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Transductive PAC-Bayesian theorems,

an introduction

— (X, B) a measurable set of patterns to be classified ;

— Y a finite set of labels, applied to the patterns (most of the time,
we will consider the binary case Y = {0,1});

- (XYM () M e g
(X x Y)N+M .

— R={fp: X —Y: 0 c O} some family (or union of families) of
classification rules;

— P some joint distribution on (X x Y)N+M
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, the canonical process on
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P = P®N, and R(9) = P|fo(X) # Y] is to be compared with

(0) = 5 D1 [a(X0) £ Y,

through an inequality of the type :
With P = P®¥ probability at least 1 — ¢, for any 6 € O,

R(0) < r(60) +~(0),

where v(0) depends only on Z{¥ and not directly on PP.

Intended use of the bound :

— build an estimator by minimizing r(8) 4+ vy(0) in 8 ;

— more generally, bound the generalization error of any given
\estimator at some level of confidence e.

CClassical” PAC bounds : M =0, P is a product measure :
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Extensions of this classical setting :

— Putting things into a pseudo Bayesian perspective : replace R(6)
with p(R), where p € M (©) ranges into the posterior probability
measures on the parameter space © (p is allowed to depend on
ZN). Look for a PAC Bayesian bound of the form : With P
probability at least 1 — ¢, for any p € M1 (0),

p(R) < p(r) +(p)-

There is no universal choice of v(p), and one way to choose one
penalty function « is to relate v(p) with a prior distribution

T E M}F, independent of P and of Z{¥. One advantage of the
pseudo Bayesian setting is that we can get explicit penalties v, (p),

where the “complexity” of the model is captured through X(p, 7).
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Another one is that we can always take p to be a finite convex
combination of 1(6 € A))m(A)~ 1w, where A ranges into the
components of © under the relation

0~0 < fo(X;) = fo(X;),t=1,..., N, or even with the coarser
relation 0 ~ 0" < r(0) = r(0’). Doing this, we show that the
parameter space can always be reduced to a finite dimensional one,
with maximum dimension 2% (in the binary case), although this
reduction is data dependent : this is a first step towards Vapnik’s

point of view.
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— The transductive point of view : M > 0, introducing a test set

(XNi1,---s XNia). Use the new notation r1 (@) for (), and
introduce
| N+M
i=N+1

We recover the inductive setting as M — 400, since

limpys 100 72(0) = R(A). An interesting case though is when

M = N.

Interesting features of this approach are :

— Deviation bounds for r5(0) — r1(6) can be obtained under the

weaker assumption that IP is exchangeable.
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— Let us put for any z € (X x Y)N*+M

1
IPz I 5;:00-
1 2

Any exchangeable distribution IP can be decomposed into

P — /IPZIP(dz),

therefore it is enough to prove PAC bounds for IP,,
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with the advantage that under IP, :

— the pattern space X is IP, almost surely finite (and therefore
we have to choose among at most 2+ possible classification
rules) ;

— any exchangeable function is almost surely constant : this
allows to consider data dependent priors w, as long as the
dependence on the data is invariant under permutations. This
leads to some PAC-Bayesian version of Vapnik’s theory.

— Inductive bounds can be recovered by integrating with respect to
the test set.
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/ Transductive PAC Bayesian lemma' \

Let us consider some regular conditional probability measure
m: XYM — ML (O) and assume that it is exchangeable (i.e.

invariant under the permutations of the indices).

The PAC-Bayesian approach starts with an exponential inequality for
any fixed value of §. We will take M = kN for convenience.

Lemma. For any exchangeable n: (X x Y)FHDN w0 — R, for any
0 c 0O,

IP{exp [)\ [7“2(9) — 7”'1((9)} — 77(9)} }
)\2

< P(k+1)N{eXp [ﬁ [Lr1(6) + r2(6)] — n(e)} }

\(Requires only the invariance under the permutations of (i + jN) ?:0 )/
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Let us integrate this inequality with respect to m and use the
following formula related to the Legendre transform of the Kullback

divergence function :

Lemma. For any upper bounded measurable function h, any

probability measure p € ML (©,T),

log{w {exp [h(ﬁ)ﬂ } + X(p, ) — P[h(e)} = K(p, Texp(n))

exp(h) g .
w[exp(h)] "

where dfexpn) =

= /
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We obtain the following learning lemma :

Lemma. For any exchangeable random variable A € Ry and any
exchangeable threshold n(0),

P(k+1)N{ sup AP[W(@)] - AP[Tl(Q)] - p[n(e)] —X(p,0) > 0}
peEML (©)

< P(k+1)N{7r [exp{% (L1 (0) + r2(0)] — n(@)] }
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/VVe deduce a non localized PAC Bayesian bound by considering \
0(6) = 3y [171(8) +r2(6)] +log(e™) -

Theorem. With IP probability at least 1 — €, for any posterior

p € ML(O),

plr2(0)] < (1 - 2?\,>1 {(1 + ﬁ) plri(0)]

N K(p, ) + log(e™1) }

A

Considering N(Xl(k+1)N) = H [fg(Xk)]g:Lll)N 0 €0}

of traces of {fyp} on X {kH)N, choosing for 7 the uniform distribution

, the number

on these traces, and putting

(2 log [N (XD 4+ log(e )] 12
B k=1ri(0) + r2(0) ’

= /
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we get
Corollary. With P probability at least 1 — €, for any 0 € O,

@) @
N N2’

where d = log [N(kaH)N)} + log(e™1).

When Y = {0, 1},
log [N(kaH)N)} < (k+ 1)NH(W) < hlog(e(kzl)N), where

H(p) = —plog(p) — (1 — p)log(1l — p) and

h=max{|A]: A C {X¥ "V and [{Anf,1(1): 0 € O} = 2141}

is the Vapnik Cervonenkis dimension of the family of classification
rules {fs : 0 € ©} on the set {X1,..., Xxr1)n}-

=
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In the i.i.d. case when P = P®F+DN integrating with respect to the

test set, we get the following inductive theorem

Theorem. With P®N probability at least 1 — €, for any 6 € O,

1+ k= Yd*
R(0) < ry(0) + LHI )
N

L[k ° 20+ B (9)
N N ’
1)N

where d* = esssupd < hlog (6(]{; ) ) +log(e™ ).
P

= /
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Choosing a fixed A and optimizing it at the end, we can also prove
that

Theorem. For any ( > 1, for any € < e, any integer N > 4¢, with
IP probability at least 1 — €, for any 6 € O,

Cd C?d?  2C(1+ k=1)ri(9)
where
d = PLlog[N(X(H)] |21} +log et (12BN 1) | > 1

= /
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This is to be compared with Vapnik’s result
Theorem (Vapnik). With P probability at least 1 — e,

R(9) < r1(0) + %dl (1 + \/1 + NT;,(9)> :

where d' = log{P®2N {N(XfN)} } + log(4e™1).

=
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Py 22 |r2(0)] <

kN

where

Instead of looking for an improved Vapnik’s bound, we can also

optimize the right-hand side of the learning bound, leading to
Theorem. With IP probability at least 1 — e,

(A _ %) - {— log [W{exp [— (A T

+ log(e_l)}

1+ —2,?]\, { 1 />‘+2?jv ) log(e™1)
2 Pg [7“1(9)] dﬁ - 2
L=3x (A 5w Jo ~ ix
R eXp —57“1<9)
dps(b) = | ] dm(6).

W{exp [—ﬁ'rl (9)] }

/

17



-

Localization '

We will restrict for simplicity to the case when k£ =1 (i.e. the

training set and test set have the same size). Let us put

16) = (35 +8) [(0) + 7200)]

t1os{ [ exp [ 3[71(6) + ra(6)]] | | + log(e ).
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Theorem. With IP probability at least 1 — €, for any posterior
probability measure p € Mfr,

SR [(1 —OA- (1 f)%] _1 {

2

(L= 97+ L+ 30 | plr(0)] + (o, aen) + (14 ) log(2) |

= /
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/Corollary. With IP probability at least 1 — €,
Az
P(1+g)>\(1+ﬁ) [7’2(‘9)] < [(1 T f)A o (1 + g)ﬁ] {

(1+HA(1+5%)
/ i} 5 [r1(0)]dB + (14 ©) 1og<%>}

<[o-on-avo ] {

=97+ 1+ 05| prealr(0)] + 1+ € o)}

In the same way, with IP probability at least 1 — ¢,

1+EX 7. 21 +€) ,
o [r2(8)] < [1+4€(1—€)N]m[“(9>]+ log(_)
pr|r2(0)] < S

\_ T oN
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As a special case, choosing &€ = 812 we get
3A N\ . 3 2
1+ — |pxr [7“1(6’)] + = log(—)
. 2N 2 €
pr|ra(0)] < . :
1 2~
2N
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Compression schemes I

— Let us consider some estimator

+o0
FrlJ@Xxy)" xx—Y;

n=1

— Let us put for any training set Z' = (z},y})", € (X x Y)

fo(x)=f(Z' z) zeX

— Let us assume that Z’ — f 7+ 18 an exchangeable function of Z’.

=
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— For any ginven sample Z = (X;,Y;)?Y, let us consider the model
Ry = {f(x<,y{)h:1 {ah1<i<h}c{X;:1<i<2N},
(Yi)iey € yh}-

— Let R = |_|f:f:1 Rp be the disjoint union of these models.
— Let m € ML (R) be a prior measure which is uniform on each Ry,

and such that for some given parameter o €]0, 1|
7(Rp) > (1 — a)a™.

It is easy to see that

ogf) = tog | (%1 )191"] < nrog (2 + 1+ 105 14D

=
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Theorem. For any o €]0,1[, any ¢ > 1, with P probability at least
1—¢€, foranyh=1,....2N, any f € Ry,

ro(f) < inf B(Ah, f),

~ A€[1,2N]
where
A\ A
B\ h, f) = (1 - QC—N> {(1 + 2%\[) r1(f)
i % [— log(1 — ) + h{log(%) + 1+ log(|¥]) — log(a)}

+log(e ) + log[l(ffé%g> 1}] }
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We can then build an adaptive estimator fa by minimizing B(\, h, f).
Let ﬂAQh be the observable part of R, more precisely, let us put

A

R, — {f@:'-,y’.)h:l 2l 1<i<hlC{X;:1<i<N}, (), € 9h}.
Let us define

h e argh_r{linNinf{B()\, h,f),A€[1,2N], f € j%h}

fa € arg min inf B(A\, h, f).
feER; AE[1,2N]

Proposition. With these notations

ro(fa) <inf{B(A\h, f) : A€ [1,2N],h € [I,N], f € Rp,}.

= /
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In the transductive case (i.e. when X3/}, is observed), the
exchangeable model R}, is observable, and therefore we can simulate

the Gibbs posterior distribution (e.g. using some MCMC method)
and compute localized learning bounds.

Natural applications of compression schemes are :

— bounding the generalization error of SVMs as a function of the
number of support vectors;

— pruning decision trees, or even choosing the questions to ask at

each node in some data driven way.

= /
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Margin bounds for SVMSI

— Assume that (X;)?Y, and (Y;)Y, are observed;
— Let K be some symmetric positive kernel on X ;
— For any K-separable training set Z' = (X;,y})2Y,, where
(y)2N, € Y2V let us consider the SVM f: defined by K and Z'.

Let v(Z') be its margin.

Let R = max K(x;, ;)

i=1,...,.2N
| 2N 2N | 2N
+ WZZK(a:j,xk) — NZK(:CZ,:CJ)
j=1k=1 j=1
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For any integer h = 1,..., N let us define the margin values

R

Y2h — /—Qh_la
R

V2h+1 =
\/Qh (1 o)

and the exchangeable model

Y

Rn = {fz + Z' = (Xi,y})?%, is K-separable andy(Z') > 75, }.
The models Ry, h =1,..., N are nested, moreover

log(|Ry]) < h{log(%) + 1]

=
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Proposition. For any o €]0,1[, any ¢ > 1, with P probability at
least 1 — €, forany h=1,...,N, any SVM f € R,

| AN CA
<, it (-av) (0 aw) o
1

+ 3 [h [log(%) +1-— log(oz)} —log(1 — )

— log(¢€) + log {logﬁ’fﬁé?ﬂ + 1H }
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It is also possible to get bounds involving the margin on the training
set (and not on the union of the training and test sets). This is based
on a combinatorial lemma by Alon, Ben-David, Cesa-Bianchi and
Haussler : Let X = {1,...,n} and Y = {1,...,b}, where b > 3. Let
R={f:X — Y} be some set of classification rules. A pair (A4, s)
where A C X and s: A — Y is said to be shattered by R if for any
(02)wea € {—1,+1}4 there exists f € R such that

]gfcréigax f(z) — s(x)] > 1.

= /
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The fat shattering dimension of R is defined as the maximal size | A]
of pairs (A, s) shattered by R.

Lemma. As soon as this fat shattering dimension is not greater than

h, there exists a 1-net F' for the norm L., on R of size

log(|F|) < log|[(b—1)(b—2)n] { log [Zzzlz_)éé))(b ~ 2 + 1} +1log(2)

<log[(b—1)(b—2)n] { [log[@} + 1] + 1} + log(2).

log(2)

= /
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/Application to SVMs : it is enough to deal with the linear case. \
—Let X=R%etY ={-1,+1};

— Let R > max{||X;|| : 1 <i<2N};

- O ={(w,b) eRIx R : ||w|]| =1};

~ Guwp(T) = (w,x) — b3

— Guyp(z) = sign [gw,b(x)]°

Theorem. With IP probability at least 1 — €,

2N

1=N+41

< (1 - Z?V)l {(1 " %) ]tiﬂ[gw,b%m < 4]
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