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Overview

ul

e Bayesian framework for sequence prediction
(no i.i.d. assumption!)

e Connect this to classification
e Also keep in mind: Universal prediction
e Bayesian predictors: Mixture and MDL

e Online convergence results (asymptotics, loss
bounds)

e Proceeding further: offline theorems, active
earning, ...7




Rough Problem Setup

o Prediction: Given an initial part x;1; = x122...2;
of a sequence, predict the next symbol z;. ;. For
example

— 1.+ = 01010101010101
— x1.+ = 1100100100001111110110101010001000100001
— x1+ = 0001111001010010001111110110101001001111

e (lassification: Given some training data

(u, )14 = [(ug, 1), .-, (ug, T¢)]

and an input us 1, predict output x; ;.
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Prediction: (Semi)Measures

e Restrict to binary (output) alphabet B = {0,1}

e B> = {binary sequences}, B* = {binary
strings}, € is the empty string

e A measure y is a function p: B* — |0,1] s.t.

pu(e) =1 and p(x) = u(x0) + p(xl) for all x
e A semimeasure v has

v(e) < 1and v(z) > v(x0)+ v(xl) for all x
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= Examples: (Semi)Measures

o \(z) = 27ten9th(®) is the uniform measure

e 11(111...1) =1 and p1(z) = 0 if x contains at least
one 0, is a deterministic measure

e My (x) = the probability that

some universal Turing ma- / \
chine (UTM) U outputs a

string starting with  when / \ / \
the input is random coin flips / \

e [ he latter is a semimeasure,
not a measure, since U does .
not halt on each input!
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= Binary Classification

e Need to add input

e u(1|u) is i.i.d. given some input u € U

e Conditionalized measure, depends only on input, no
history

e Input space U arbitrary, thus may contain history

e Can recover full (non-i.i.d.) sequence prediction setup
by letting U = B* and w1 = 14

e Conversely: All online results also hold with input
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=— C(Classes of (Semi)Measures

e Let C be a countable class of (semi)measures
e Each v € C is assigned a prior weight w, > 0
o Kraft inequality: ) _.w, <1

e Universal setup: ¢ = M = all programs on a
UTM U

e w, = 275W where K(v) is the prefix Kol-
mogorov Complexity of v, i.e. the length of
the shortest self-delimiting program defining v



Assumptions

We make no probabilistic assumption on C
We show bounds for given true distribution 1
which is a measure (not a semimeasure)

and assumed to be in C

hus, bounds depend on the complexity (or
prior weight w,,) of the true distribution

Occam'’s razor
priors correspond to regularization
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Bayes Mixtures

e Bayes mixture {(z) = ) . w,v(z)
e Bayes mixture prediction:

B Y wyv(xa)
{(a!aj) o Zy w,,u(a:)

for a € {0, 1}.
e ¢ is (semi)measure
e “Committee of all models”
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Minimum Description Length

e Minimum Description Length (MDL) estimator

VCB

¥ = argmax{w,v(z)}

o(x) = max{w,v(z)}

IS maximizing element

log o(x) = min{— logw, — logv(x)}
logw, < code of the model

logv(z) <> code of data given
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Prediction using MDL

e Dynamic MDL predictor: o(a|z) = Q@(gg)

not a semimeasure!

e Normalized dynamic MDL: p(a|x) = Q(wg)(iz)(wl)

measure
search new model for each next symbol

v (za)
v ()

e Static MDL predictor: ¢%(a|x) =
(semi)measure
find best model and use this for prediction

e — Static MDL is computationally more efficient
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Bayes Mixture Predictions

Theorem (Solomonoff): Let u € C be a measure,
then

Z Z p(alryy) — (CL|CIJ1;t))2 < ln(wﬁl)
ac{0,1}

= The posteriors almost surely converge to the true
probabilities fast



— Proof of Solomonoff's

Theorem

() ( )
— Eln PATE 10 — Eln’uxl;Tle < lnw !
€($1:T+1)

Lemma:
The quadratic distance Observation:
IS bounded by the X dominates m I.e.

relative entropy. X(X) 2 wmn(x) for all x
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MDL: Main Theorem

Theorem: 1 € C measure, then

(i) Z Y (alz1) = Guom(alr1))” < Inw)t +w?,

ac{0,1} normalized dynamic
(i1) Z > (ulaers) — olalzi))” < 8- w,,
a€{0,1} dynamic
117 p(alxys) — 0™ (a|zy. 2§21-w_]L
7!
ac{0, 1} static

= The posteriors almost surely converge to the true prob-
abilities, but convergence is slow in general
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=—— Proof Idea

e For onorm:

— use relative entropy bound
— decompose pnorm IN 0 and normalizer

— o-contribution bounded by Inw}*

— normalizer contribution bounded by w;l

e [hen bound the cumulative absolute difference
|Q o Qnorm| by Qw;1

e Finally bound the cumulative absolute differ-
ence |o” — o| by 3w

e square distances may be chained



16

Loss Bounds

¢ Theorem (Hutter): p € C measure =

LE(T) < LA(T) + 2/ LA(T) Inw;? + 2Inw,’

for 0/1 los and arbitrary loss
e Corollary: For arbitrary loss,

LQnorm( ) < LFL _|_ O \/L/J (w
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Loss Bounds

e Corollary: For 0/1 loss,

Le(T) < LM(T) + O \/Lﬂ + O(w;, ")

LY (T) < LMT) + O \/Lﬂ + O(w, ")

e Arbitrary loss open!

e Compare to prediction with expert advice: worst-case
loss for individual sequences

LPEA(TY < LY(T) _|_2\/2L#(T) Inw,*+O(In w;l)
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Exponential Bounds are Sharp

MDL bound exponentially worse than Bayes mixture

This bound is sharp!
Classification example
— input space U = {1,2,3,4,5,6,7}
— U1,...,Ug are deterministic
— true distribution is pu = 1
A prediction example where C contains only Bernoulli
distributions is possible

(But: Bernoulli = good bounds hold under mild as-
sumptions)
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Exponential Bounds are Sharp
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Hybrid MDL predictions

v (za)

e Hybrid MDL predictor: o™ (q|x) = 7 (2)
e "‘Dynamic MDL but drop weights”

e Predictive properties? Poorer!
e Only converges if the maximizing element stabilizes

e This happens almost surely if

— all (semi)measures in C are independent of the past
(factorizable)

— u is uniformly stochastic, i.e. in each time step
either deterministic or noisy with at least a certain
amplitude



21

Complexity and Randomness

Universal case: C = M, and C is C restricted to
computable measures

= 257) 2 () (N Sele) £ €(e) £ M)

TGécs: X = which inequality is proper? T

= all quantities define Martin-Lof randomness by
f(z1.m) < Cu(zy.,) for all n and some C
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Offline bounds?

e \We want something like

_1 1
lnwﬂ —|—1ng
t

|f(ut|u<t,$<t) — M(W)! <

with probability 1 — ¢
e Abuse notation: pu(ug) = p(1|ug)

o Generally, |&(us|uct, z<i) — p(u)| is not decreasing
Int

e = no direct conclusion from cumulative online bound
possible
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Decrease of error?

1.7.d.

e Assumeu ~ D
e Assume deterministic case, w.l.o.g. u =1

® f(ut|u<t7$<t) /!
® Etf(ut|u<tafl3<t) /!
® E1:t§(ut|u<ta$<t) /!

o Evo(€(uiucs, zor) —1)° N\
e Error rate \,

?
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No decrease of error!

Inputu 1 2
D(u) 3 3
v1 0 1 w =0.89
1% 1 0 Wy =— 0.1
uw=vs 1 1 ws3=0.01

Elf(u1|@) — (.66 E1;2€(UQ|U1) — (.58
El(]. — f(u1|@))2 = (0.33 El;z(]. — f(u2|u1))2 — (.41
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Active Learning
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The End

Thank you!



