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Transductive PAC-Bayesian theorems,

an introduction

– (X,B) a measurable set of patterns to be classified ;
– Y a finite set of labels, applied to the patterns (most of the time,

we will consider the binary case Y = {0, 1}) ;
– (Xi, Yi)N+M

i=1
def= (Zi)N+M

i=1
notation= ZN+M

1 , the canonical process on
(X× Y)N+M ;

– R = {fθ : X → Y : θ ∈ Θ} some family (or union of families) of
classification rules ;

– P some joint distribution on (X× Y)N+M ;
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“Classical” PAC bounds : M = 0, P is a product measure :
P = P⊗N , and R(θ) = P

[
fθ(X) 6= Y

]
is to be compared with

r(θ) =
1
N

N∑
i=1

1
[
fθ(Xi) 6= Yi

]
,

through an inequality of the type :

With P = P⊗N probability at least 1− ε, for any θ ∈ Θ,

R(θ) ≤ r(θ) + γ(θ),

where γ(θ) depends only on ZN
1 and not directly on P.

Intended use of the bound :
– build an estimator by minimizing r(θ) + γ(θ) in θ ;
– more generally, bound the generalization error of any given

estimator at some level of confidence ε.
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Extensions of this classical setting :
– Putting things into a pseudo Bayesian perspective : replace R(θ)

with ρ(R), where ρ ∈ M1
+(Θ) ranges into the posterior probability

measures on the parameter space Θ (ρ is allowed to depend on
ZN

1 ). Look for a PAC Bayesian bound of the form : With P
probability at least 1− ε, for any ρ ∈ M1

+(Θ),

ρ(R) ≤ ρ(r) + γ(ρ).

There is no universal choice of γ(ρ), and one way to choose one
penalty function γ is to relate γ(ρ) with a prior distribution
π ∈ M1

+, independent of P and of ZN
1 . One advantage of the

pseudo Bayesian setting is that we can get explicit penalties γπ(ρ),
where the “complexity” of the model is captured through K(ρ, π).
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Another one is that we can always take ρ to be a finite convex
combination of 1(θ ∈ Λ))π(Λ)−1π, where Λ ranges into the
components of Θ under the relation
θ ∼ θ′ ⇔ fθ(Xi) = fθ′(Xi), i = 1, . . . , N , or even with the coarser
relation θ ∼ θ′ ⇔ r(θ) = r(θ′). Doing this, we show that the
parameter space can always be reduced to a finite dimensional one,
with maximum dimension 2N (in the binary case), although this
reduction is data dependent : this is a first step towards Vapnik’s
point of view.
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– The transductive point of view : M > 0, introducing a test set
(XN+1, . . . , XN+M ). Use the new notation r1(θ) for r(θ), and
introduce

r2(θ) =
1
M

N+M∑
i=N+1

1
[
fθ(Xi) 6= Yi

]
.

We recover the inductive setting as M → +∞, since
limM→+∞ r2(θ) = R(θ). An interesting case though is when
M = N .
Interesting features of this approach are :
– Deviation bounds for r2(θ)− r1(θ) can be obtained under the

weaker assumption that P is exchangeable.
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– Let us put for any z ∈ (X× Y)N+M

Pz =
1
|S|

∑
σ

δz◦σ.

Any exchangeable distribution P can be decomposed into

P =
∫
PzP(dz),

therefore it is enough to prove PAC bounds for Pz,
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with the advantage that under Pz :
– the pattern space X is Pz almost surely finite (and therefore

we have to choose among at most 2N+M possible classification
rules) ;

– any exchangeable function is almost surely constant : this
allows to consider data dependent priors π, as long as the
dependence on the data is invariant under permutations. This
leads to some PAC-Bayesian version of Vapnik’s theory.

– Inductive bounds can be recovered by integrating with respect to
the test set.
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Transductive PAC Bayesian lemma

Let us consider some regular conditional probability measure
π : XN+M → M1

+(Θ) and assume that it is exchangeable (i.e.
invariant under the permutations of the indices).

The PAC-Bayesian approach starts with an exponential inequality for
any fixed value of θ. We will take M = kN for convenience.
Lemma. For any exchangeable η : (X× Y)(k+1)N ×Θ → R, for any
θ ∈ Θ,

P

{
exp
[
λ
[
r2(θ)− r1(θ)

]
− η(θ)

]}
≤ P(k+1)N

{
exp
[ λ2

2N

[
1
k r1(θ) + r2(θ)]− η(θ)

]}
.

(Requires only the invariance under the permutations of (i + jN)k
j=0.)
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Let us integrate this inequality with respect to π and use the
following formula related to the Legendre transform of the Kullback
divergence function :
Lemma. For any upper bounded measurable function h, any
probability measure ρ ∈ M1

+(Θ,T),

log
{

π
[
exp
[
h(θ)

]]}
+ K(ρ, π)− ρ

[
h(θ)

]
= K(ρ, πexp(h)),

where dπexp(h) = exp(h)

π
[
exp(h)

]dπ ;
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We obtain the following learning lemma :
Lemma. For any exchangeable random variable λ ∈ R+ and any
exchangeable threshold η(θ),

P(k+1)N

{
sup

ρ∈M1
+(Θ)

λρ
[
r2(θ)

]
− λρ

[
r1(θ)

]
− ρ
[
η(θ)

]
−K(ρ, θ) ≥ 0

}

≤ P(k+1)N

{
π

[
exp
{ λ2

2N

[
1
k r1(θ) + r2(θ)

]
− η(θ)

]}
.
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We deduce a non localized PAC Bayesian bound by considering
η(θ) = λ2

2N

[
1
k r1(θ) + r2(θ)

]
+ log(ε−1) :

Theorem. With P probability at least 1− ε, for any posterior
ρ ∈ M1

+(Θ),

ρ
[
r2(θ)

]
≤
(

1− λ

2N

)−1{(
1 +

λ

2kN

)
ρ
[
r1(θ)

]
+

K(ρ, π) + log(ε−1)
λ

}
.

Considering N(X(k+1)N
1 ) =

∣∣{[fθ(Xk)
](k+1)N

k=1
: θ ∈ Θ

}∣∣, the number
of traces of {fθ} on X

(k+1)N
1 , choosing for π the uniform distribution

on these traces, and putting

λ =

(
2N
[
log
[
N(X(k+1)N

1 )
]
+ log(ε−1)

]
k−1r1(θ) + r2(θ)

)1/2

,
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we get
Corollary. With P probability at least 1− ε, for any θ ∈ Θ,

r2(θ) ≤ r1(θ) +
d

N
+

√
2d(1 + k−1)r1(θ)

N
+

d2

N2
,

where d = log
[
N(X(k+1)N

1 )
]
+ log(ε−1).

When Y = {0, 1},
log
[
N(X(k+1)N

1 )
]
≤ (k + 1)NH( h

(k+1)N ) ≤ h log( e(k+1)N
h ), where

H(p) = −p log(p)− (1− p) log(1− p) and

h = max
{
|A| : A ⊂ {X(k+1)N

1 } and |{A ∩ f−1
θ (1) : θ ∈ Θ}| = 2|A|

}
is the Vapnik Cervonenkis dimension of the family of classification
rules {fθ : θ ∈ Θ} on the set {X1, . . . , X(k+1)N}.
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In the i.i.d. case when P = P⊗(k+1)N , integrating with respect to the
test set, we get the following inductive theorem
Theorem. With P⊗N probability at least 1− ε, for any θ ∈ Θ,

R(θ) ≤ r1(θ) +
(1 + k−1)d∗

N

+

√[
(1 + k−1)d∗

N

]2
+

2(1 + k−1)d∗r1(θ)
N

,

where d∗ = ess sup
P

d ≤ h log
(

e(k + 1)N
h

)
+ log(ε−1).
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Choosing a fixed λ and optimizing it at the end, we can also prove
that
Theorem. For any ζ > 1, for any ε ≤ e−1, any integer N ≥ 4ζ, with
P probability at least 1− ε, for any θ ∈ Θ,

R(θ) ≤ r1(θ) +
ζd

N
+

√
ζ2d2

N2
+

2ζ(1 + k−1)r1(θ)
N

,

where

d = P

{
log
[
N(X(k+1)N

1 )
]
|ZN

1

}
+ log

[
ε−1
(

log(2N)
log(ζ) + 1

)]
≥ 1
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This is to be compared with Vapnik’s result
Theorem (Vapnik). With P probability at least 1− ε,

R(θ) ≤ r1(θ) +
2d′

N

(
1 +

√
1 +

Nr1(θ)
d′

)
,

where d′ = log
{

P⊗2N
[
N
(
X2N

1

)]}
+ log(4ε−1).
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Instead of looking for an improved Vapnik’s bound, we can also
optimize the right-hand side of the learning bound, leading to
Theorem. With P probability at least 1− ε,

ρ̂
λ+ λ2

2kN

[
r2(θ)

]
≤
(

λ− λ2

2N

)−1{
− log

[
π
{

exp
[
−
(
λ + λ2

2kN

)
r1(θ)

]}]
+ log(ε−1)

}

=
1 + λ

2kN

1− λ
2N

{
1

λ + λ2

2kN

∫ λ+ λ2
2kN

0

ρ̂β

[
r1(θ)

]
dβ

}
+

log(ε−1)
λ− λ2

2N

,

where

dρ̂β(θ) =
exp
[
−βr1(θ)

]
π
{

exp
[
−βr1(θ)

]}dπ(θ).
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Localization

We will restrict for simplicity to the case when k = 1 (i.e. the
training set and test set have the same size). Let us put

η(θ) =
(

λ2

2N
+ β

)[
r1(θ) + r2(θ)

]
+ log

{
π

[
exp
[
−β
[
r1(θ) + r2(θ)

]]]}
+ log(ε−1),

to get
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Theorem. With P probability at least 1− ε, for any posterior
probability measure ρ ∈ M1

+,

ρ
[
r2(θ)

]
≤
[
(1− ξ)λ− (1 + ξ)

λ2

2N

]−1{
[
(1− ξ)λ + (1 + ξ)

λ2

2N

]
ρ
[
r1(θ)

]
+ K(ρ, ρ̂2ξλ) + (1 + ξ) log( 2

ε )
}

.
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Corollary. With P probability at least 1− ε,

ρ̂(1+ξ)λ(1+ λ
2N )

[
r2(θ)

]
≤
[
(1− ξ)λ− (1 + ξ)

λ2

2N

]−1{
∫ (1+ξ)λ(1+ λ

2N )

2ξλ

ρ̂β

[
r1(θ)

]
dβ + (1 + ξ) log( 2

ε )
}

≤
[
(1− ξ)λ− (1 + ξ)

λ2

2N

]−1{
[
(1− ξ)λ + (1 + ξ)

λ2

2N

]
ρ̂2ξλ

[
r1(θ)

]
+ (1 + ξ) log( 2

ε )
}

.

In the same way, with P probability at least 1− ε,

ρ̂λ

[
r2(θ)

]
≤

[
1 +

(1 + ξ)λ
4ξ(1− ξ)N

]
ρ̂λ

[
r1(θ)

]
+

2ξ(1 + ξ)
(1− ξ)λ

log
(2

ε

)
1− (1 + ξ)λ

4ξ(1− ξ)N

.
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As a special case, choosing ξ = 8−1/2 we get

ρ̂λ

[
r2(θ)

]
≤

(
1 +

3λ

2N

)
ρ̂λ

[
r1(θ)

]
+

3
2λ

log
(2

ε

)
1− 3λ

2N

.
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Compression schemes

– Let us consider some estimator

f̂ :
+∞⋃
n=1

(
X× Y

)n × X → Y;

– Let us put for any training set Z ′ = (x′i, y
′
i)

n
i=1 ∈

(
X× Y

)
f̂Z′(x) = f̂(Z ′, x) x ∈ X.

– Let us assume that Z ′ 7→ f̂Z′ is an exchangeable function of Z ′.
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– For any ginven sample Z = (Xi, Yi)2N
i=1, let us consider the model

Rh =
{

f̂(x′
i,y

′
i)

h
i=1

:
{
x′i : 1 ≤ i ≤ h

}
⊂
{
Xi : 1 ≤ i ≤ 2N

}
,

(y′i)
h
i=1 ∈ Yh

}
.

– Let R =
⊔N

h=1 Rh be the disjoint union of these models.
– Let π ∈ M1

+(R) be a prior measure which is uniform on each Rh

and such that for some given parameter α ∈]0, 1[
π(Rh) ≥ (1− α)αh.

It is easy to see that

log|Rh| = log
[(

2N

h

)
|Y|h

]
≤ h

[
log
(

2N

h

)
+ 1 + log (|Y|)

]
.
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Theorem. For any α ∈]0, 1[, any ζ > 1, with P probability at least
1− ε, for any h = 1, . . . , 2N , any f ∈ Rh

r2(f) ≤ inf
λ∈[1,2N ]

B(λ, h, f),

where

B(λ, h, f) =
(

1− ζλ

2N

)−1{(
1 +

ζλ

2N

)
r1(f)

+
1
λ

[
− log(1− α) + h

[
log
(

N
h

)
+ 1 + log(|Y|)− log(α)

]
+ log(ε−1) + log

[ log(2N)
log(ζ) + 1

]]}
.
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We can then build an adaptive estimator f̂a by minimizing B(λ, h, f).
Let R̂h be the observable part of Rh, more precisely, let us put

R̂h =
{

f̂(x′
i,y

′
i)

h
i=1

:
{
x′i : 1 ≤ i ≤ h

}
⊂
{
Xi : 1 ≤ i ≤ N

}
, (y′i)

h
i=1 ∈ Yh

}
.

Let us define

ĥ ∈ arg min
h=1,...,N

inf
{
B(λ, h, f), λ ∈ [1, 2N ], f ∈ R̂h

}
f̂a ∈ arg min

f∈R̂ĥ

inf
λ∈[1,2N ]

B(λ, ĥ, f).

Proposition. With these notations

r2(f̂a) ≤ inf
{
B(λ, h, f) : λ ∈ [1, 2N ], h ∈ [1, N ], f ∈ R̂h

}
.
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In the transductive case (i.e. when X2N
N+1 is observed), the

exchangeable model Rh is observable, and therefore we can simulate
the Gibbs posterior distribution (e.g. using some MCMC method)
and compute localized learning bounds.

Natural applications of compression schemes are :
– bounding the generalization error of SVMs as a function of the

number of support vectors ;
– pruning decision trees, or even choosing the questions to ask at

each node in some data driven way.
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Margin bounds for SVMs

– Assume that (Xi)2N
i=1 and (Yi)N

i=1 are observed ;
– Let K be some symmetric positive kernel on X ;
– For any K-separable training set Z ′ = (Xi, y

′
i)

2N
i=1, where

(y′i)
2N
i=1 ∈ Y2N , let us consider the SVM f̂Z′ defined by K and Z ′.

Let γ(Z ′) be its margin.

Let R2 = max
i=1,...,2N

K(xi, xi)

+
1

4N2

2N∑
j=1

2N∑
k=1

K(xj , xk)− 1
N

2N∑
j=1

K(xi, xj).
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For any integer h = 1, . . . , N let us define the margin values

γ2h =
R√

2h− 1
,

γ2h+1 =
R√

2h
(
1− 1

(2h+1)2

) ,

and the exchangeable model

Rh =
{
f̂Z′ : Z ′ = (Xi, y

′
i)

2N
i=1 is K-separable andγ(Z ′) ≥ γh

}
.

The models Rh, h = 1, . . . , N are nested, moreover

log(|Rh|) ≤ h
[
log
(

2N
h

)
+ 1
]
.
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Proposition. For any α ∈]0, 1[, any ζ > 1, with P probability at
least 1− ε, for any h = 1, . . . , N , any SVM f ∈ Rh,

r2(f) ≤ inf
λ∈[1,2N ]

(
1− ζλ

2N

)−1{(
1 +

ζλ

2N

)
r1(f)

+
1
λ

[
h
[
log
(

2N
h

)
+ 1− log(α)

]
− log(1− α)

− log(ε) + log
[
log
[ log(2N)

log(ζ)

]
+ 1
]]}

.
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It is also possible to get bounds involving the margin on the training
set (and not on the union of the training and test sets). This is based
on a combinatorial lemma by Alon, Ben-David, Cesa-Bianchi and
Haussler : Let X = {1, . . . , n} and Y = {1, . . . , b}, where b ≥ 3. Let
R = {f : X → Y} be some set of classification rules. A pair (A, s)
where A ⊂ X and s : A → Y is said to be shattered by R if for any
(σx)x∈A ∈ {−1,+1}A there exists f ∈ R such that

min
x∈A

σx

[
f(x)− s(x)

]
≥ 1.
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The fat shattering dimension of R is defined as the maximal size |A|
of pairs (A, s) shattered by R.
Lemma. As soon as this fat shattering dimension is not greater than
h, there exists a 1-net F for the norm L∞ on R of size

log(|F |) < log
[
(b−1)(b−2)n

]{ log
[∑h

i=1

(
n
i

)
(b− 2)i

]
log(2)

+1

}
+log(2)

≤ log
[
(b− 1)(b− 2)n

]{[
log
[

(b−2)n
h

]
+ 1
]

h

log(2)
+ 1

}
+ log(2).
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Application to SVMs : it is enough to deal with the linear case.
– Let X = R

d et Y = {−1,+1} ;
– Let R ≥ max{‖Xi‖ : 1 ≤ i ≤ 2N} ;
– Θ = {(w, b) ∈ Rd ×R : ‖w‖ = 1} ;
– gw,b(x) = 〈w, x〉 − b ;
– Gw,b(x) = sign

[
gw,b(x)

]
.

Theorem. With P probability at least 1− ε,

1
N

2N∑
i=N+1

1
[
Gw,b(Xi) 6= Yi

]
≤
(

1− λ

2N

)−1{(
1 +

λ

2N

)
1
N

N∑
i=1

1
[
gw,b(Xi)Yi ≤ 4γh

]
+

1
λ

[
log(40N)

{
h

log(2) log
(

8eN
h

)
+ 1
}

+ log(2ε−1)
]}

.
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