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Abstract

Sauer’s Lemma is extended to classes Hy of binary-valued functions h on [n] =
{1,...,n} which have a margin less than or equal to N on all z € [n] with h(z) = 1,
where the margin pp,(z) of h at « € [n] is defined as the largest non-negative integer
a such that h is constant on the interval I,(x) = [z — a,z + a] C [n]. Estimates are
obtained for the cardinality of classes of binary valued functions with a margin of
at least N on a positive sample S C [n].
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1 Introduction

Estimation of the complexity of classes of binary-valued functions has been
behind much of recent developments in the theory of learning. In a seminal
paper Vapnik and Chervonenkis [1971] applied the law of large numbers uni-
formly over an infinite class G of binary functions, i.e., indicator functions of
sets A in a general domain X, and showed that the complexity of the problem
of learning pattern recognition from randomly drawn samples can be charac-
terized in terms of a combinatorial quantity called the growth function of G
which is defined as follows:

Definition 1 Let X be any domain and G a class of functions g : X — {0, 1}.
For a set A = {ay,...,ar} C X denote by ga = [g(a1),...,g(ax)] and Ga =
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{ga : g € G}. The growth function ¢g(k) is defined as

Pg(k) = Aax Gal.

The Vapnik-Chervonenkis dimension of G, denoted as VC(G), plays an im-
portant role in controlling the rate of increase of ¢g(k) with respect to k. It
is defined as follows:

Definition 2 The VC-dimension of G is defined as
VC(G) = max{|A| : A C X,[Ga| = 211,
If the mazimum does not ezists let VC(G) = oo.

Consider a finite set A C X, |A| = n and suppose VC(G) = d < n. Then G4
may be viewed as a class F of binary vectors, i.e., functions f : [n] — {0,1}
where [n] = {1,...,n} with VC(F) < d.

Recently there has been interest in learning pattern recognition, e.g., binary
classification, by empirical risk minimization under a complexity regularizing
constraint, for instance by maximizing the margin that functions have on a
sample [Vapnik 1998]. While the class of interest in such problems consists of
binary functions the standard analysis approach [Anthony and Bartlett 1999]
estimates the growth rate (or more precisely the covering number) of a related
class of real-valued functions that have a large sample margin. In this paper
we consider a different approach which deals directly with the binary function
class. To do that we define a suitable margin parameter for binary functions.
We deal with classes F on [n] (as defined above) and estimate the complexity
of subclasses of F which consist of functions that have a large sample margin.
Our approach extends the following result of Vapnik and Chervonenkis [1971],
Sauer [1972].

Lemma 1 Let F be a class of binary functions on [n] and suppose VC(F) = d.
Then

d /n
|F| < Z ( > = S(d, n).
o \k
We note that the bound is tight as for all d,n > 1 there exist classes F C 2l

of VC-dimension d which achieve the equality.

Consider the following definition of functional margin which naturally suits
binary-valued functions (for definitions of margin of real-valued functions see

Vapnik [1998]).

Definition 3 The margin ps(z) of f € F on an element x € [n] is the



largest non-negative integer a such that f has a constant value on the interval
set I,(x) ={x —a,...,x+ a} provided that 1,(x) C [n].

The sample-margin pg(f) of f on a subset S C [n] is defined as

ps(f) = min pp(x).
More generally, this definition applies also to classes on other domains X if
there is a linear ordering on X.

2 Motivation

In recent years, in search for better learning algorithms, it has been discov-
ered [see for instance Vapnik 1998, Anthony and Bartlett 1999] that learning
classes of real-valued functions that are restricted to have a large margin on a
randomly drawn training sample leads to improvements in the generalization
error rate. The improved error bounds arise due to tighter bounds on the cov-
ering number of such classes (a quantity analogous to the growth-function of
binary function classes) which decreases as the sample-margin value increases.
For this reason, samples on which the target function (the one to be learned)
has a large margin are of considerable worth. In [Ratsaby 2006] estimates of
the complexity of such samples as a function of the margin parameter and sam-
ple size have been obtained. While the underlying motivation of our work has
its roots in statistical learning theory our interest here is in the combinatorial
complexity of constrained VC-classes (see also Ratsaby [2007]).

An outline of the paper is as follows: in Section 3 we state and prove several
auxiliary lemmas. In Section 4 the main result, Theorem 1, is stated and proved
based on an extension of Lemma 1 to a class Hy of functions constrained to
have a margin less than or equal to N. In Section 5, this is used to obtain an
estimate (Lemmas 4 and 5) on the cardinality of classes Hy(S) and Hy(S*)
of large-margin functions. Being dependent on the margin parameter N, these
estimates are analogous to standard bounds on the covering number of real-
valued function classes of finite-pseudo-dimension (or fat., dimension) under a
similar margin constraint [Anthony and Bartlett 1999, Ch. 12].

3 Technical results

Denote by I(E) the indicator function which equals 1 if the expression E' is
true and 0 otherwise. We start with an auxiliary lemma:



Lemma 2 For 0 < m <mn, N >0, let w, n(n) be the number of standard
(one-dimensional) ordered partitions of a nonnegative integer n into m parts
each no larger than N. Then

I(n =0) ifm=20

T B O ) (V)

Remark 1 While our interest is in [n] = {1,...,n}, we allow w,, n(n) to be
defined on n =0 for use by Lemma 3.

Proof: The generating function (g.f.) for wy, x(n) is

W(z) = 3wy (n)e" = (1_"3NH>m

S0 1—=x

When m = 0 the only non-zero coefficient is of 2° and it equals 1 so wg x(n) =
I(n = 0). Let T(z) = (1 — 2"*1)™ and S(z) = (1X;)". Then

(o) = 31y (7)o

which generates the sequence ty(n) = (n/(;\r;ﬂ)) (=)W +D(n mod (N+1) =

0). Similarly, for m > 1, it is easy to show S(x) generates s(n) = ("er*l). The

n

product W (z) = T'(x)S(z) generates their convolution ¢y (n) x s(n), namely,

n

/(N1 m n—i1+m-—1
Wy, n(N) = > (—1)"/¢ +)<i/(N+1)>< n—i )

i=0,N+1,2(N+1),...

Remark 2 This expression may alternatively be expressed as

- Ifj(—l)kc,?) (n—i—m—l—k(N—f—l))’

o m—1
over m > 1.
Before proceeding to the main theorem we have two additional lemmas.

Lemma 3 Let the integer 1 < N < n and consider the class F consisting of
all binary-valued functions f on [n] which take the value 1 on no more than
r < n elements of [n] and whose margin on any element x € [n] such that



f(x) =1 satisfies ps(x) < N. Then

FI=3 S elk,n— kim, N) = 5(n)

k=0 m=1

where

n—=k

c(k,n—k:;m,N)z( .
m_

> (wmgN(k’ —m + 1) + wm—l,QN(k —m — QN)) .
(1)

Remark 3 Note that ) (n) = S(r,n) if r < 2N + 1. This follows from the
standard identity [Graham et al. 1994]

(0= 2 056

Proof. Consider the integer pair [k,n — k|, where n > 1 and 0 < k < n.
A two-dimensional ordered m-partition of [k,n — k] is an ordered partition
into m two-dimensional parts, [a;, b;] where 0 < a;,b; < n but not both are
zero and where Y72, [a;, bj] = [k,n — k]. For instance, [2,1] = [0,1] + [2,0] =
[1,1] + [1,0] = [2,0] + [0, 1] are three partitions of [2,1] into two parts (for
more examples see Andrews [1998] ).

Suppose we add the constraint that only a4 or b, may be zero while all remain-
ing a;, by > 1,2<j<m,1<k<m— 1. Denote any partition that satisfies
this as walid. For instance, let k = 2, m = 3 then the valid m-partitions
of [k,n — k] are: {[0,1][1,1][1,n — 4]},{[0, 1][1,2][1,n — 5]}, ....{[0,1][1,n —
3”17 0]}7 {[07 2][17 1][17 n-— 5]}7 {[07 2][17 2][17 n-— 6]}7 ) {[07 2][17 n-— 4][17 O]}v
..., {[0,n = 3][1, 1][1,0]}. For [k,n — k], let P, be the collection of all valid
partitions of [k, n — k.

Let F}. denote all binary functions on [n] which take the value 1 over exactly
k elements of [n]. Define the mapping II : F, — P, where for any f € Fj
the partition II(f) is defined by the following procedure: Start from the first
element of [n], i.e., 1. If f takes the value 1 on it then let a; be the length of
the constant 1-segment, i.e., the set of all elements starting from 1 on which
f takes the constant value 1. Otherwise if f takes the value 0 let a; = 0. Then
let b; be the length of the subsequent O-segment on which f takes the value
0. Let [a1, 1] be the first part of II(f). Next, repeat the following: if there is
at least one more element of [n] which has not been included in the preceding
segment, then let a; be the length of the next 1-segment and b; the length of
the subsequent O-segment. Let [a;, b;], j = 1,...,m, be the resulting sequence
of parts where m is the total number of parts. Only the last part may have a



zero valued b, since the function may take the value 1 on the last element n
of [n] while all other parts, [a;,b;], 2 < j < m — 1, must have a;,b; > 1. The
result is a valid partition of [k, n — k] into m parts.

Clearly, every f € Fj has a unique partition. Therefore II is a bijection.
Moreover, we may divide P, ;, into mutually exclusive subsets V, consisting
of all valid partitions of [k,n — k| having exactly m parts, where 1 < m < n.

Thus
[Fel = > [Val.
m=1

Consider the following constraint on components of parts:
a; < 2N +1, 1<i<m. (2)

Denote by Vv C Pnx the collection of valid partitions of [k,n — k] into m
parts each of which satisfies this constraint.

Let Fy n = F'N F}, consist of all functions satisfying the margin constraint in
the statement of the lemma and having exactly £ ones. Note that f having a
margin no larger than N on z € [n] such that f(z) = 1 implies there does not
exist a segment a; of length larger than 2N + 1 on which f takes a constant
value. Hence the parts of II( f) satisfy (2). Hence, for any f € Fj, v, its unique
valid partition II(f) must be in V;,, . We therefore have

[Fin) = Vil (3)
m=1

By definition of F' it follows that

|E| =) [Finl- (4)
k=0
Let us denote by
c(k,n—k;m,N) = |V (5)

the number of valid partitions of [k, n — k] into exactly m parts whose compo-
nents satisfy (2). In order to determine |F| it therefore suffices to determine
c(k,n—k;m,N).

We next construct the generating function

G(t1,t2) = Y Y clar, ag;m, N)tTH52. (6)

120 a2>0

For m > 1,



Gty tg) = (B0 +t1 4 -+ V(4 2 4 - )Im=2)
(m—=2)+
(G )
(4 t%NH)H(mZ?)(t(Q) ity 4e)

(7)
where the values of the exponents of all terms in the first and second factors
represent the possible values for a; and by, respectively. The values of the
exponents in the middle m —2 factors are for the values of a;, b;, 2 < j < m—1
and those in the factor before last and last are for a,, and b,,, respectively.

Equating this to (6) implies the coefficient of t't5? equals c(aq, ag;m, N)
which we seek.

The right side of (7) equals

m m—1 m
b 1—t ! 1—t 1—ty)

1_g2N+1

Let W(zx) = ( T
and denote by s(n) = (”J”:_l). So (8) becomes

m—1
) generate w,,—1on(n) which is defined in Lemma 2

> s(02)t57 " (wan (@)t wpan (0 EY) o (9)
a1,a2>0

Equating the coefficients of t(flltgé in (6) and (9) yields

c(a, ag;m, N)=s(ag —m+1) (wyan(a) —m—+1) + wy_12n(a) —m —2N))

a/
- <m _2 1) (Wmon () —m + 1) + w128 () —m — 2N)).

Substituting k for o/, n—k for o), combining (3), (4) and (5) yields the result.
]

4 Main result
The next theorem extends Lemma 3 to a class Hy of VC-dimension no larger
than d.

Theorem 1 Letn,N > 1,1 <d
on [n] with VO(F) = d. Let Hy

n and F be a class of binary functions

<
C F consist of functions h that satisfies



the margin condition pup(x) < N on any x € [n] such that h(z) = 1. Then
Hy| < BN (n), where B is defined in Lemma 3.

Remark 4 As indicated in Remark 3, when N is greater than approximately
half the VC-dimension d the bound ﬂéN) (n) is identical to the bound in Lemma
1 and N is ineffective at reducing the size of the class.

Proof: Let Ay be the set system corresponding to the function class H  which
is defined as follows

Ay ={A, :h e Hy}, A, ={x € n]: h(x) =1}.

Clearly, |Ay| = |Hx|. Note that the notion of a bounded margin pp(z) < N
at = translates to A; having the property Py defined as having every subset
E C Aj, which consists of consecutive elements £ = {i,i+1,...,5 — 1,5} be
of cardinality |E| < 2N + 1. Hence for every element A € Ay, A satisfies Py
which is denoted by A = Py. Define wa, (k) = max{|{ANE : A € Ay} :
E C[n],|E| = k}. The corresponding notion of VC-dimension for a class Ay
of sets is the the so-called trace number [Bollobéds 1986, p.131] which is defined
as tr(Ay) = max{m : wa, (m) = 2™}. Clearly, tr(Ay) = VC(Hy) =d.

The proof proceeds as in the proof of Lemma 1 [Anthony and Bartlett 1999,
Theorem 3.6] which is based on the shifting method [see Bollobas 1986, Ch.
17, Theorem 1 & 4] [see also Haussler 1995, Frankl 1987; 1983]. The idea is to
transform Ay into Ag which is an ideal family of sets E. i.e., if £ € Ay then
S € Ay for every S C E, and such that |Ay| = |4o| < 8V (n).

Start by defining the operator T, on Ay which removes an element x € [n]
from every set A € Ay provided that this does not duplicate any existing set.
It is defined as follows:

To(Ay) = {A\ {2} : A€ Ay} U{A € Ay : A\ {2} € Ay}.

Consider now
Ay = Tl(T2(. . 'Tn(AN) c. ))
and denote the corresponding function class by Hy. Clearly, |Ho| = |Ao|.

We have |Ay| = | Ay| since the only time that the operator T, changes an
element A into a different set A* = T,(A) is when A* does not already exist
in the class so no additional element in the new class can be created.

It is also clear that for all x € [n], T.(Ag) = A since for each E € Ay
there exists a G € Aj that differs from it on exactly one element hence it is
not possible to remove any element = € [n] from all sets without creating a
duplicate. Applying this repeatedly implies that Ajg is an ideal. Furthermore,



since for all A € Ay, A = Py then removing an element z from A still leaves
A\ {z} = Py. Hence for all F € Ay we have E |= Py.

From Lemma 3 [Bollobds 1986, p.133] we have wa,(k) < w4, (k), for all 1 <
k < n. Since tr(Ayx) = d then tr(Ay) < d and since Ay is an ideal then it
follows that for all £ € Ay, |E| < d. Combined with the fact that for all
E € Ay, E &= Py then it follows that the corresponding function class H
satisfies the following: for all h € Hy, h has at most d 1’s and pp(x) < N
on every x € [n] such that h(z) = 1. By Lemma 3 above, we therefore have
Ho| < BYY)(n). From the above, we have |Hy| = [Ax| = |Ao| = |Ho| and
hence [Hy| < 8V (n). O

5 Classes of large-margin functions

For any t € F, h is said to be consistent with t on S if h(x;) = t(x;), for all
x; € S, 1 <14 < |S|. Denote by a positive sample S C [n] for t € F any set
of elements « € [n] for which ¢(z) = 1. Problems of learning by a positive
sample are typical whenever a learner observes an expert act, for instance,
as in learning grammatical inference. Let us consider classes of binary-valued

functions h consistent with a fixed target t € F on a positive sample S such
that Ms(h) > N.

Lemma 4 Letn,N,d > 1 and 1 <[ < n. Let F be a class of binary-valued
functions on [n] with VC(F) = d. For any fizedt € F, let S C [n] be a positive
sample of cardinality | such that pus(t) > N. Consider the subclass Hy(S) C F
of all functions h consistent with t on S and having ps(h) > N. Then

HN(S)| < 1+ e 2NN (4 n)

where S(d,n) is defined in Lemma 1.

Proof. The condition pp(z) > N for z implies that a function h must take
the value 1 over the interval Ini(x). Consider any ¢t € F with S and cor-
responding Hy(S) as in the statement of the lemma. Let R(S) = {z € [n] :
z € Iyti(x),x € S}. Since for every h € Hy(S), h(z) = 1 for all z € R(S5)
then the cardinality of the restriction Hx(S)|r(s) of the class Hy(S) on the
set R(S) is one. Denote by R°(S) = [n] \ R(S) then we have

[HN(S)] = [HN () Res)l-
Since VC(Hy(S5)) < VC(F) = d then by Lemma 1 it follows that

[Hn (9)ire(s)| < S(d, |RZ(5)]). (10)



We also have
max{|R°(S)|: S C [n],|S|=¢} =n—0—2(N+1) (11)

which is achieved for instance by a set S = {N +2,...,N + [ + 1} with
R(S") ={1,...,2(N + 1) +{}. Hence for any S as above we have

[ —2(N + 1)>' (12)

NCIED S .
ACTED oY

Using the standard identity of

we have for 0 < a <k,

() sl o

1=0
where we used 1 — x < exp(—=z) which holds for all z € R. The right side of
(13) equals
_ij 01 < e—am/k (14>
Using (13) and (14) the sum on the right side of (12) is bounded from above
by

d
Z (”) o k(+2(N+1)/n
i )

k=0
We have

d
n
R(H2(N+1)/n _ 1 k(1+2(N+1))/n
3 e 1 (e

k=0
(I+2(N+1))/ L (n
<1+ e UL/
: > (i)

d
— (1 — e~ E2AN+D)/ny 4 o~(H+2AN+1)/n 3 n
( ) im0 \k

(1 o 67(l+2(N+1))/n) + ef(l+2(N+1))/nS(d’ n)
1 + 6_(l+2(N+1))/nS(d, TL)

IN

O

Next we consider an extremal case where S is a maximal positive sample S* on
which the target ¢ € F has a margin larger than N. The corresponding class

10



in this case is Hy(5*) C F which consists of all h € F which are consistent
with ¢ on S* and satisfy u,(xz) > N if and only if z € S*. Note that S* is
maximal in the sense that all € [n] such that t(z) = 1 and u(x) > N are
included in S*. It thus represents the most informative positive sample for a
fixed margin level N and sample size [.

Lemma 5 Let n, N,d > 1. Let F be a class of binary-valued functions on
[n] with VC(F) = d. For any fized t € F let S* C [n] be a mazimal positive
sample such that pg+(t) > N and denote by | = |S*|. Consider a subclass
Hy(S*) C F which consists of all functions h consistent with t on S* and
satisfying pn(x) > N iff © € S*. Then

Hn(S%)] < B8 (n — 1 - 2(N +1)).

Proof: The proof follows that of Lemma 4 up to (10) with S* instead of S. By
Theorem 1 we have
* N c( ok
M (S regs| < BE(1R(S7))).

With (11) the result follows. O

6 Conclusions

The main result of the paper is a bound on the cardinality of a class of known
VC-dimension which consists of binary functions on [n] that have a margin
less than or equal to N. This extends a classic result of Sauer (and Vapnik-
Chervonenkis) and is subsequently used to obtain estimates on the cardinality
of classes of binary-valued functions with a large margin.
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