Prediction under limited feedback

Gábor Lugosi

Pompeu Fabra University, Barcelona

based on joint work with Nicolò Cesa-Bianchi and Gilles Stoltz

Motivating example: on-line pricing

A vendor sells n pieces of a product to n customers.

Customers come one by one.

To customer number t, the vendor offers the product at a price $I_t \in [0, 1]$.

Each customer has a maximum price y_t he/she is willing to pay but does not tell it to the vendor.

If $y_t \ge I_t$, the product is bought and the vendor suffers a "loss" $y_t - I_t$.

If $y_t < I_t$, the product is not bought and the vendor's loss is $c \in [0, 1]$.

On-line pricing

The vendor's loss function is

$$\ell(I_t, y_t) = (y_t - I_t) \mathbb{I}_{I_t \le y_t} + c \mathbb{I}_{I_t > y_t}$$

The values y_t are arbitrary and may even depend on the vendor's past actions.

If the vendor knew the "distribution" of y_1, \ldots, y_n in advance, he could choose the value p minimizing the total loss

$$\frac{1}{n}\sum_{t=1}^n \ell(p, y_t) \; .$$

Result: The vendor has a (randomized) strategy such that, for all $\delta \in [0, 1]$, with probability at least $1 - \delta$,

$$\frac{1}{n} \sum_{t=1}^{n} \ell(I_t, y_t) - \min_{p \in [0,1]} \frac{1}{n} \sum_{t=1}^{n} \ell(p, y_t) \\ \leq C n^{-1/5} \sqrt{\ln(n/\delta)} .$$

Randomized prediction

A game between forecaster and environment.

At each round t, the forecaster chooses an action $I_t \in \{1, \ldots, N\};$

the environment chooses an action $y_t \in \mathcal{Y}$;

the forecaster suffers loss $\ell(I_t, y_t) \in [0, 1]$.

The goal is to minimize the *cumulative excess loss*

$$\frac{1}{n} \left(\sum_{t=1}^{n} \ell(I_t, y_t) - \min_{i \le N} \sum_{t=1}^{n} \ell(i, y_t) \right)$$

The forecaster may randomize. At time t chooses a probability distribution $\mathbf{p}_t = (p_{1,t}, \dots, p_{N,t})$ and plays action i with probability $p_{i,t}$.

Actions are often called "experts".

Randomized prediction

This and related models have been studied in

- game theory: playing repeated games;
- information theory: gambling and data compression;
- statistics: sequential decisions;
- statistical learning theory: on-line learning;

The simplest model assumes that after each round, the losses $\ell(i, y_t)$ (i = 1, ..., N) are revealed *(full information)*.

In this model **Hannan** (1957) showed that the forecaster has a strategy such that

$$\frac{1}{n} \left(\sum_{t=1}^n \ell(I_t, y_t) - \min_{i \le N} \sum_{t=1}^n \ell(i, y_t) \right) \to 0$$

almost surely for all strategies of the environment.

Hannan consistency: basic ideas

Obviously, the forecaster must randomize.

$$\ell(\mathbf{p}_t, y_t) = \sum_{i=1}^N p_{i,t}\ell(i, y_t) = \mathbf{E}_t\ell(I_t, y_t)$$

denotes the "expected" loss of the forecaster. By martingale convergence,

$$\frac{1}{n} \left(\sum_{t=1}^{n} \ell(I_t, y_t) - \sum_{t=1}^{n} \ell(\mathbf{p}_t, y_t) \right) = O_P(n^{-1/2})$$

so it suffices to study

$$\frac{1}{n} \left(\sum_{t=1}^{n} \ell(\mathbf{p}_t, y_t) - \min_{i \le N} \sum_{t=1}^{n} \ell(i, y_t) \right)$$

Weighted average prediction

Idea: assign a higher probability to better-performing actions.

A popular choice is

$$p_{i,t} = \frac{\exp\left(-\eta \sum_{s=1}^{t} \ell(i, y_s)\right)}{\sum_{k=1}^{N} \exp\left(-\eta \sum_{s=1}^{t} \ell(k, y_s)\right)} \quad i = 1, \dots, N.$$

where $\eta > 0$. Then

$$\frac{1}{n} \left(\sum_{t=1}^{n} \ell(\mathbf{p}_t, y_t) - \min_{i \le N} \sum_{t=1}^{n} \ell(i, y_t) \right) \le \frac{\ln N}{n\eta} + \frac{\eta}{8}$$
$$= \sqrt{\frac{\ln N}{2n}}$$

with $\eta = \sqrt{8 \ln N/n}$.

Proof

Let $L_{i,t} = \sum_{s=1}^{t} \ell(i, y_s)$ and $W_t = \sum_{i=1}^{N} w_{i,t} = \sum_{i=1}^{N} e^{-\eta L_{i,t}}$

for $t \geq 1$, and $W_0 = N$. First observe that

$$\ln \frac{W_n}{W_0} = \ln \left(\sum_{i=1}^N e^{-\eta L_{i,n}} \right) - \ln N$$
$$\geq \ln \left(\max_{i=1,\dots,N} e^{-\eta L_{i,n}} \right) - \ln N$$
$$= -\eta \min_{i=1,\dots,N} L_{i,n} - \ln N .$$

Proof

On the other hand, for each $t = 1, \ldots, n$

$$\ln \frac{W_t}{W_{t-1}} = \ln \frac{\sum_{i=1}^N w_{i,t-1} e^{-\eta \ell(i,y_t)}}{\sum_{j=1}^N w_{j,t-1}}$$
$$\leq -\eta \frac{\sum_{i=1}^N w_{i,t-1} \ell(i,y_t)}{\sum_{j=1}^N w_{j,t-1}} + \frac{\eta^2}{8}$$
$$= -\eta \ell(\mathbf{p}_t, y_t) + \frac{\eta^2}{8}$$

by Hoeffding's inequality.

Summing over $t = 1, \ldots, n$,

$$\ln \frac{W_n}{W_0} \le -\eta \sum_{t=1}^n \ell(\mathbf{p}_t, y_t) + \frac{\eta^2}{8}n \; .$$

Combining these, we get

$$\sum_{t=1}^{n} \ell(\mathbf{p}_{t}, y_{t}) \le \min_{i=1,...,N} L_{i,n} + \frac{\ln N}{\eta} + \frac{\eta}{8}n$$

Lower bound

The upper bound is optimal in the sense that for all predictors,

$$\sup_{n,N,y_1^n} \frac{\sum_{t=1}^n \ell(I_t, y_t) - \min_{i \le N} \sum_{t=1}^n \ell(i, y_t)}{\sqrt{(n/2) \ln N}} \ge 1 \ .$$

(Cesa-Bianchi, Freund, Haussler, Helmbold, Schapire, and Warmuth'97).

Idea: choose $\ell(i, y_t)$ to be i.i.d. symmetric Bernoulli.

Then the best predictor is random guessing.

Use the central limit theorem.

Label efficient prediction

Model proposed by Helmbold and Panizza (1997).

In this variant the forecaster does not see the outcome y_t unless he asks for it, but can do it only $m \ll n$ times.

The game is the following:

For each round $t = 1, \ldots, n$,

- (1) the environment chooses the outcome $y_t \in \mathcal{Y}$ without revealing it;
- (2) the forecaster chooses \mathbf{p}_t and draws an action $I_t \in \{1, \dots, N\}$ according to this distribution;
- (3) the forecaster incurs loss $\ell(I_t, y_t)$ and each action *i* incurs loss $\ell(i, y_t)$, none of these values is revealed to the forecaster;
- (4) the forecaster decides whether he asks for the value of y_t if the total number of revealed outcomes up to time t 1 is less than m.

A label efficient forecaster

The idea is to ask for labels randomly (with probability $\approx m/n$) and use the weighted average forecaster with the estimated losses.

Let Z_t be i.i.d. Bernoulli $\epsilon = \frac{m - \sqrt{2m \ln(4/\delta)}}{n}$ and $\eta = \sqrt{\frac{2\varepsilon \ln N}{n}}$.

The forecaster asks for y_t iff $Z_t = 1$.

Let

$$\widetilde{\ell}(i, y_t) \stackrel{\text{def}}{=} \begin{cases} \ell(i, y_t) / \varepsilon & \text{if } Z_t = 1, \\ 0 & \text{otherwise.} \end{cases}$$

An unbiased estimate!

For each round t = 1, 2, ..., n draw an action from $\{1, ..., N\}$ according to the distribution

$$p_{i,t} = \frac{\exp\left(-\eta \sum_{s=1}^{t} \widetilde{\ell}(i, y_s)\right)}{\sum_{k=1}^{N} \exp\left(-\eta \sum_{s=1}^{t} \widetilde{\ell}(k, y_s)\right)} \quad i = 1, \dots, N.$$

Bound for label efficient prediction

With probability at least $1 - \delta$,

$$\frac{1}{n} \left(\sum_{t=1}^{n} \ell(I_t, y_t) - \min_{i \le N} \sum_{t=1}^{n} \ell(i, y_t) \right)$$
$$\le 9\sqrt{\frac{\ln N + \ln(4/\delta)}{m}}$$

Sketch of proof:

First bound

$$\sum_{t=1}^{n} \widetilde{\ell}(\mathbf{p}_t, y_t) - \min_{i \le N} \sum_{t=1}^{n} \widetilde{\ell}(i, y_t)$$

by standard methods. Then use Bernstein-type martingale inequalities to handle

$$\sum_{t=1}^{n} \ell(I_t, y_t) - \sum_{t=1}^{n} \widetilde{\ell}(\mathbf{p}_t, y_t)$$

and

$$\min_{i \le N} \sum_{t=1}^{n} \widetilde{\ell}(i, y_t) - \min_{i \le N} \sum_{t=1}^{n} \ell(i, y_t)$$

Hannan consistency

There exists a randomized label efficient forecaster that achieves Hannan consistency while issuing, for all n > 1, at most $O((\ln \ln n)^2 \ln n)$ queries in the first n prediction steps.

Consistency is achieved with only a logarithmic number of labels!

We don't know if this rate is optimal.

Proof: divide time into consecutive blocks of length $1, 2, 4, 8, 16, \ldots$

In the r-th block use the forecaster with parameters $n = 2^{r-1}$, $m = (\ln r)(\ln \ln r)$ and $\delta = 1/r^3$.

Lower bound

There exists a loss function ℓ such that for all sets of N actions any forecaster asking for at most m labels has

$$\sup_{y_1,\dots,y_n\in\{0,1\}} \mathbf{E}\frac{1}{n} \left(\sum_{t=1}^n \ell(I_t, y_t) - \min_{i\leq N} \sum_{t=1}^n \ell(i, y_t) \right)$$
$$\geq c \sqrt{\frac{\ln N}{m}}$$

Idea (for N = 2): choose the outcomes randomly (i.i.d.) such that they are either Bernoulli $1/2 - \epsilon$ or Bernoulli $1/2 + \epsilon$.

Interpretation: m acts like a sample size.

A similar phenomenon occurs in the multi-armed bandit problem.

Improved bound for small losses

Let
$$L_n^* = \min_{i \le N} \sum_{t=1}^n \ell(i, y_t)$$

If the forecaster is used with parameters $\epsilon = \frac{m - \sqrt{2m \ln(4/\delta)}}{n}$ and $\eta = \min\left\{\sqrt{\frac{2\epsilon \ln N}{L_n^*}}, \epsilon\right\}$, then

$$\frac{1}{n} \left(\sum_{t=1}^{n} \ell(I_t, y_t) - \min_{i \le N} \sum_{t=1}^{n} \ell(i, y_t) \right)$$
$$\leq C \left(\sqrt{\frac{L_n^*}{n} \frac{1}{m} \log \frac{N}{\delta}} + \frac{1}{m} \log \frac{N}{\delta} \right)$$

Partial monitoring

In the most general setup the information received by the forecaster after making a prediction I_t is a *feedback* $h(I_t, y_t)$.

We assume that $\mathcal{Y} = \{1, \ldots, M\}.$

The matrix of losses is $\mathbf{L} = [\ell(i, j)]_{N \times M}$ (known by the forecaster).

At time t, the forecater chooses action

 $I_t \in \{1, \ldots, N\}$ and the outcome is $y_t \in \mathcal{Y}$.

The forecaster's loss is $\ell(I_t, y_t)$.

The forecaster only observes the feedback $h(I_t, y_t)$ where $\mathbf{H} = [h(i, j)]_{N \times M}$ is the feedback matrix (with values from a finite set).

Prediction with partial monitoring

For each round $t = 1, \ldots, n$,

- (1) the environment chooses the next outcome $y_t \in \mathcal{Y}$ without revealing it;
- (2) the forecaster chooses a probability distribution \mathbf{p}_t and draws an action $I_t \in \{1, \dots, N\}$ according to \mathbf{p}_t ;
- (3) the forecaster incurs loss $\ell(I_t, y_t)$ and each action *i* incurs loss $\ell(i, y_t)$. None of these values is revealed to the forecaster;
- (4) the feedback $h(I_t, y_t)$ is revealed to the forecaster.

Examples

Dynamic pricing. Here M = N, and $\mathbf{L} = [\ell(i, j)]_{N \times N}$ where

$$\ell(i,j) = \frac{(j-i)\mathbb{I}_{i \le j} + c\mathbb{I}_{i>j}}{N}$$

and $h(i,j) = \mathbb{I}_{i>j}$ or

 $h(i,j) = a \mathbb{I}_{i \le j} + b \mathbb{I}_{i > j}$, i, j = 1, ..., N.

Multi-armed bandit problem. The only information the forecaster receives is his own loss: $\mathbf{H} = \mathbf{L}$.

Examples

Apple tasting. N = M = 2.

$$\mathbf{L} = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right] \quad \mathbf{H} = \left[\begin{array}{cc} a & a \\ b & c \end{array} \right]$$

The predictor only receives feedback when he chooses the second action. (Helmbold, Littlestone, and Long, 2000)

Label efficient prediction. N = 3, M = 2.

$$\mathbf{L} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$
$$\mathbf{H} = \begin{bmatrix} a & b \\ c & c \\ c & c \end{bmatrix}$$

A general predictor

A forecaster first proposed by Piccolboni and Schindelhauer.

Crucial assumption: **H** can be encoded such that there exists an $N \times N$ matrix $\mathbf{K} = [k(i, j)]_{N \times N}$ such that

$$\mathbf{L} = \mathbf{K} \cdot \mathbf{H}$$
 .

Thus,

$$\ell(i,j) = \sum_{l=1}^{N} k(i,l)h(l,j)$$

Then we may estimate the losses by

$$\widetilde{\ell}(i, y_t) = \frac{k(i, I_t)h(I_t, y_t)}{p_{I_t, t}}$$

A general predictor

Observe

$$\mathbf{E}_t \widetilde{\ell}(i, y_t) = \sum_{k=1}^N p_{k,t} \frac{k(i, k)h(k, y_t)}{p_{k,t}}$$
$$= \sum_{k=1}^N k(i, k)h(k, y_t) = \ell(i, y_t) ,$$

 $\widetilde{\ell}(i, y_t)$ is an unbiased estimate of $\ell(i, y_t)$. Let

$$p_{i,t} = (1 - \gamma) \frac{e^{-\eta \widetilde{L}_{i,t-1}}}{\sum_{k=1}^{N} e^{-\eta \widetilde{L}_{k,t-1}}} + \frac{\gamma}{N}$$

where $\widetilde{L}_{i,t} = \sum_{s=1}^{t} \widetilde{\ell}(i, y_t).$

Performance bound

For all $\delta \in [0, 1]$, with probability at least $1 - \delta$,

$$\frac{1}{n} \sum_{t=1}^{n} \ell(I_t, y_t) - \min_{i=1,...,N} \frac{1}{n} \sum_{t=1}^{n} \ell(i, y_t)$$

$$\leq C n^{-1/3} N^{2/3} \sqrt{\ln(N/\delta)} .$$

where C depends on **K**.

Thus, Hannan consistency is achieved with rate $O(n^{-1/3})$ whenever $\mathbf{L} = \mathbf{K} \cdot \mathbf{H}$.

This solves the dynamic pricing problem.

Extends to random feedbacks.

Whenever Hannan consistency is achievable, a version of this predictor works and attains rate $O(n^{-1/3})$.

Revealing actions

Sometimes \mathbf{L} can not be expressed as $\mathbf{K} \cdot \mathbf{H}$, yet Hannan consistency is achievable. Example:

$$\mathbf{L} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad \mathbf{H} = \begin{bmatrix} a & b & c \\ d & d & d \\ e & e & e \end{bmatrix}$$

Here playing the first action reveals the outcome y_t . and the label-efficient prediction algorithm may be used.

An action $i \in \{1, ..., N\}$ is revealing if all entries in the *i*-th row of the feedback matrix are different. In such a case we have

$$\frac{1}{n} \left(\sum_{t=1}^{n} \ell(I_t, y_t) - \min_{i=1,\dots,N} L_{1,n} \right) \le 9n^{-1/3} \left(\ln \frac{5N}{\delta} \right)^{1/3}$$

Distinguishing actions

Assume that **H** is such that for each outcome j = 1, ..., M there exists an action $i \in \{1, ..., N\}$ such that for all outcomes $j' \neq j$, $h(i, j) \neq h(i, j')$.

Then there is a Hannan consistent forecaster with a normalized cumulative regret of the order of $n^{-1/3}$.

Optimality

The example of label efficient prediction shows that the rate $O(n^{-1/3})$ is not improvable, in general.

Bandit problems. In this case $\mathbf{H} = \mathbf{L}$ so \mathbf{K} is the identity matrix.

The forecaster becomes

$$p_{i,t} = (1 - \gamma) \frac{e^{-\eta \widetilde{L}_{i,t-1}}}{\sum_{k=1}^{N} e^{-\eta \widetilde{L}_{k,t-1}}} + \frac{\gamma}{N}$$

suggested by Auer, Cesa-Bianchi, Freund, and Schapire.

They show that a carefully modified version achieves a faster $O(n^{-1/2})$ rate (as in the full information case).

Questions

Give an attractive description of when Hannan consistency is achievable. (Piccolboni and Schindelhauer give a complicated procedure.)

Whenever Hannan consistency is achievable, one can have a rate of $n^{-1/3}$.

In some nontrivial cases $n^{-1/2}$ is achievable (e.g., bandit problem).

Another example: (a version of dynamic pricing) M = N,

$$\ell(i,j) = \frac{(j-i)\mathbb{I}_{i \le j} + (i-j)\mathbb{I}_{i > j}}{N} = \frac{|i-j|}{N}$$

and $h(i,j) = \mathbb{I}_{i>j}$.

Characterize the class of problems with fast rates. Is there any other rate?

Beyond Hannan consistency? Rustichini, Mannor and Shimkin.

Further reading

N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge University Press ($\leq 2005 + \log(1/\delta)$)