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Introduction

Definition 1 (Rademacher complexity) Let
X be an input space, D be a distribution

on X, and F be a real-valued function
class defined on X. Let S = {xy,--- ,x;}

be a random sample generated (inde-
pendently) by D. The empirical Rademacher
complexity of F' for the given sample S

is the following random variable:

D ;Tzf(xz> ] ,

wherer = {ry,---r;} are itd {£1}-valued
random vartables with equal probabili-
ties for +1 and —1 and the expectation
18 taken with respect to r.

The Rademacher complexity of F' is

9 l
R/(F)=E,

Ri(F) = Es | Bu(F)|.
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Theorem 1 Fiz § € (0,1) and let H
be a class of functions mapping from
Z =X x{l,—-1} to [0,1]. Let z1,--- , 2
be drawn independently according to a
probability distribution D. Then with
probability at least 1 — O over random
draws of samples of size l, every h € H
satisfies:

Eplh(z)] < Elh(z)] + R(H) + 1“(;/ %)
< E[h(2)] + Ri(H) +3 111(;/5)’

where Eplh(z)] is the true expectation
of h(z) and E[h(z)] is the corresponding
empirical one.



Theorem 2 Let ', Fy,--- , F, and G be

classes of real functions. Then:

(1) If F S G, then Ri(F) < R(G).

(2) l( ) RZ<COHVF>

(3) Ri(cF) = |c|Ry(F) for every c € R.

(4) If A:R — R is a Lipschitz with
constant L and satisfies A(0) =0,

then Ri(A o F) < 2LRy(F).
(5) Ri(F + h) < R)(F) +2v/E[h2]/l for any h.

6) Ri{IF — hl7)) < 2 (RZ<F> n 2\/E[h2]/z)

if 1<q<ooand ||f —hlle < 1.

(1) RS F) < 300, RilF).



Lipschitz property for general complexity

Theorem 3 Let p be an arbitrary dis-
tribution on R with zero mean. Let C’g
denote the corresponding empirical com-
plexity for this distribution. Let A :
R — R be a Lipschitz function with
constant L and satisfy A(0) = 0. Then

for any real-valued function class F' we
have:

Ci(Ao F) < 2LC)(F).

Theorem 4 If the function A in The-
orem 8 is an odd function (A(—t) =
—A(t)) then

AN AN

Ci(Ao F) < LCY(F).



Denote f(x;) = f;. We have to prove
l

> mA(f)
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Assume =0€ F.

Assume f € F' = —f € F.

Denote A™(t) = A(t), A= (t) = —A(—1)
and A* = {A", A~}

)

] l l
E, | sup Z iA(fi)|| < 2E, |sup Z rifi
fGF Ac A+ i=1 fGF =1
E sup riA(fi)| <2E, |[sup Y rif;
r feFAeAi Zz; ? ? r fer 4 Z v i
sup riA(fi) <
feF,AcA* Zzl Z Z

sup Z r AT (f;) + sup Z ri A (f;)

feF feF



sup Z riA(f;)

S A

<E,

’l“

sup Z Tzfz] -

feF . —

More general'

sup Z riAi(fi)

feF

<FE,

’I“

sup Z ’r@fz] .

feF

Remove all the A; but step-by-step, one
at a time. First step: Prove that

E, iug(ﬁflﬂfﬂ +roAa(f2) + - mAI(f1))

E, ?Cug(mfl + T2A2<f2> + - TlAl<fl)>

A first naive attempt fails:

[sup(T1A1(f1) + 19 As(fo) + - T A f1))

fer

£

liug(ﬁﬁ + T2A2<f2) + - ‘TlAl(fl>)




Next attemt: Group (ry, 79, -+ , 1), 1 >
0, with (=7, 79, -+ ,77); then we can as-
sert:

riAr(fi)+reAs(fo)+ - +riAi(fi))+
—11Ai(f1)+r2As(fo)+ - A A(f1) <

r1-fi+raAs(fo)+- -+ A fi))+
—11- fi+raAs(fo)+- -+ Al f1)).

To prove the last inequality it suffices
to show that for each couple of functions
{f*, f~} C F there is another couple of
functions {¢*, g~} C F such that

(r1 (ff)+7“2A2(fz+)+'"+TlAl<fz+))+
<

SUP fe
SUP fep

SUP rep
SUP rep

/N N /N 7 N

(=ri-A(fy )42 Ao(fy )+ -+ Ai(f7))
(71 g1 +rada(gy) + -+ 1iAig))+
( IS +7“2A2(92) '+?”1Al<gz_))-

The choice gt = f, g~ = f~ gives

AR =AU S /T
The choice gt = f~, g~ = fT gives

A(fN) —A(fD) < fr = fi
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Question: Is the factor 2 optimal 777

Ci(Ao F)<2-L-CyF).

In simple simulations

. 4 .
CZ(AOF) SgLCZ(F>
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Complexity of Lipschitz functions

Theorem 5 Let H be the class of Lips-

chitz functions with Lipschitz constants

at most L on the interval A = [0, 1] and
vanishing at some point of this interval.

Then for any set of points {xy, -+ ,x;} C
A we have

Ri(H) < 2LR)(14),

where 1A is the function identically equal
to1l on A.

If we consider the class of functions van-
ishing at the origin we gain the factor 2:

Ri(H) < LR(1a).

Question: Is it possible to drop the
factor 2 in Theorem 57

The factor 2 in Theorem 5 can not be
made smaller then 1. (Take h(z) = Lz, x1 =
To=---=x;=1.)
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We will prove that
Ri(H) < Ry(1a)

for the class of contractions vanishing
the origin.

Fix {x1,---, 2} € A =1[0,1], 0
r < 19 < oo < gz <1 Fixr
(ry, -+ 1), ==+, =1, L.

we can assume that

[
ap |5 ()

S

= Z Tih<$i)

for some h € H.
Denote dy = 21—0, dy = xo—x1, - - -
x; — x;—1. We have

[

0, 3 di<

’L:

h(0) =0 = |h(:c1)\ <d

1A

If sgn(ry +---4+1) >0 then we must

have h($1> = dl.
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h(z1) = dysgn(ry + - - - +11).

Now having fixed h(x1) we show in the
same way that

h($2> = h(ZE1) + dgsgn(rg + -+ r1> =
disgn(ry + - - - +11) + dosgn(rg + - - - + 17).

In general for : =1,--- ,[ we have

h(x;) = disgn(ri+- - -+11)+- - -+disgn(ri+- - -+11).

The last equality gives an expression for
S rh(z;) only in terms of = (7, - - 1)
(recall that dy, - - - , d; are fixed):

Zi‘:l Tih@?z’) =
rldisgn(ry + - - - 4+ 1))+
roldisgn(ri+- - -+1)+dosgn(ro+- - - 417) |+

ri|dysgn(ry + -+ 4+ 17) + dosgn(rg + - - - +
1)) + - - + disgn(1)].
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The expectation of the last expression
is exactly the empirical Rademacher com-
plexity. In order to estimate this expecta-
tion we denote

my_ir1 = E.[r; - sgn(ry + - - +11)].

Evidently it depends only on the index
[ — i+ 1. Then for the Rademacher com-
plexity we get from the last equality that
(now we write h, instead of h to indicate
the dependence of h on 7):

&, 22:1 Tihr(xi)] =
dlmH—
[dlml -+ d2m5_1]+

-------------------

[dlml +domy_1+ -+ dlml]
This gives

Ri(H) =
dl[l-ml]erQ[(l—1)-mg_1]+- : -+dl[1-m1].
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We show that mq, - - - , m; constitute the
central (middle) elements in the Pascal tri-
angle made of binomial coefficients (here
each line should be divided 2 powered by
the index of the line):

1)1
121
1331
146l 41
1 5 [10] 10 5 1

Now we can prove that

lm52<l—1>ml_12---21-m1.

The last inequality together with (1) show
that R;(H) will achieve its maximum if
we take d; as big as possible, namely if
we take di = 1, which gives that z; =
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ro = --- = x; = 1. And the Rademacher
complexity in this case will be maximal if
|h(1)] is as big as possible. Due to the
Lipschitz condition (with constant L = 1)
the maximal value for |h(1)] is 1. We can
take h(1) = 1 for all » = (ry,--- , 7).
Evidently the Rademacher complexity in
this case (r1 = a9 = --- = x; = 1) is the
same as the Rademacher complexity of the
identical one function 1y q; (for arbitrary
choice of {x1,--- ,x;} C [0, 1].
Theorem 5 is proved.
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