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Motivating example: on-line pricing

A vendor sells n pieces of a product to n

customers.

Customers come one by one.

To customer number t, the vendor offers the
product at a price It ∈ [0, 1].

Each customer has a maximum price yt he/she is
willing to pay but does not tell it to the vendor.

If yt ≥ It, the product is bought and the vendor
suffers a “loss” yt − It.

If yt < It, the product is not bought and the
vendor’s loss is c ∈ [0, 1].
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On-line pricing

The vendor’s loss function is

`(It, yt) = (yt − It)IIt≤yt
+ cIIt>yt

The values yt are arbitrary and may even depend
on the vendor’s past actions.

If the vendor knew the “distribution” of
y1, . . . , yn in advance, he could choose the value p

minimizing the total loss

1
n

n∑
t=1

`(p, yt) .

Result: The vendor has a (randomized) strategy
such that, for all δ ∈ [0, 1], with probability at
least 1− δ,

1
n

n∑
t=1

`(It, yt)− min
p∈[0,1]

1
n

n∑
t=1

`(p, yt)

≤ Cn−1/5
√

ln(n/δ) .
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Randomized prediction

A game between forecaster and environment.

At each round t, the forecaster chooses an action
It ∈ {1, . . . , N};

the environment chooses an action yt ∈ Y;

the forecaster suffers loss `(It, yt) ∈ [0, 1].

The goal is to minimize the cumulative excess loss

1
n

(
n∑

t=1

`(It, yt)−min
i≤N

n∑
t=1

`(i, yt)

)
.

The forecaster may randomize. At time t chooses
a probability distribution pt = (p1,t, . . . , pN,t)

and plays action i with probability pi,t.

Actions are often called “experts”.
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Randomized prediction

This and related models have been studied in

• game theory: playing repeated games;

• information theory: gambling and data
compression;

• statistics: sequential decisions;

• statistical learning theory: on-line learning;

The simplest model assumes that after each
round, the losses `(i, yt) (i = 1, . . . , N) are
revealed (full information).

In this model Hannan (1957) showed that the
forecaster has a strategy such that

1
n

(
n∑

t=1

`(It, yt)−min
i≤N

n∑
t=1

`(i, yt)

)
→ 0

almost surely for all strategies of the environment.
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Hannan consistency: basic ideas

Obviously, the forecaster must randomize.

`(pt, yt) =
N∑

i=1

pi,t`(i, yt) = Et`(It, yt)

denotes the “expected”loss of the forecaster.

By martingale convergence,

1
n

(
n∑

t=1

`(It, yt)−
n∑

t=1

`(pt, yt)

)
= OP (n−1/2)

so it suffices to study

1
n

(
n∑

t=1

`(pt, yt)−min
i≤N

n∑
t=1

`(i, yt)

)
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Weighted average prediction

Idea: assign a higher probability to
better-performing actions.

A popular choice is

pi,t =
exp

(
−η
∑t

s=1 `(i, ys)
)

∑N
k=1 exp

(
−η
∑t

s=1 `(k, ys)
) i = 1, . . . , N .

where η > 0. Then

1
n

(
n∑

t=1

`(pt, yt)−min
i≤N

n∑
t=1

`(i, yt)

)
≤ lnN

nη
+

η

8

=

√
lnN

2n

with η =
√

8 ln N/n.
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Proof

Let Li,t =
∑t

s=1 `(i, ys) and

Wt =
N∑

i=1

wi,t =
N∑

i=1

e−ηLi,t

for t ≥ 1, and W0 = N . First observe that

ln
Wn

W0
= ln

(
N∑

i=1

e−ηLi,n

)
− lnN

≥ ln
(

max
i=1,...,N

e−ηLi,n

)
− lnN

= −η min
i=1,...,N

Li,n − lnN .
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Proof

On the other hand, for each t = 1, . . . , n

ln
Wt

Wt−1
= ln

∑N
i=1 wi,t−1e

−η`(i,yt)∑N
j=1 wj,t−1

≤ −η

∑N
i=1 wi,t−1`(i, yt)∑N

j=1 wj,t−1

+
η2

8

= −η`(pt, yt) +
η2

8

by Hoeffding’s inequality.

Summing over t = 1, . . . , n,

ln
Wn

W0
≤ −η

n∑
t=1

`(pt, yt) +
η2

8
n .

Combining these, we get
n∑

t=1

`(pt, yt) ≤ min
i=1,...,N

Li,n +
lnN

η
+

η

8
n

9



'

&

$

%

Lower bound

The upper bound is optimal in the sense that for
all predictors,

sup
n,N,yn

1

∑n
t=1 `(It, yt)−mini≤N

∑n
t=1 `(i, yt)√

(n/2) ln N
≥ 1 .

(Cesa-Bianchi, Freund, Haussler, Helmbold,
Schapire, and Warmuth’97).

Idea: choose `(i, yt) to be i.i.d. symmetric
Bernoulli.

Then the best predictor is random guessing.

Use the central limit theorem.
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Label efficient prediction

Model proposed by Helmbold and Panizza (1997).

In this variant the forecaster does not see the
outcome yt unless he asks for it, but can do it
only m � n times.

The game is the following:

For each round t = 1, . . . , n,

(1) the environment chooses the outcome yt ∈ Y
without revealing it;

(2) the forecaster chooses pt and draws an action
It ∈ {1, . . . , N} according to this distribution;

(3) the forecaster incurs loss `(It, yt) and each
action i incurs loss `(i, yt), none of these
values is revealed to the forecaster;

(4) the forecaster decides whether he asks for the
value of yt if the total number of revealed
outcomes up to time t− 1 is less than m.
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A label efficient forecaster

The idea is to ask for labels randomly (with
probability ≈ m/n) and use the weighted average
forecaster with the estimated losses.

Let Zt be i.i.d. Bernoulli ε = m−
√

2m ln(4/δ)

n and

η =
√

2ε ln N
n .

The forecaster asks for yt iff Zt = 1.

Let

˜̀(i, yt)
def=

 `(i, yt)/ε if Zt = 1,

0 otherwise.

An unbiased estimate!

For each round t = 1, 2, . . . , n draw an action
from {1, . . . , N} according to the distribution

pi,t =
exp

(
−η
∑t

s=1
˜̀(i, ys)

)
∑N

k=1 exp
(
−η
∑t

s=1
˜̀(k, ys)

) i = 1, . . . , N .
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Bound for label efficient prediction

With probability at least 1− δ,

1
n

(
n∑

t=1

`(It, yt)−min
i≤N

n∑
t=1

`(i, yt)

)

≤ 9

√
lnN + ln(4/δ)

m
.

Sketch of proof:

First bound
n∑

t=1

˜̀(pt, yt)−min
i≤N

n∑
t=1

˜̀(i, yt)

by standard methods. Then use Bernstein-type
martingale inequalities to handle

n∑
t=1

`(It, yt)−
n∑

t=1

˜̀(pt, yt)

and

min
i≤N

n∑
t=1

˜̀(i, yt)−min
i≤N

n∑
t=1

`(i, yt)
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Hannan consistency

There exists a randomized label efficient
forecaster that achieves Hannan consistency while
issuing, for all n > 1, at most O((ln ln n)2 lnn)
queries in the first n prediction steps.

Consistency is achieved with only a logarithmic
number of labels!

We don’t know if this rate is optimal.

Proof: divide time into consecutive blocks of
length 1, 2, 4, 8, 16, . . ..

In the r-th block use the forecaster with
parameters n = 2r−1, m = (ln r)(ln ln r) and
δ = 1/r3.
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Lower bound

There exists a loss function ` such that for all sets
of N actions any forecaster asking for at most m

labels has

sup
y1,...,yn∈{0,1}

E
1
n

(
n∑

t=1

`(It, yt)−min
i≤N

n∑
t=1

`(i, yt)

)

≥ c

√
lnN

m
.

Idea (for N = 2): choose the outcomes randomly
(i.i.d.) such that they are either Bernoulli 1/2− ε

or Bernoulli 1/2 + ε.

Interpretation: m acts like a sample size.

A similar phenomenon occurs in the multi-armed
bandit problem.

15



'

&

$

%

Improved bound for small losses

Let L∗n = mini≤N

∑n
t=1 `(i, yt)

If the forecaster is used with parameters

ε = m−
√

2m ln(4/δ)

n and η = min
{√

2ε ln N
L∗n

, ε
}

,

then

1
n

(
n∑

t=1

`(It, yt)−min
i≤N

n∑
t=1

`(i, yt)

)

≤ C

(√
L∗n
n

1
m

log
N

δ
+

1
m

log
N

δ

)
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Partial monitoring

In the most general setup the information
received by the forecaster after making a
prediction It is a feedback h(It, yt).

We assume that Y = {1, . . . ,M}.

The matrix of losses is L = [`(i, j)]N×M (known
by the forecaster).

At time t, the forecater chooses action
It ∈ {1, . . . , N} and the outcome is yt ∈ Y.

The forecaster’s loss is `(It, yt).

The forecaster only observes the feedback h(It, yt)
where H = [h(i, j)]N×M is the feedback matrix
(with values from a finite set).
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Prediction with partial monitoring

For each round t = 1, . . . , n,

(1) the environment chooses the next outcome
yt ∈ Y without revealing it;

(2) the forecaster chooses a probability
distribution pt and draws an action
It ∈ {1, . . . , N} according to pt;

(3) the forecaster incurs loss `(It, yt) and each
action i incurs loss `(i, yt). None of these
values is revealed to the forecaster;

(4) the feedback h(It, yt) is revealed to the
forecaster.
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Examples

Dynamic pricing. Here M = N , and
L = [`(i, j)]N×N where

`(i, j) =
(j − i)Ii≤j + cIi>j

N
.

and h(i, j) = Ii>j or

h(i, j) = aIi≤j + bIi>j , i, j = 1, . . . , N .

Multi-armed bandit problem. The only
information the forecaster receives is his own loss:
H = L.
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Examples

Apple tasting. N = M = 2.

L =

 0 1

1 0

 H =

 a a

b c

 .

The predictor only receives feedback when he
chooses the second action. (Helmbold,
Littlestone, and Long, 2000)

Label efficient prediction. N = 3, M = 2.

L =


1 1

0 1

1 0



H =


a b

c c

c c

 .
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A general predictor

A forecaster first proposed by Piccolboni and
Schindelhauer.

Crucial assumption: H can be encoded such that
there exists an N ×N matrix K = [k(i, j)]N×N

such that
L = K ·H .

Thus,

`(i, j) =
N∑

l=1

k(i, l)h(l, j) .

Then we may estimate the losses by

˜̀(i, yt) =
k(i, It)h(It, yt)

pIt,t
.
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A general predictor

Observe

Et
˜̀(i, yt) =

N∑
k=1

pk,t
k(i, k)h(k, yt)

pk,t

=
N∑

k=1

k(i, k)h(k, yt) = `(i, yt) ,

˜̀(i, yt) is an unbiased estimate of `(i, yt).

Let

pi,t = (1− γ)
e−ηeLi,t−1∑N

k=1 e−ηeLk,t−1
+

γ

N

where L̃i,t =
∑t

s=1
˜̀(i, yt).
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Performance bound

For all δ ∈ [0, 1], with probability at least 1− δ,

1
n

n∑
t=1

`(It, yt)− min
i=1,...,N

1
n

n∑
t=1

`(i, yt)

≤ Cn−1/3N2/3
√

ln(N/δ) .

where C depends on K.

Thus, Hannan consistency is achieved with rate
O(n−1/3) whenever L = K ·H.

This solves the dynamic pricing problem.

Extends to random feedbacks.

Whenever Hannan consistency is achievable, a
version of this predictor works and attains rate
O(n−1/3).
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Revealing actions

Sometimes L can not be expressed as K ·H, yet
Hannan consistency is achievable. Example:

L =


1 0 0

0 1 0

0 0 1

 and H =


a b c

d d d

e e e

 .

Here playing the first action reveals the outcome
yt. and the label-efficient prediction algorithm
may be used.

An action i ∈ {1, . . . , N} is revealing if all entries
in the i-th row of the feedback matrix are
different. In such a case we have

1
n

(
n∑

t=1

`(It, yt)− min
i=1,...,N

L1,n

)
≤ 9n−1/3

(
ln

5N

δ

)1/3

.
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Distinguishing actions

Assume that H is such that for each outcome
j = 1, . . . ,M there exists an action i ∈ {1, . . . , N}
such that for all outcomes j′ 6= j, h(i, j) 6= h(i, j′).

Then there is a Hannan consistent forecaster with
a normalized cumulative regret of the order of
n−1/3.
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Optimality

The example of label efficient prediction shows
that the rate O(n−1/3) is not improvable, in
general.

Bandit problems. In this case H = L so K is
the identity matrix.

The forecaster becomes

pi,t = (1− γ)
e−ηeLi,t−1∑N

k=1 e−ηeLk,t−1
+

γ

N

suggested by Auer, Cesa-Bianchi, Freund, and
Schapire.

They show that a carefully modified version
achieves a faster O(n−1/2) rate (as in the full
information case).
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Questions

Give an attractive description of when Hannan
consistency is achievable. (Piccolboni and
Schindelhauer give a complicated procedure.)

Whenever Hannan consistency is achievable, one
can have a rate of n−1/3.

In some nontrivial cases n−1/2 is achievable (e.g.,
bandit problem).

Another example: (a version of dynamic pricing)
M = N ,

`(i, j) =
(j − i)Ii≤j + (i− j)Ii>j

N
=
|i− j|

N

and h(i, j) = Ii>j .

Characterize the class of problems with fast rates.
Is there any other rate?

Beyond Hannan consistency? Rustichini, Mannor
and Shimkin.

27



'

&

$

%

Further reading

N. Cesa-Bianchi and G. Lugosi.
Prediction, Learning, and Games.
Cambridge University Press (≤ 2005 + log(1/δ))
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