Online Methods in Learning Theory or Learning in Countable Classes of Stochastic Models

Jan Poland

IDSIA • Lugano • Switzerland

Overview

- Bayesian framework for sequence prediction (no i.i.d. assumption!)
- Connect this to classification
- Also keep in mind: Universal prediction
- Bayesian predictors: Mixture and MDL
- Online convergence results (asymptotics, loss bounds)
- Proceeding further: offline theorems, active learning, ...?

Rough Problem Setup

- *Prediction*: Given an initial part $x_{1:t} = x_1 x_2 \dots x_t$ of a sequence, predict the next symbol x_{t+1} . For example
 - $x_{1:t} = 01010101010101$

3

- $x_{1:t} = 11001001000011111101101010001000100001$
- $x_{1:t} = 00011110010100100111111011010010011111$
- Classification: Given some training data

$$(u, x)_{1:t} = [(u_1, x_1), \dots, (u_t, x_t)]$$

and an input u_{t+1} , predict output x_{t+1} .

Prediction: (Semi)Measures

- Restrict to binary (output) alphabet $\mathbb{B} = \{0,1\}$
- $\mathbb{B}^{\infty} = \{ \text{binary sequences} \}, \mathbb{B}^* = \{ \text{binary strings} \}, \epsilon \text{ is the empty string} \}$
- A measure μ is a function $\mu : \mathbb{B}^* \to [0, 1]$ s.t.

 $\mu(\epsilon)=1 \text{ and } \mu(x)=\mu(x0)+\mu(x1)$ for all x

• A semimeasure ν has

 $\nu(\epsilon) \leq 1 \text{ and } \nu(x) \geq \nu(x0) + \nu(x1) \text{ for all } x$

Examples: (Semi)Measures

- $\lambda(x) = 2^{-length(x)}$ is the uniform measure
- $\mu_1(111...1) = 1$ and $\mu_1(x) = 0$ if x contains at least one 0, is a deterministic measure
- $M_U(x)$ = the probability that some universal Turing machine (UTM) U outputs a string starting with x when the input is random coin flips

5

• The latter is a semimeasure, not a measure, since U does not halt on each input!

Binary Classification

• Need to add input

- $\mu(1|u)$ is i.i.d. given some input $u \in U$
- Conditionalized measure, depends only on input, no history
- $\bullet\,$ Input space U arbitrary, thus may contain history
- Can recover full (non-i.i.d.) sequence prediction setup by letting $U = \mathbb{B}^*$ and $u_{t+1} = x_{1:t}$
- Conversely: All online results also hold with input

Classes of (Semi)Measures

- Let C be a *countable* class of (semi)measures
- Each $\nu \in \mathcal{C}$ is assigned a *prior weight* $w_{\nu} > 0$
- Kraft inequality: $\sum_{\nu \in \mathcal{C}} w_{\nu} \leq 1$
- Universal setup: $\mathcal{C}=\mathcal{M}\cong$ all programs on a UTM U
- $w_{\nu} = 2^{-K(\nu)}$ where $K(\nu)$ is the *prefix Kol-mogorov Complexity* of ν , i.e. the length of the shortest self-delimiting program defining ν

Assumptions

- We make *no probabilistic* assumption on \mathcal{C}
- We show bounds for given *true distribution* μ
- which is a *measure* (not a semimeasure)
- and assumed to be in $\ensuremath{\mathcal{C}}$
- Thus, bounds depend on the complexity (or prior weight w_{μ}) of the true distribution
- Occam's razor
- priors correspond to regularization

Bayes Mixtures

- Bayes mixture $\xi(x) = \sum_{\nu \in \mathcal{C}} w_{\nu} \nu(x)$
- Bayes mixture prediction:

$$\xi(a|x) = \frac{\sum_{\nu} w_{\nu} \nu(xa)}{\sum_{\nu} w_{\nu} \nu(x)}$$

for $a \in \{0, 1\}$.

- ξ is (semi)measure
- "Committee of all models"

• Minimum Description Length (MDL) estimator

$$\nu^{x} = \arg \max\{w_{\nu}\nu(x)\}$$

$$\varrho(x) = \max\{w_{\nu}\nu(x)\}$$

- ν^x is maximizing element
- $-\log \varrho(x) = \min\{-\log w_{\nu} \log \nu(x)\}$
- $-\log w_{\nu} \leftrightarrow \text{code of the model}$
- $\bullet \ -\log\nu(x) \ \leftrightarrow \operatorname{code} \operatorname{of} \operatorname{data} \operatorname{given}$

Prediction using MDL

• Dynamic MDL predictor: $\varrho(a|x) = \frac{\varrho(xa)}{\varrho(x)}$ not a semimeasure!

- Normalized dynamic MDL: $\rho(a|x) = \frac{\rho(xa)}{\rho(x0) + \rho(x1)}$ measure search new model for each next symbol
- Static MDL predictor: ρ^x(a|x) = ^{ν^x(xa)}/_{ν^x(x)}
 (semi)measure
 find best model and use this for prediction
- $\bullet \ \Rightarrow$ Static MDL is computationally more efficient

Bayes Mixture Predictions

Theorem (Solomonoff): Let $\mu \in \mathcal{C}$ be a measure, then

$$\sum_{t=0}^{\infty} \mathbf{E} \sum_{a \in \{0,1\}} \left(\mu(a|x_{1:t}) - \xi(a|x_{1:t}) \right)^2 \le \ln(w_{\mu}^{-1})$$

⇒ The posteriors *almost surely* converge to the true probabilities *fast*

$$\sum_{t=0}^{T} \mathbf{E} \sum_{a \in \{0,1\}} \left(\mu(a|x_{1:t}) - \xi(a|x_{1:t}) \right)^{2}$$

$$\leq \sum_{t=0}^{T} \mathbf{E} \sum_{a \in \{0,1\}} \mu(a|x_{1:t}) \ln \frac{\mu(a|x_{1:t})}{\xi(a|x_{1:t})} = \sum_{t=0}^{T} \mathbf{E} \ln \frac{\mu(x_{t}|x_{1:t})}{\xi(x_{t}|x_{1:t})}$$

$$= \mathbf{E} \ln \left(\prod_{t=0}^{T} \frac{\mu(x_{t}|x_{1:t})}{\xi(x_{t}|x_{1:t})} \right) = \mathbf{E} \ln \frac{\mu(x_{1:T+1})}{\xi(x_{1:T+1})} \leq \ln w_{\mu}^{-1}$$

Lemma: The quadratic distance is bounded by the relative entropy.

13

Observation: **x** dominates μ , i.e. **x**(x) $\ge w\mu \mu(x)$ for all x

MDL: Main Theorem

Theorem: $\mu \in \mathcal{C}$ measure, then

$$(i) \qquad \sum_{t=0}^{\infty} \mathbf{E} \sum_{a \in \{0,1\}} \left(\mu(a|x_{1:t}) - \varrho_{\text{norm}}(a|x_{1:t}) \right)^2 \leq \ln w_{\mu}^{-1} + w_{\mu}^{-1} \\ (ii) \qquad \sum_{t=0}^{\infty} \mathbf{E} \sum_{a \in \{0,1\}} \left(\mu(a|x_{1:t}) - \varrho(a|x_{1:t}) \right)^2 \leq 8 \cdot w_{\mu}^{-1}, \\ \text{dynamic} \\ (iii) \qquad \sum_{t=0}^{\infty} \mathbf{E} \sum_{a \in \{0,1\}} \left(\mu(a|x_{1:t}) - \varrho^{x_{1:t}}(a|x_{1:t}) \right)^2 \leq 21 \cdot w_{\mu}^{-1} \\ \text{static} \end{cases}$$

 \Rightarrow The posteriors *almost surely* converge to the true probabilities, but convergence is *slow* in general

Proof Idea

• For ρ_{norm} :

- use relative entropy bound
- decompose ϱ_{norm} in ϱ and normalizer
- ρ -contribution bounded by $\ln w_{\mu}^{-1}$
- normalizer contribution bounded by w_{μ}^{-1}
- Then bound the cumulative absolute difference $|\varrho-\varrho_{\rm norm}|$ by $2w_{\mu}^{-1}$
- Finally bound the cumulative absolute difference $|\varrho^x-\varrho|$ by $3w_\mu^{-1}$
- square distances may be chained

Loss Bounds

• Theorem (Hutter): $\mu \in \mathcal{C}$ measure \Rightarrow

$$L^{\xi}(T) \le L^{\mu}(T) + 2\sqrt{L^{\mu}(T)\ln w_{\mu}^{-1}} + 2\ln w_{\mu}^{-1}$$

for 0/1 los and arbitrary loss

• Corollary: For arbitrary loss,

$$L^{\varrho_{\text{norm}}}(T) \le L^{\mu}(T) + O(\sqrt{L^{\mu}(T)w_{\mu}^{-1}}) + O(w_{\mu}^{-1})$$

Loss Bounds

• Corollary: For 0/1 loss,

$$L^{\varrho}(T) \leq L^{\mu}(T) + O(\sqrt{L^{\mu}(T)w_{\mu}^{-1}}) + O(w_{\mu}^{-1})$$
$$L^{\varrho^{x}}(T) \leq L^{\mu}(T) + O(\sqrt{L^{\mu}(T)w_{\mu}^{-1}}) + O(w_{\mu}^{-1})$$

- Arbitrary loss open!
- Compare to prediction with expert advice: *worst-case* loss for *individual* sequences

$$L^{PEA}(T) \le L^{\mu}(T) + 2\sqrt{2L^{\mu}(T)\ln w_{\mu}^{-1}} + O(\ln w_{\mu}^{-1})$$

Exponential Bounds are Sharp

- MDL bound exponentially worse than Bayes mixture
- This bound is sharp!

- Classification example
 - input space $U = \{1, 2, 3, 4, 5, 6, 7\}$
 - ν_1, \ldots, ν_8 are *deterministic*
 - true distribution is $\mu=\nu_8$
- \bullet A prediction example where ${\cal C}$ contains only Bernoulli distributions is possible
- (But: Bernoulli \Rightarrow good bounds hold under mild assumptions)

Exponential Bounds are Sharp

Input u 1 2 3 4 5 6 7

19

0 0 0 0 0 0 $\left(\right)$ w_1 \mathcal{V}_1 $0 \ 0 \ 0 \ 0 \ 0$ 1 0 ν_2 w_2 0 0 0 0 0 1 1 ν_3 w_3 $1 \ 0 \ 0$ 0 0 1 1 u_4 w_4 $1 \quad 1$ 1 1 0 0 0 w_5 ν_5 $1 \ 1 \ 1 \ 0$ 1 1 0 ν_6 w_6 $1 \quad 1$ 1 1 1 0 \mathcal{V}_7 w_7 1 1 1 1 1 w_8 ν_8

Hybrid MDL predictions

- Hybrid MDL predictor: $\varrho^{hybrid}(a|x) = \frac{\nu^{xa}(xa)}{\nu^{x}(x)}$
- "Dynamic MDL but drop weights"
- Predictive properties? Poorer!

- Only converges if the maximizing element *stabilizes*
- This happens almost surely if
 - all (semi)measures in \mathcal{C} are independent of the past (factorizable)
 - $-~\mu$ is uniformly stochastic, i.e. in each time step either deterministic or noisy with at least a certain amplitude

Universal case: C = M, and \tilde{C} is C restricted to computable measures

21

$$\Rightarrow 2^{Km(x)} \stackrel{\times}{=} \tilde{\varrho}(x) \stackrel{\times}{\leq} \tilde{\xi}(x) \stackrel{\times}{\leq} \varrho(x) \stackrel{\times}{=} \xi(x) \stackrel{\times}{=} M(x)$$

Gács: $\stackrel{\times}{\times} \Rightarrow$ which inequality is proper?

 \Rightarrow all quantities define Martin-Löf randomness by $f(x_{1:n}) \leq C\mu(x_{1:n})$ for all n and some C

22

Offline bounds?

• We want something like

$$\left|\xi(u_t|u_{< t}, x_{< t}) - \mu(u_t)\right| \le \frac{\ln w_{\mu}^{-1} + \ln \frac{1}{\delta}}{t}$$

with probability $1-\delta$

- Abuse notation: $\mu(u_t) = \mu(1|u_t)$
- Generally, $\left|\xi(u_t|u_{< t}, x_{< t}) \mu(u_t)\right|$ is not decreasing in t
- \Rightarrow no direct conclusion from cumulative online bound possible

Decrease of error?

• Assume $u \stackrel{i.i.d.}{\sim} D$

- Assume deterministic case, w.l.o.g. $\mu\equiv 1$
- $\xi(u_t|u_{< t}, x_{< t}) \nearrow$
- $\mathbf{E}_t \xi(u_t | u_{< t}, x_{< t}) \nearrow$
- $\mathbf{E}_{1:t}\xi(u_t|u_{< t}, x_{< t}) \nearrow$
- $\mathbf{E}_{1:t} (\xi(u_t | u_{< t}, x_{< t}) 1)^2 \searrow$
- Error rate 📐

No decrease of error!

 $\mathbf{E}_{1}\xi(u_{1}|\emptyset) = 0.66 \quad \mathbf{E}_{1:2}\xi(u_{2}|u_{1}) = 0.58$ $\mathbf{E}_{1}(1 - \xi(u_{1}|\emptyset))^{2} = 0.33 \quad \mathbf{E}_{1:2}(1 - \xi(u_{2}|u_{1}))^{2} = 0.41$

Active Learning

Input u 1 2 3 4 5 6 7

0 0 0 ν_1 w_1 0 0 0 0 0 $\frac{1}{8}$ ν_2 w_2 0 0 $\frac{1}{8}$ ν_3 w_3 ν_4 w_4 $1 \quad 1$ $\frac{1}{8}$ ν_5 w_5 ν_6 w_6 $\frac{1}{8}$ \mathcal{V}_7 w_7 w_8 $\frac{1}{8}$ ν_8 $\mu =$

Thank you!