued bm since the function may take the value 1 on the last element n
of [n] while all other parts, [aj, bj], 2 ≤ j ≤ m− 1, must have aj, bj ≥ 1. The
result is a valid partition of [k, n− k] into m parts.

Clearly, every f ∈ Fk has a unique partition. Therefore Π is a bijection.
Moreover, we may divide Pn,k into mutually exclusive subsets Vm consisting
of all valid partitions of [k, n− k] having exactly m parts, where 1 ≤ m ≤ n.
Thus

|Fk| =
n∑

m=1

|Vm|.

Consider the following constraint on components of parts:

ai ≤ 2N + 1, 1 ≤ i ≤ m. (2)

Denote by Vm,N ⊂ Pn,k the collection of valid partitions of [k, n − k] into m
parts each of which satisfies this constraint.

Let Fk,N = F ∩ Fk consist of all functions satisfying the margin constraint in
the statement of the lemma and having exactly k ones. Note that f having a
margin no larger than N on x ∈ [n] such that f(x) = 1 implies there does not
exist a segment ai of length larger than 2N + 1 on which f takes a constant
value. Hence the parts of Π(f) satisfy (2). Hence, for any f ∈ Fk,N , its unique
valid partition Π(f) must be in Vm,N . We therefore have

|Fk,N | =
n∑

m=1

|Vm,N |. (3)

By definition of F it follows that

|F | =
r∑

k=0

|Fk,N |. (4)

Let us denote by

c(k, n− k; m, N) ≡ |Vm,N | (5)

the number of valid partitions of [k, n−k] into exactly m parts whose compo-
nents satisfy (2). In order to determine |F | it therefore suffices to determine
c(k, n− k; m, N).

We next construct the generating function

G(t1, t2) =
∑

α1≥0

∑
α2≥0

c(α1, α2; m,N)tα1
1 tα2

2 . (6)

For m ≥ 1,
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G(t1, t2) = (t01 + t11 + · · ·+ t2N+1
1 )(t12 + t22 + · · · )I(m≥2)

·
(
(t11 + · · ·+ t2N+1

1 )(t12 + t22 + · · · )
)(m−2)+

·(t11 + · · ·+ t2N+1
1 )I(m≥2)(t02 + t12 + · · · )

(7)

where the values of the exponents of all terms in the first and second factors
represent the possible values for a1 and b1, respectively. The values of the
exponents in the middle m−2 factors are for the values of aj, bj, 2 ≤ j ≤ m−1
and those in the factor before last and last are for am and bm, respectively.
Equating this to (6) implies the coefficient of tα1

1 tα2
2 equals c(α1, α2; m,N)

which we seek.

The right side of (7) equals

tm−1
1 tm−1

2

(1− t2N+1
1

1− t1

)m

+ t2N+1
1

(
1− t2N+1

1

1− t1

)m−1
( 1

1− t2

)m

. (8)

Let W (x) =
(

1−x2N+1

1−x

)m−1
generate wm−1,2N(n) which is defined in Lemma 2

and denote by s(n) =
(

n+m−1
n

)
. So (8) becomes

∑
α1,α2≥0

s(α2)t
α2+m−1
2

(
wm,2N(α1)t

α1+m−1
1 + wm−1,2N(α1)t

α1+m+2N
1

)
. (9)

Equating the coefficients of t
α′1
1 t

α′2
2 in (6) and (9) yields

c(α′
1, α

′
2; m, N) = s(α′

2 −m + 1) (wm,2N(α′
1 −m + 1) + wm−1,2N(α′

1 −m− 2N))

=

(
α′

2

m− 1

)
(wm,2N(α′

1 −m + 1) + wm−1,2N(α′
1 −m− 2N)) .

Substituting k for α′
1, n−k for α′

2, combining (3), (4) and (5) yields the result.
�

4 Main result

The next theorem extends Lemma 3 to a class HN of VC-dimension no larger
than d.

Theorem 1 Let n, N ≥ 1, 1 ≤ d ≤ n and F be a class of binary functions
on [n] with VC(F) = d. Let HN ⊆ F consist of functions h that satisfies
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the margin condition µh(x) ≤ N on any x ∈ [n] such that h(x) = 1. Then

|HN | ≤ β
(N)
d (n), where β

(N)
d is defined in Lemma 3.

Remark 4 As indicated in Remark 3, when N is greater than approximately
half the VC-dimension d the bound β

(N)
d (n) is identical to the bound in Lemma

1 and N is ineffective at reducing the size of the class.

Proof: Let AN be the set system corresponding to the function class HN which
is defined as follows

AN = {Ah : h ∈ HN}, Ah = {x ∈ [n] : h(x) = 1}.

Clearly, |AN | = |HN |. Note that the notion of a bounded margin µh(x) ≤ N
at x translates to Ah having the property PN defined as having every subset
E ⊆ Ah which consists of consecutive elements E = {i, i + 1, . . . , j − 1, j} be
of cardinality |E| ≤ 2N + 1. Hence for every element A ∈ AN , A satisfies PN

which is denoted by A |= PN . Define ωAN
(k) = max{|{A ∩ E : A ∈ AN}| :

E ⊆ [n], |E| = k}. The corresponding notion of VC-dimension for a class AN

of sets is the the so-called trace number [Bollobás 1986, p.131] which is defined
as tr(AN) = max{m : ωAN

(m) = 2m}. Clearly, tr(AN) = V C(HN) = d.

The proof proceeds as in the proof of Lemma 1 [Anthony and Bartlett 1999,
Theorem 3.6] which is based on the shifting method [see Bollobás 1986, Ch.
17, Theorem 1 & 4] [see also Haussler 1995, Frankl 1987; 1983]. The idea is to
transform AN into A0 which is an ideal family of sets E, i.e., if E ∈ A0 then
S ∈ A0 for every S ⊂ E, and such that |AN | = |A0| ≤ β

(N)
d (n).

Start by defining the operator Tx on AN which removes an element x ∈ [n]
from every set A ∈ AN provided that this does not duplicate any existing set.
It is defined as follows:

Tx(AN) = {A \ {x} : A ∈ AN} ∪ {A ∈ AN : A \ {x} ∈ AN}.

Consider now

A0 = T1(T2(· · ·Tn(AN) · · · ))
and denote the corresponding function class by H0. Clearly, |H0| = |A0|.

We have |A0| = |AN | since the only time that the operator Tx changes an
element A into a different set A∗ = Tx(A) is when A∗ does not already exist
in the class so no additional element in the new class can be created.

It is also clear that for all x ∈ [n], Tx(A0) = A0 since for each E ∈ A0

there exists a G ∈ A0 that differs from it on exactly one element hence it is
not possible to remove any element x ∈ [n] from all sets without creating a
duplicate. Applying this repeatedly implies that A0 is an ideal. Furthermore,
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since for all A ∈ AN , A |= PN then removing an element x from A still leaves
A \ {x} |= PN . Hence for all E ∈ A0 we have E |= PN .

From Lemma 3 [Bollobás 1986, p.133] we have ωA0(k) ≤ ωAN
(k), for all 1 ≤

k ≤ n. Since tr(AN) = d then tr(A0) ≤ d and since A0 is an ideal then it
follows that for all E ∈ A0, |E| ≤ d. Combined with the fact that for all
E ∈ A0, E |= PN then it follows that the corresponding function class H0

satisfies the following: for all h ∈ H0, h has at most d 1’s and µh(x) ≤ N
on every x ∈ [n] such that h(x) = 1. By Lemma 3 above, we therefore have

|H0| ≤ β
(N)
d (n). From the above, we have |HN | = |AN | = |A0| = |H0| and

hence |HN | ≤ β
(N)
d (n). �

5 Classes of large-margin functions

For any t ∈ F , h is said to be consistent with t on S if h(xi) = t(xi), for all
xi ∈ S, 1 ≤ i ≤ |S|. Denote by a positive sample S ⊆ [n] for t ∈ F any set
of elements x ∈ [n] for which t(x) = 1. Problems of learning by a positive
sample are typical whenever a learner observes an expert act, for instance,
as in learning grammatical inference. Let us consider classes of binary-valued
functions h consistent with a fixed target t ∈ F on a positive sample S such
that µS(h) > N .

Lemma 4 Let n,N, d ≥ 1 and 1 ≤ l ≤ n. Let F be a class of binary-valued
functions on [n] with VC(F) = d. For any fixed t ∈ F , let S ⊆ [n] be a positive
sample of cardinality l such that µS(t) > N . Consider the subclass HN(S) ⊆ F
of all functions h consistent with t on S and having µS(h) > N . Then

|HN(S)| ≤ 1 + e−(l+2(N+1))/nS(d, n)

where S(d, n) is defined in Lemma 1.

Proof: The condition µh(x) > N for x implies that a function h must take
the value 1 over the interval IN+1(x). Consider any t ∈ F with S and cor-
responding HN(S) as in the statement of the lemma. Let R(S) = {z ∈ [n] :
z ∈ IN+1(x), x ∈ S}. Since for every h ∈ HN(S), h(z) = 1 for all z ∈ R(S)
then the cardinality of the restriction HN(S)|R(S) of the class HN(S) on the
set R(S) is one. Denote by Rc(S) ≡ [n] \R(S) then we have

|HN(S)| = |HN(S)|Rc(S)|.

Since VC(HN(S)) ≤ VC(F) = d then by Lemma 1 it follows that

|HN(S)|Rc(S)| ≤ S(d, |Rc(S)|). (10)
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We also have

max{|Rc(S)| : S ⊂ [n], |S| = `} = n− `− 2(N + 1) (11)

which is achieved for instance by a set S ′ = {N + 2, . . . , N + l + 1} with
R(S ′) = {1, . . . , 2(N + 1) + l}. Hence for any S as above we have

|HN(S)| ≤
d∑

k=0

(
n− l − 2(N + 1)

k

)
. (12)

Using the standard identity of(
k

m

)
=

k

k −m

(
k − 1

m

)

we have for 0 ≤ a ≤ k,(
k − a

m

)/(
k

m

)
=

a−1∏
i=0

k −m− i

k − i
≤

a−1∏
i=0

e−m/(k−i) (13)

where we used 1 − x ≤ exp(−x) which holds for all x ∈ IR. The right side of
(13) equals

e−m
∑a−1

i=0
1/(k−i) ≤ e−am/k. (14)

Using (13) and (14) the sum on the right side of (12) is bounded from above
by

d∑
k=0

(
n

k

)
e−k(l+2(N+1))/n.

We have

d∑
k=0

(
n

k

)
e−k(l+2(N+1))/n = 1 +

d∑
k=1

(
n

k

)
e−k(l+2(N+1))/n

≤ 1 + e−(l+2(N+1))/n
d∑

k=1

(
n

k

)

= (1− e−(l+2(N+1))/n) + e−(l+2(N+1))/n
d∑

k=0

(
n

k

)
= (1− e−(l+2(N+1))/n) + e−(l+2(N+1))/nS(d, n)

≤ 1 + e−(l+2(N+1))/nS(d, n).

�

Next we consider an extremal case where S is a maximal positive sample S∗ on
which the target t ∈ F has a margin larger than N . The corresponding class

10



in this case is HN(S∗) ⊆ F which consists of all h ∈ F which are consistent
with t on S∗ and satisfy µh(x) > N if and only if x ∈ S∗. Note that S∗ is
maximal in the sense that all x ∈ [n] such that t(x) = 1 and µt(x) > N are
included in S∗. It thus represents the most informative positive sample for a
fixed margin level N and sample size l.

Lemma 5 Let n, N, d ≥ 1. Let F be a class of binary-valued functions on
[n] with V C(F) = d. For any fixed t ∈ F let S∗ ⊆ [n] be a maximal positive
sample such that µS∗(t) > N and denote by l = |S∗|. Consider a subclass
HN(S∗) ⊆ F which consists of all functions h consistent with t on S∗ and
satisfying µh(x) > N iff x ∈ S∗. Then

|HN(S∗)| ≤ β
(N)
d (n− l − 2(N + 1)).

Proof: The proof follows that of Lemma 4 up to (10) with S∗ instead of S. By
Theorem 1 we have

|HN(S∗)|Rc(S∗)| ≤ β
(N)
d (|Rc(S∗)|).

With (11) the result follows. �

6 Conclusions

The main result of the paper is a bound on the cardinality of a class of known
VC-dimension which consists of binary functions on [n] that have a margin
less than or equal to N . This extends a classic result of Sauer (and Vapnik-
Chervonenkis) and is subsequently used to obtain estimates on the cardinality
of classes of binary-valued functions with a large margin.
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