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Abstract

We present theoretical results on the performance of Bayesian online learning, namely
predictive error bounds for the Bayes mixture and MDL with respect to a countable
model class. We briefly discuss how assertions and improvements might be obtained
for active learning.

1 Online Learning

Proving loss bounds is an important issue in Statistical Learning Theory. Much work has been
done in an offline setup: Given are a domain X , a co-domain Y, a class of models C which usually
consists of functions from X to Y, and a training data set (xi, yi)1≤i≤n ∈ X × Y which is i.i.d.
according to some distribution µ on X × Y . Then one tries to obtain bounds on the expected
prediction error when choosing some model from C in terms of the empirical error observed on the
training data, thus identifying a model with good generalization capabilities [1, 2].

In contrast, we consider an online setup. No structural or probabilistic assumptions on the
domain X are given. We concentrate on the task of classification, so the co-domain Y is a finite set
(regression can be treated similarly but incurs additional technical problems). Sequences x<∞ =
(x1, x2, . . .) ⊂ X are generated by an arbitrary mechanism (which may be also an adversary trying
to maximize the prediction error). The corresponding target values y<∞ = (y1, y2, . . .) ⊂ Y are
generated i.i.d.1 according to a probability distribution µ(y|x) which depends on the actual input
x. Let ∆(Y) denote the set of probability distributions on Y, i.e. ν ∈ ∆(Y) iff ν(y|x) ≥ 0 and∑

y∈Y ν(y|x) = 1 for all x ∈ X , then µ(·|x) ∈ ∆(Y). Note that the i.i.d. requirement is actually
insignificant as long as there are no assumptions on X : we can make the distribution dependent on
the past by adding the past observations x<t = (x1, . . . , xt−1) and y<t to the current input xt. The
setup immediately generalizes to binary sequence prediction2 by letting xt = y1 ⊗ y2 ⊗ . . . ⊗ yt−1

and Y = {0, 1}. The model class C is assumed to be a countable3 class of probability distributions
C =

{
νi : νi(·|x) ∈ ∆(Y), i ≥ 1

}
. A predictor ϕ is a distribution ϕ(y|x1:t, y<t) on Y given the past

inputs x1:t = (x1, . . . , xt) including the current and the past outputs y<t. Let d : ∆(Y)×∆(Y) →
R+ be a distance between probability distributions. Then we are interested in bounding the total
expected distance

D(µ, ϕ|x<∞) =
∞∑

t=1

E
[
d
(
µ(·, xt), ϕ(·|x1:t, y<t)

)]
, (1)

∗This work was supported by SNF grant 2100-67712.02.
1Compare the prediction with expert setup [3] where even no assumptions on y<∞ are made.
2In fact, all our results generalize to semimeasures [4] and thus apply to universal sequence prediction [5].
3For results on continuously parameterized classes, see e.g. [6, 7].
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where expectation is taken with respect to µ. This is an online error measure since in each time
step t, the predictor may be chosen according to the complete set of past observations, i.e. the
model is retrained after each step. Relevant distance measures are the Kullback-Leibler divergence
(short KL divergence) and the square distance,

dKL(µ, ϕ|x1:t, y<t) =
∑

yt∈Y
µ(yt|xt) ln

µ(yt|xt)
ϕ(yt|x1:t, y<t)

and (2)

d2
2(µ, ϕ|x1:t, y<t) =

∑

yt∈Y

(
µ(yt|xt)− ϕ(yt|x1:t, y<t)

)2
, (3)

respectively. These quantities induce total distances DKL and D2
2 according to (1). We associate

a prior weight wν > 0 with each µ ∈ C and require that the Kraft inequality
∑

ν wν ≤ 1 holds.
Then for given observation (x1:n, y1:n), we define the Bayes mixture and the MDL = minimum
description length (or MAP = maximum a posteriori) estimator with respect to the model class C
as

ξ(y1:n|x1:n) =
∑

ν∈C
wνν(y1:n|x1:n) =

∑

ν∈C
wν

n∏
t=1

ν(yt|xt) (4)

ν∗ = ν∗(x1:n,y1:n) = arg max
ν∈C

{wνν(y1:n|x1:n)}, and (5)

%(y1:n|x1:n) = max
ν∈C

{wνν(y1:n|x1:n)} = wν∗ν
∗(y1:n|x1:n). (6)

These quantities induce predictors, namely the Bayes mixture, the static MDL, the dynamic MDL
and the normalized dynamic MDL predictor, as follows:

ξ(yn|x1:n, y1:n−1) = ξ(y1:n|x1:n)/ξ(y1:n−1|x1:n−1) (7)
%static(yn|x1:n, y1:n−1) = ν∗(x1:n−1,y1:n−1)

(yn|xn) (8)

%(yn|x1:n, y1:n−1) = %(y1:n|x1:n)/%(y1:n−1|x1:n−1), and (9)
%̄(yn|x1:n, y1:n−1) = %(y1:n|x1:n)/

[∑
yn

%(y1:n|x1:n)
]
. (10)

Note that the static MDL predictor directly uses the MAP estimator and thus reflects a basic
principle in machine learning: “choose the model which minimizes the error on the training data
plus a regularization term”. The following fundamental theorem which asserts excellent prediction
properties of the Bayes mixture was found by Solomonoff [8] for universal sequence prediction:

Theorem 1 Let µ ∈ C, then D2
2(ξ, µ|x<∞) ≤ ln w−1

µ holds.

That is, the only requirement is that the true distribution µ is contained in the model class.
The assertion is strong: The total expected square error of the predictive probabilities is finitely
bounded. This implies that they rapidly converge to the true probabilities almost surely. Moreover,
one can derive good bounds for any bounded loss function [9]. In order to prove the theorem, we
need that D2

2 is bounded use by DKL [10]. Use the dominance ξ(. . .) ≥ wµµ(. . .) which holds by
definition to obtain

n∑
t=1

E ln
µ(yt|xt)

ϕ(yt|x1:t, y<t)
= E ln

n∏
t=1

µ(yt|xt)
ϕ(yt|x1:t, y<t)

= E ln
µ(y1:n|x1:n)
ξ(y1:n|x1:n)

≤ ln w−1
µ . (11)

Taking the limit n →∞, the left hand side of (11) converges to DKL, which implies the assertion.
Note that the formal dependence on x<∞ is completely irrelevant for the proof.
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Predicting according to the mixture ξ, also known as marginalization, is the optimal method
from a Bayesian view point, but usually is computationally infeasible. Since a popular (and possibly
less expensive) way is predicting according to the best model in the class, it is important to study
the properties of the static MDL predictions. Here a corresponding result is more difficult to
obtain. We achieve the goal using dynamic and normalized dynamic MDL as intermediate steps:
the former quantity has the dominance property but is no (semi-)measure, hence it cannot be used
with the KL divergence. On the other hand, the triangle inequality does not hold for the KL
divergence.

Theorem 2 Let µ ∈ C, then we have D2
2(%̄, µ|x<∞) ≤ ln w−1

µ + w−1
µ , D2

2(%, %̄|x<∞) ≤ 2w−1
µ , and

D2
2(%

static, %|x<∞) ≤ 3w−1
µ .

The proofs can be found in [4]. Since the triangle inequality holds for
√

D2
2, this implies

bounds on the total expected distances for the static MDL predictor. Observe that the bounds
are exponentially worse than for the Bayes mixture, namely O(w−1

µ ) instead of ln w−1
µ . This is no

artifact of the proof, as the following example shows.

Example 3 Let N ≥ 1, X = {1, . . . , N − 1}, Y = {0, 1}, C = {ν1, . . . , νN}, where νi(1|x) = 1 iff
x ≥ i. Let wν = 1

n for all ν and assume that the true distribution is µ = νN , i.e. it generates 0 on
all inputs almost surely. Let the input sequence be x1:N−1 = 1, 2, . . . , N−1, then ρ̄(1|x1:t, y<t) = 1

2

for all t ∈ {1, . . . , N − 1}, thus the total error of the normalized dynamic MDL predictions is N−1
2 .

Assume that in case of a tie, the static MDL predictor always chooses the element of C with the
smaller index (or make the weights slightly non-uniform), then the total static MDL prediction
error is N − 1.

It might be surprising on a first glance that even if all elements of C do not depend on the input
(prediction of Bernoulli sequences), examples can be found where the bound O(w−1

µ ) is sharp [11].
However under additional mild conditions a bound of O(lnw−1

µ ) holds here.

2 Active Learning

So far, results have presented for a passive learner. If in contrast the learner has influence on the
generation or selection of training data, on could hope that either the expected prediction error
decreases or the amount of (labeled) training examples is reduced, or both. As far as we know,
no general results of this type have been proven yet in our setup. Thus there are some interesting
open questions in active learning.

In the special case of Example 3, it is immediate how active learning improves the performance:
If the learner chooses the inputs by an iterative bisection of the set {1, . . . , N − 1}, then the true
distribution is identified after log2N steps, thus the total prediction error is reduced to log2N . This
gives hope that a more general result might hold: If the learner is allowed to construct queries,
then the MDL prediction error reduces to lnw−1

µ .
In order to construct queries, the input space X must be known to the learner and hence must

fulfil structural assumptions. Without such assumptions, one might hope to draw benefits from
a selective sampling method in the spirit of [12]. There unlabeled inputs are presented to the
learner that may pick the “interesting” ones for labeling in the sense of an expected information
gain criterion. In this case, one might hope to reduce the total request of labeled examples as in
[12], while the error does not increase significantly.

Another issue is greedy vs. non-greedy construction of queries. Empirical evidence indicates
that a sophisticated multi-step lookahead strategy of query construction does not gain much over
a greedy method. We give an informal argument in favor of this claim in our framework, provided
that all models are independent on the history (i.e. no information about the history or the current

3



step is integrated in the input): Given the bound on the total error, we should choose inputs first
where our predictive performance is poor, in order to maximize the quality of future predictions.
Of course, this argument should be made formal.
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