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Motivating example: on-line pricing'

A vendor sells n pieces of a product to n

customers.
Customers come one by one.

To customer number ¢, the vendor offers the
product at a price I; € [0, 1].

Each customer has a maximum price y; he/she is
willing to pay but does not tell it to the vendor.

If y; > I;, the product is bought and the vendor

suffers a “loss” y; — I;.

If y; < I;, the product is not bought and the
vendor’s loss is ¢ € [0, 1].
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/ On-line pricing I \

The vendor’s loss function is
f(ftayﬁ — (yt — It)HItSyt + CI[It>yt

The values y; are arbitrary and may even depend

on the vendor’s past actions.

If the vendor knew the “distribution” of
Y1, --.,Yn in advance, he could choose the value p

minimizing the total loss

1 n
E Z 6(}97 yt)
t=1

Result: The vendor has a (randomized) strategy
such that, for all § € |0, 1], with probability at
least 1 — 0,

1n
— 0L,y ) — — /(p,
n; (I1,9) = min — Z P, yt)

< Cn~Y5\/In(n/é) .
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Randomized prediction I

A game between forecaster and environment.

At each round ¢, the forecaster chooses an action
It < {1,,N},

the environment chooses an action y; € Y,
the forecaster suffers loss ¢(1;,y:) € [0, 1].
The goal is to minimize the cumulative excess loss

1 (< =,
" (; 014, ye) — ?SHJ{TI E(’%Qt))

t=1

The forecaster may randomize. At time ¢ chooses
a probability distribution p; = (p1.4...,PN.c)
and plays action ¢ with probability p; ;.

Actions are often called “experts”.
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Randomized prediction I

This and related models have been studied in

e came theory: playing repeated games;

e information theory: gambling and data

compression;
e statistics: sequential decisions;
e statistical learning theory: on-line learning;

The simplest model assumes that after each
round, the losses ¢(i,y;) (i =1,...,N) are

revealed (full information).

In this model Hannan (1957) showed that the

forecaster has a strategy such that

(Zﬁ (It, yt) mm

almost surely for all strategies of the environment.
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Hannan consistency: basic ideas'

Obviously, the forecaster must randomize.

denotes the “expected”loss of the forecaster.

By martingale convergence,

% (Z C(1t,y:) — Z“Pt;%)) = Op(n~'/?)

so it suffices to study

(Zf Pt» i) mm 0(i, yt))

t—l
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Weighted average prediction'

Idea: assign a higher probability to

better-performing actions.

A popular choice is

exp (-0 Y4, €0 )
il exp (=0 L (k)
where 17 > 0. Then
1 - o InN 7
_ _ < _
" (;ﬁ(pt,yt) min Hﬁ(z,yt)> < + 5

In N
2n

p’l:,t: Z:1,,N

with n = \/81In N/n.
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Proof'

Let Li; = > _, £(i,ys) and

N

N
Wi = E Wit = g e it
i=1

1=1

for t > 1, and Wy = N. First observe that
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Proof'

On the other hand, foreacht =1,...,n

11 — 1
Wi > W1
N .
< _nzizlj’ifvz‘,t—lﬁ(@, ye) 0
D jm1 Wit—1 i

2

n
=  —nl(pt,yt) + T

by Hoeftding’s inequality.

Summing over t = 1,...,n,

Combining these, we get

- , InN n
;f(pt,yt) < z,:12f’1.1.r.1,]\f L+ e + 3"
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Lower bound '

The upper bound is optimal in the sense that for

all predictors,

n, Ny} v/ (n/2)In N
(Cesa-Bianchi, Freund, Haussler, Helmbold,
Schapire, and Warmuth’97).

Idea: choose £(i,y:) to be i.i.d. symmetric

Bernoulli.
Then the best predictor is random guessing.

Use the central limit theorem.

.
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/ Label efficient prediction' \

Model proposed by Helmbold and Panizza (1997).

In this variant the forecaster does not see the
outcome 7; unless he asks for it, but can do it

only m < n times.
The game is the following:

For each round t =1,...,n,

(1) the environment chooses the outcome y; € Y

without revealing it;

(2) the forecaster chooses p; and draws an action
I, € {1,..., N} according to this distribution;

(3) the forecaster incurs loss £(1I¢, y:) and each
action ¢ incurs loss £(, y;), none of these

values is revealed to the forecaster;

(4) the forecaster decides whether he asks for the

value of y; if the total number of revealed

\ outcomes up to time t — 1 is less than m. /
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/ A label efficient forecaster' \

The idea is to ask for labels randomly (with
probability ~ m/n) and use the weighted average

forecaster with the estimated losses.

Let Z; be i.i.d. Bernoulli € = m—y/2mIn(4/9) and

n

_ 2e In N
T,_ n °

The forecaster asks for vy, ift Z; = 1.

Let
~ det | L y)/e it Zp =1,
Z(Z, yt) — .
0 otherwise.
An unbiased estimate!
For each round ¢t = 1,2,...,n draw an action

from {1,..., N} according to the distribution

exp (—n Xl (0. v.))
25:1 €xXp (_77 Zizl Z(ka ys))
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/Bound for label efficient prediction\l

With probability at least 1 — 0,

1 n n
n(;f(h,yt %13 0(, yt)>

t=1

S9\/1nN+1n(4/5) |

m

Sketch of proof:
First bound

n

Zé ptayt mln 5(’& yt)

t—l

by standard methods. Then use Bernstein-type
martingale inequalities to handle

Z C(Ie, ye) — Z Z(Pta Yt)
t=1 t=1

and
n n

min Ui, ye) — min » €0, y)
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4 N
Hannan consistency I

There exists a randomized label efficient

forecaster that achieves Hannan consistency while
issuing, for all n > 1, at most O((Inlnn)?Inn)

queries in the first n prediction steps.

Consistency is achieved with only a logarithmic

number of labels!
We don’t know if this rate is optimal.

Proof: divide time into consecutive blocks of
length 1,2,4,8,16,....

In the r-th block use the forecaster with

parameters n = 2”71, m = (Inr)(Inlnr) and

§=1/rs.

\_ /
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4 N
Lower bound '

There exists a loss function ¢ such that for all sets

of N actions any forecaster asking for at most m
labels has

RS N
sup  E— (Zﬁ(-’t,yt)—mm f(%w))
t=1

y1,-yn€{0,1} T =N

[In N
>c\ — .
m

Idea (for N = 2): choose the outcomes randomly
(i.i.d.) such that they are either Bernoulli 1/2 — ¢
or Bernoulli 1/2 + e.

Interpretation: m acts like a sample size.

A similar phenomenon occurs in the multi-armed

bandit problem.

\_ /
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4 N

Improved bound for small losses'

Let L:J = miniSN Z?:l E(Z, yt)
If the forecaster is used with parameters
¢ — m—\/2mln(4/5) and n = mll’l{ 2611;{]\7,6},

mn
then

(ZE Iy, y¢) mm 0(1, yt)>

o t 1

Lx 1 N 1 N
C \/"—log——l——log—
n m b m )
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4 N
Partial monitoring I

In the most general setup the information

received by the forecaster after making a
prediction I; is a feedback h(I;, ;).

We assume that )V = {1,..., M}.

The matrix of losses is L = [£(4, )| nxa (known
by the forecaster).

At time ¢, the forecater chooses action
I, € {1,..., N} and the outcome is y; € V.

The forecaster’s loss is /(I yy).

The forecaster only observes the feedback h(I,y;)
where H = [h(%,j)|nxas is the feedback matrix

(with values from a finite set).

. /
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Prediction with partial monitoring'

For each round t = 1,...,n,

(1) the environment chooses the next outcome

y; € Y without revealing it;

(2) the forecaster chooses a probability
distribution p; and draws an action
I, € {1,..., N} according to p¢;

(3) the forecaster incurs loss £(1¢, y:) and each
action ¢ incurs loss £(¢,y:). None of these

values is revealed to the forecaster;

(4) the feedback h(I;,y;) is revealed to the

forecaster.
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Examples I

Dynamic pricing. Here M = N, and
L = w(iaj)]NxN where

— ’i)]lz'gj -+ CI[Z'>]'
N

ti.j) = ¥
and h(i,j) =I;5, or

h(i,j):aﬂi§j+bﬂi>j, ’L,]Il,,N

Multi-armed bandit problem. The only

information the forecaster receives is his own loss:
H=L.

\_ /
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Examples I

Apple tasting. N = M = 2.

0 1 a a
L: H:
1 0 b ¢

The predictor only receives feedback when he
chooses the second action. (Helmbold,
Littlestone, and Long, 2000)

Label efficient prediction. N =3, M = 2.

-
|
_ O

.
1
O_

~
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4 N
A general predictor'

A forecaster first proposed by Piccolboni and
Schindelhauer.

Crucial assumption: H can be encoded such that
there exists an N x N matrix K = [k(7,j)|nxnN
such that

L=K-H.

Thus,
N

0(i,5) = k(i,)h(l,5) .

=1

Then we may estimate the losses by

~ k(2,1 )h(1
f(i,yt)z (7’7 I;)I (t tvyt) .

\_ /
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A general predictor'

Observe

N
~ 7, /<3 k
Etf(’l,yt) — Zpkt Dho. yt)

N
= > k(i k)h(k,ye) = L0, ye)
k=1

~

0(i, 1) is an unbiased estimate of £(i, y;).

Let

e_an’,t—l

v
it = (1 — = ~
p 7t ( /Y> Z]k\[_l e_nLk,t—l —1_ N

where L; ; = S, 06, ).

.
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Performance bound '

For all § € [0, 1], with probability at least 1 — ¢,

— Lgeeey

where C depends on K.

Thus, Hannan consistency is achieved with rate
O(n~13) whenever L = K - H.

This solves the dynamic pricing problem.
Extends to random feedbacks.

Whenever Hannan consistency is achievable, a

version of this predictor works and attains rate

O(n~13).

.
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4 N
Revealing actions I

Sometimes L can not be expressed as K - H, yet

Hannan consistency is achievable. Example:

_100_ _abc_
L=[0 1 0 and H=|d d d
_001_ e e e |

Here playing the first action reveals the outcome
y;. and the label-efficient prediction algorithm

may be used.

An action i € {1,..., N} is revealing if all entries
in the -th row of the feedback matrix are
different. In such a case we have

1 [& 5N\
— ZE(It,yt) — min Ly, | < 9n~1/3 <ln —)
n \ = i=1,....N )

ey

\_ /
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Distinguishing actions I

Assume that H is such that for each outcome
j=1,..., M there exists an action i € {1,..., N}
such that for all outcomes j' # 7, h(i, 5) # h(i,j').

Then there is a Hannan consistent forecaster with

a normalized cumulative regret of the order of
~1/3
n :
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Optimality I

The example of label efficient prediction shows
that the rate O(n~'/3) is not improvable, in

general.

Bandit problems. In this case H =L so K is

the identity matrix.

The forecaster becomes

e_nL’i,t—l —1_ l
N nLy e
Zk:l e Nk, t—1 N

pit = (1—7)

suggested by Auer, Cesa-Bianchi, Freund, and
Schapire.

They show that a carefully modified version
achieves a faster O(n~'/2) rate (as in the full

information case).

.
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4 , N
Questions I

Give an attractive description of when Hannan

consistency is achievable. (Piccolboni and

Schindelhauer give a complicated procedure.)

Whenever Hannan consistency is achievable, one

can have a rate of n—1/3.

1/2

In some nontrivial cases n™"/“ is achievable (e.g.,

bandit problem).

Another example: (a version of dynamic pricing)
M = N,

o =)L+ G =L, Ji—
K(Z,]):( )S]N( )>J:|N|

and h(’&,]) — I[z'>j-

Characterize the class of problems with fast rates.

Is there any other rate?

Beyond Hannan consistency? Rustichini, Mannor

@d Shimkin. /
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Further reading I

N. Cesa-Bianchi and G. Lugosi.
Prediction, Learning, and Games.
Cambridge University Press (< 2005 + log(1/9))
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