Rademacher Complexity and Lipschitz Functions

Amiran George Ambroladze & John Shawe-Taylor

University of Southampton, UK

Introduction

Definition 1 (Rademacher complexity) Let X be an input space, D be a distribution on X, and F be a real-valued function class defined on X. Let $S = \{x_1, \dots, x_l\}$ be a random sample generated (independently) by D. The empirical Rademacher complexity of F for the given sample S is the following random variable:

$$\hat{R}_{l}(F) = \mathbb{E}_{r} \left[\sup_{f \in F} \frac{2}{l} \left| \sum_{i=1}^{l} r_{i} f(x_{i}) \right| \right],$$

where $r = \{r_1, \dots, r_l\}$ are iid $\{\pm 1\}$ -valued random variables with equal probabilities for +1 and -1 and the expectation is taken with respect to r.

The Rademacher complexity of F is

$$R_l(F) = \mathbb{E}_S\left[\hat{R}_l(F)\right].$$

Theorem 1 Fix $\delta \in (0,1)$ and let Hbe a class of functions mapping from $Z = X \times \{1, -1\}$ to [0,1]. Let z_1, \dots, z_l be drawn independently according to a probability distribution D. Then with probability at least $1 - \delta$ over random draws of samples of size l, every $h \in H$ satisfies:

$$\mathbb{E}_D[h(z)] \leq \hat{\mathbb{E}}[h(z)] + R_l(H) + \sqrt{\frac{\ln(2/\delta)}{2l}}$$
$$\leq \hat{\mathbb{E}}[h(z)] + \hat{R}_l(H) + 3\sqrt{\frac{\ln(2/\delta)}{2l}},$$

where $\mathbb{E}_D[h(z)]$ is the true expectation of h(z) and $\hat{\mathbb{E}}[h(z)]$ is the corresponding empirical one. **Theorem 2** Let F, F_1, \dots, F_n and G be classes of real functions. Then:

- (1) If $F \subseteq G$, then $\hat{R}_l(F) \leq \hat{R}_l(G)$.
- (2) $\hat{R}_l(F) = \hat{R}_l(\operatorname{conv} F).$
- (3) $\hat{R}_l(cF) = |c|\hat{R}_l(F)$ for every $c \in \mathbb{R}$.
- (4) If $A : \mathbb{R} \longrightarrow \mathbb{R}$ is a Lipschitz with constant L and satisfies A(0) = 0, then $\hat{\mathbf{R}}_{\mathbf{l}}(\mathbf{A} \circ \mathbf{F}) \leq 2\mathbf{L}\hat{\mathbf{R}}_{\mathbf{l}}(\mathbf{F})$.
- (5) $\hat{R}_l(F+h) \leq \hat{R}_l(F) + 2\sqrt{\hat{\mathbb{E}}[h^2]/l} \text{ for any } h.$

(6)
$$\hat{R}_l(\{|F-h|^q\}) \le 2q \left(\hat{R}_l(F) + 2\sqrt{\hat{\mathbb{E}}[h^2]/l}\right)$$

$$if \ 1 \le q \le \infty \ and \ ||f - h||_{\infty} \le 1.$$

$$(7) \ \hat{B}_{i}(\sum^{n} E_{i}) < \sum^{n} \hat{B}_{i}(E_{i})$$

(7)
$$R_l(\sum_{i=1}^{n} F_i) \le \sum_{i=1}^{n} R_l(F_i)$$

Lipschitz property for general complexity

Theorem 3 Let μ be an arbitrary distribution on \mathbb{R} with zero mean. Let \hat{C}_l denote the corresponding empirical complexity for this distribution. Let A : $\mathbb{R} \longrightarrow \mathbb{R}$ be a Lipschitz function with constant L and satisfy A(0) = 0. Then for any real-valued function class F we have:

$$\hat{C}_l(A \circ F) \le 2L\hat{C}_l(F).$$

Theorem 4 If the function A in Theorem 3 is an odd function (A(-t) = -A(t)) then

$$\hat{C}_l(A \circ F) \le L\hat{C}_l(F).$$

Proofs

Denote
$$f(x_i) = f_i$$
. We have to prove
$$\mathbb{E}_r \left[\sup_{f \in F} \left| \sum_{i=1}^l r_i A(f_i) \right| \right] \le 2\mathbb{E}_r \left[\sup_{f \in F} \left| \sum_{i=1}^l r_i f_i \right| \right].$$

Rademacher \implies Gauss:

$$\mathbb{E}_r \left[\sup_{f \in F} \left| \sum_{i=1}^l \sum_{j=1}^m r_{ij} A(f_i) \right| \right] \le 2\mathbb{E}_r \left[\sup_{f \in F} \left| \sum_{i=1}^l \sum_{j=1}^m r_{ij} f_i \right| \right]$$

$$\mathbb{E}_r \left[\sup_{f \in F} \left| \sum_{i=1}^l g_i A(f_i) \right| \right] \le 2\mathbb{E}_r \left[\sup_{f \in F} \left| \sum_{i=1}^l g_i f_i \right| \right].$$

$$\mathbb{E}_r \left[\sup_{f \in F} \left| \sum_{i=1}^l r_i A(f_i) \right| \right] \le 2\mathbb{E}_r \left[\sup_{f \in F} \left| \sum_{i=1}^l r_i f_i \right| \right].$$

Assume
$$\equiv 0 \in F$$
.
Assume $f \in F \Longrightarrow -f \in F$.
Denote $A^+(t) = A(t), A^-(t) = -A(-t)$
and $A^{\pm} = \{A^+, A^-\}$.

$$\mathbb{E}_{r} \left[\sup_{f \in F, A \in A^{\pm}} \left| \sum_{i=1}^{l} r_{i} A(f_{i}) \right| \right] \leq 2\mathbb{E}_{r} \left[\sup_{f \in F} \left| \sum_{i=1}^{l} r_{i} f_{i} \right| \right]$$
$$\mathbb{E}_{r} \left[\sup_{f \in F, A \in A^{\pm}} \sum_{i=1}^{l} r_{i} A(f_{i}) \right] \leq 2\mathbb{E}_{r} \left[\sup_{f \in F} \sum_{i=1}^{l} r_{i} f_{i} \right]$$
$$\lim_{f \in F, A \in A^{\pm}} \sum_{i=1}^{l} r_{i} A(f_{i}) \leq 2\mathbb{E}_{r} \left[\sum_{i=1}^{l} r_{i} A(f_{i}) \right]$$

$$\sup_{f \in F} \sum_{i=1}^{l} r_i A^+(f_i) + \sup_{f \in F} \sum_{i=1}^{l} r_i A^-(f_i).$$

$$\mathbb{E}_r \left[\sup_{f \in F} \sum_{i=1}^l r_i A(f_i) \right] \le \mathbb{E}_r \left[\sup_{f \in F} \sum_{i=1}^l r_i f_i \right]$$

More general:

$$\mathbb{E}_r \left[\sup_{f \in F} \sum_{i=1}^l r_i A_i(f_i) \right] \leq \mathbb{E}_r \left[\sup_{f \in F} \sum_{i=1}^l r_i f_i \right].$$

Remove all the A_i but step-by-step, one at a time. First step: Prove that

$$\mathbb{E}_r \left[\sup_{f \in F} (r_1 A_1(f_1) + r_2 A_2(f_2) + \cdots + r_l A_l(f_l)) \right] \leq \mathbb{E}_r \left[\sup_{f \in F} (r_1 f_1 + r_2 A_2(f_2) + \cdots + r_l A_l(f_l)) \right].$$

A first naive attempt fails:

$$\left[\sup_{f \in F} (r_1 A_1(f_1) + r_2 A_2(f_2) + \dots + r_l A_l(f_l))\right] \not\leq \left[\sup_{f \in F} (r_1 f_1 + r_2 A_2(f_2) + \dots + r_l A_l(f_l))\right].$$

Next attemt: Group $(r_1, r_2, \dots, r_l), r_1 \ge 0$, with $(-r_1, r_2, \dots, r_l)$; then we can assert:

$$\begin{aligned} \sup_{f \in F} (r_1 A_1(f_1) + r_2 A_2(f_2) + \dots + r_l A_l(f_l)) + \\ \sup_{f \in F} (-r_1 A_1(f_1) + r_2 A_2(f_2) + \dots + r_l A_l(f_l)) \leq \\ \sup_{f \in F} (r_1 \cdot f_1 + r_2 A_2(f_2) + \dots + r_l A_l(f_l)) + \\ \sup_{f \in F} (-r_1 \cdot f_1 + r_2 A_2(f_2) + \dots + r_l A_l(f_l)). \end{aligned}$$

To prove the last inequality it suffices to show that for each couple of functions $\{f^+, f^-\} \subset F$ there is another couple of functions $\{g^+, g^-\} \subset F$ such that $(r_1 \cdot A(f_1^+) + r_2A_2(f_2^+) + \dots + r_lA_l(f_l^+)) +$ $(-r_1 \cdot A(f_1^-) + r_2A_2(f_2^-) + \dots + r_lA_l(f_l^-)) \leq$ $(r_1 \cdot g_1^+ + r_2A_2(g_2^+) + \dots + r_lA_l(g_l^+)) +$ $(-r_1 \cdot g_1^- + r_2A_2(g_2^-) + \dots + r_lA_l(g_l^-)).$ The choice $g^+ = f^+, g^- = f^-$ gives $A(f_1^+) - A(f_1^-) \leq f_1^+ - f_1^-.$ The choice $g^+ = f^-, g^- = f^+$ gives $A(f_1^+) - A(f_1^-) \leq f_1^- - f_1^+.$ Question: Is the factor 2 optimal ??? $\hat{C}_l(A \circ F) \leq \mathbf{2} \cdot L \cdot \hat{C}_l(F).$

In simple simulations

$$\hat{C}_l(A \circ F) \leq \frac{\mathbf{4}}{\mathbf{3}} \cdot L \cdot \hat{C}_l(F).$$

Complexity of Lipschitz functions

Theorem 5 Let H be the class of Lipschitz functions with Lipschitz constants at most L on the interval $\Delta = [0, 1]$ and vanishing at some point of this interval. Then for any set of points $\{x_1, \dots, x_l\} \subset$ Δ we have

 $\hat{R}_l(H) \le 2L\hat{R}_l(\mathbf{1}_{\Delta}),$

where $\mathbf{1}_{\Delta}$ is the function identically equal to 1 on Δ .

If we consider the class of functions vanishing at the origin we gain the factor 2:

 $\hat{R}_l(H) \le L\hat{R}_l(\mathbf{1}_{\Delta}).$

Question: Is it possible to drop the factor **2** in Theorem 5?

The factor 2 in Theorem 5 can not be made smaller then 1. (Take h(x) = Lx, $x_1 = x_2 = \cdots = x_l = 1$.) We will prove that

$$\hat{R}_l(H) \le \hat{R}_l(\mathbf{1}_{\Delta})$$

for the class of contractions vanishing at the origin.

Fix $\{x_1, \dots, x_l\} \subset \Delta = [0, 1], 0 \leq x_1 \leq x_2 \leq \dots \leq x_l \leq 1$. Fix $r = (r_1, \dots, r_l), r_i = \pm 1, i = 1, \dots, l$.

we can assume that

$$\sup_{f \in H} \left| \sum_{i=1}^{l} r_i f(x_i) \right| = \sum_{i=1}^{l} r_i h(x_i)$$

for some $h \in H$.

Denote $d_1 = x_1 - 0$, $d_2 = x_2 - x_1, \cdots, d_l = x_l - x_{l-1}$. We have

$$d_i \ge 0, \ \sum_{i=1}^l d_i \le 1.$$
 (1)

$$h(0) = 0 \Rightarrow |h(x_1)| \le d_1.$$

If $\operatorname{sgn}(\mathbf{r}_1 + \cdots + \mathbf{r}_l) > 0$, then we must have $h(x_1) = d_1$.

$$h(x_1) = d_1 \operatorname{sgn}(\mathbf{r}_1 + \dots + \mathbf{r}_l).$$

Now having fixed $h(x_1)$ we show in the same way that

$$h(x_2) = h(x_1) + d_2 \operatorname{sgn}(r_2 + \dots + r_l) = d_1 \operatorname{sgn}(r_1 + \dots + r_l) + d_2 \operatorname{sgn}(r_2 + \dots + r_l).$$

In general for $i = 1, \dots, l$ we have $h(x_i) = d_1 \operatorname{sgn}(\mathbf{r}_1 + \dots + \mathbf{r}_l) + \dots + d_i \operatorname{sgn}(\mathbf{r}_i + \dots + \mathbf{r}_l).$

The last equality gives an expression for $\sum_{i=1}^{l} r_i h(x_i)$ only in terms of $r = (r_1, \dots, r_l)$ (recall that d_1, \dots, d_l are fixed):

$$\sum_{i=1}^{l} r_i h(x_i) = r_1 [d_1 \text{sgn}(r_1 + \dots + r_l)] + r_2 [d_1 \text{sgn}(r_1 + \dots + r_l) + d_2 \text{sgn}(r_2 + \dots + r_l)] + \dots + r_l [d_1 \text{sgn}(r_1 + \dots + r_l) + d_2 \text{sgn}(r_2 + \dots + r_l)] + \dots + d_l \text{sgn}(r_l)].$$

The expectation of the last expression is exactly the empirical Rademacher complexity. In order to estimate this expectation we denote

$$m_{l-i+1} := \mathbb{E}_r[r_i \cdot \operatorname{sgn}(\mathbf{r}_i + \cdots + \mathbf{r}_l)].$$

Evidently it depends only on the index l - i + 1. Then for the Rademacher complexity we get from the last equality that (now we write h_r instead of h to indicate the dependence of h on r):

We show that m_1, \dots, m_l constitute the central (middle) elements in the Pascal triangle made of binomial coefficients (here each line should be divided 2 powered by the index of the line):

Now we can prove that

 $lm_l \ge (l-1)m_{l-1} \ge \cdots \ge 1 \cdot m_1.$

The last inequality together with (1) show that $\hat{R}_l(H)$ will achieve its maximum if we take d_1 as big as possible, namely if we take $d_1 = 1$, which gives that $x_1 =$ $x_2 = \cdots = x_l = 1$. And the Rademacher complexity in this case will be maximal if |h(1)| is as big as possible. Due to the Lipschitz condition (with constant L = 1) the maximal value for |h(1)| is 1. We can take h(1) = 1 for all $r = (r_1, \cdots, r_l)$. Evidently the Rademacher complexity in this case $(x_1 = x_2 = \cdots = x_l = 1)$ is the same as the Rademacher complexity of the identical one function $\mathbf{1}_{[0,1]}$ (for arbitrary choice of $\{x_1, \cdots, x_l\} \subset [0, 1]$.

Theorem 5 is proved.