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(Worst-case) on-Line Learning

——  experts
vl 11
day2 1 -1 I ... -1

day3 -1 1 1 .. 1

day ¢ 2t1 22 23 - Zin
On-line protocol
Fort =1,...,T do: Get vector zy € {—1,1}"

Predict Ur € {—1, 1}
Get label y € {—1,1}

Incur loss tlye — U] € {0,1}




Halving Algorithm

\ /

All ExpertsE
pert Experts

e Predicts with majority

e If mistake is made then number of consistent Experts is
(at least) halved




A run of the Halving Algorithm (HA)

majo true

ki Ey Ey by By Ly E; LEg | rity label loss
! 1 -1 -1 1 1 -1 -1 1
-1 1 1 1 1
1 -1 -1 | -1
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consistent

V sequence with k consistent experts (out of n)
HA makes m < log,(n/k) mistakes: n/2™ =k




Learning with expert advice/1

What if no expert E; is consistent?

Sequence of examples S = (z1,41),.-., (27, y7)
e L4(S) be the total loss of alg. A on sequence S
e [;(S) be the total loss of i-th expert F; on S

Want bounds of the form:

VS: La(S) < a minL;(S)+ b log(n)

o 0
where a, b are constants

Bounds loss of algorithm relative to loss of best expert




Learning with expert advice/2

Can’t wipe out experts!

Keep one weight per expert

The Weighted Majority Algorithm

All ExpertsE
vote with
their wel ght predict 0 predict 1

e Predicts with larger side

e Weights of wrong experts are slashed by 5 € [0,1) factor




Learning with expert advice/3

More general/1

Several loss functions:
absolute L(y,¥) %|y — 7

square  L(y,y) 2(y = 9)°

entropic  L(y,¥) 1+y In 1+y + 2y ln

One weight per expert:

Ly ; is total loss of E; before trial ¢,

7 is positive learning rate




Learning with expert advice/3

More general /2
Alg. A predicts with the weighted average
Vi = Wi/ e We; normalized weights
Yo = Ui 2y

where z;; € [—1,+1] is prediction of E; in trial ¢

V sequences S = (z1,11), ..., (27,y7), 2¢ € [-1,1]", 3y, € [-1,1]

LA(S) Smim 1 Li(S)+ 1/nIn(n)
a b




Learning with expert advice/3

More general/3

1/n dot pred fancy

entropic 1 1

square 2 D

hellinger 1 71

e Improved constants of 1/7 when alg. A uses fancier

prediction

e For 0-1 loss and absolute loss a > 1 (with constant 7)

Regret bounds (a = 1) need time-changing 7
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Learning with expert advice/4
e Weighted Majority is just a Bayes voting scheme

e Easy to combine good experts (algorithms) so that

prediction alg. is almost as good as best expert

e Bounds are logarithmic in # of experts

So far:

Learning relative to best expert/component

From now on:

Learning relative to best (thresholded) linear combination

of experts/components




A more general setting

Prediction Loss
Instance ofalg A Label of alg A

U1 U1 L(y1,y1)

Ut Yt L(ye, yt)

A

Jr yr  L(yr,yr)
Total Loss L 4(S)

Sequence of examples S = (x1,v1), ..., (7, yr) € R* x {—1,1}
Comparison class {u}

Relative loss LA (S) — infy,y Lossy (S)

Goal: Bound relative loss for arbitrary sequence S
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Learning linear-threshold functions/1
Another run of the Halving Algorithm /1

Sequence of examples S = (1, 1), ..., (7, y7) € R? x {-1,1}

S is lin. separated by u € R?:||u||z = 1 with margin

0<vy< thT-’Bt\Vi R = max; ||x¢||2

> infu Lossu(S) =0

Experts _ Feed expertswith x1
n (large) linear—threshold functions and get expert prediction

evenly soread over unit circle vector 71
Experti preditctszit = sgn(uil xt)

X1
Ui
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Learning linear-threshold functions/1
Another run of the Halving Algorithm /2

Get true label yi = 1 (mistake) Feed expertswithxz
version space gets halved and get expert prediction
vector z2

1X1
y X2

Get truelabd y2 = 1 (mistake)
verson space gets (at least) haved

AN

y2X2

mpa < logy(n/k) =~ logy(R/v) for large n
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Learning linear-threshold functions/1
Another run of the Halving Algorithm /3
(GH,GBNT,...]

For n-dim vectors:

mpa < log, 1/Vol(consistent(S))
= O(nlog(R/7)),

R — INnaxg Hwt| |2 Courtesy: R. Herbrich

Proof: yyu'x; > v and ||lu — u/||s < v/R = yu'z > 0
1 ball B of radius v/2R: B C consistent(S),
Vol(B) = (v/2R)™Vol(unit n-sphere)

Linear dependence on n

15
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Learning linear-threshold functions/2

The (first-order) Perceptron algorithm

W. 4

Keep weight vector w; € R" Y% @

In trial ¢: \J

e Get instance x; € R"

e Predict with 7; = sGN(w,' z;) € {—1,1}
o Get label y; € {—1,1}

o If mistake (ytthzct < 0) then update w41 := wy + y; Ty




Learning linear-threshold functions/3

Perceptron convergence theorem/1

Arbitrary sequence S = (x1,91), ..., (X7, y7r) € R* x {—1,1}

\/ZteM ||33t\|%
# of mistakes < inf Dy(u; S) +
'7>07 ||u||2:1 \ ~” - fy
”loss” of u

M is set of mistaken trials ¢,
Dy(u; S) = > ey max{0,1 — yyu' @/}

Y
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Learning linear-threshold functions/3

Perceptron convergence theorem /2

When S is separated by w : ||u||o = 1 with margin
v < yu' Ty VE

ets
5 maxgepr ||z |2

,Y2

# of mistakes <

Pointwise bound:

Depends on radius R and margin
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Learning linear-threshold functions/4
The second-order Perceptron algorithm

Keep weight vector w; € R™ and matrix S;
In trial ¢:

e Get instance x; € R"
e Predict with @\t = SGN(’UJ;I_( I+ St)_lzvt) c {—1, 1}
e Get label y, € {—1,1}

o If mistake then update

— Wit 1= Wi+ Y Ty

A AT
— Sty = S +

Turns to first-order when o — oo
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Learning linear-threshold functions/5
Second-order convergence theorem
When S = (€1,91), - ( ) ER™ x {—1,1}
is separated by w with margin v < y;u' %, Vt
gets

+ 3% In(1 + &)

# of mistakes <

More complicated bound

in the nonseparable case

Pointwise bound:

Depends on eigenstructure {\;} of Gram matrlx[

and linearly on inverse margin -y
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Learning linear-threshold functions/6

Kernel Perceptron

Keep pool of "support vectors” M;
In trial ¢:

e Get instance x; € R"

o Predict with ¥y = SGN(D_;c vy, ¥i K(xi, Tt)) € {—1,1}

e Get label y, € {—1,1}

e If mistake then update M4 := M; U {t}

21



Learning linear-threshold functions/7
Kernel Perceptron convergence theorem/1

Arbitrary sequence S = (x1,y1), ..., (x7,y7r) € R® x {—1,1}

(

of mist. < inf D.(f:S) +
i* ~v>0, feHK, ||fll=1 | ~ 79: Z
\” loss” of f

Hi = {f() = YL, aiK(@1,) : oy €R},

M is set of mistaken trials ¢,

Dy (f;S) = Zte/\/t max{0,1 — y. f(x¢)/7}

Separable case:

# of mistakes < maxiem K(@r, 1)

,-YZ

\/Zte/\/t K (x4, wt)\
Y

/
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Learning linear-threshold functions/8

Kernel Second-order Perceptron

Keep pool of ”support vectors” M;
In trial ¢:

e Get instance z; € R*

/ i

e Predict Wltb@:/

SGN @{ al + [K(wi,mj)]i’je./\/[i @ S {—1,1},

\ -

~

current Gram matrizc

o Get label y; € {—1,1}

e If mistake then update My := M; U {t}
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Learning linear-threshold functions/9

Kernel Second-order convergence theorem

When S = (x1,41), ..., (®p,y7) € R™* x {—1,1}
is separated by f(:) = Zle oK (y,-) , ap € R,
with margin v < y, f (@) Vi
gets

# of mist. < 2, {1+ &)
_— ")/ Y

A; is i-th eigenvalue of (normalized) kernel Gram matrix
K (@3, 25)]i jems

M is set of mistaken trials ¢
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Learning linear-threshold functions/10
Additive algorithms

An additive algorithm (e.g. first /second-order Perceptron):

e Relies on linear algebra

e Is rotation invariant (depends on data via angles)

e Can be easily kernelized (:czTa:J — K(z;, z;))

e Has no bias for axes-parallel directions (no feature

selection)

25



Learning linear-threshold functions/11

Nonadditive algorithms
e No linear algebra
e No rotation invariance
e Harder to kernelize

e Bias for sparse solutions (built-in feature selection)

Example: p-norm algorithms
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Learning linear-threshold functions/12

p-norm algs

Keep weight vector w; € R"

In trial ¢: - FO)=V3l 3 p>2
e (Get instance x; € ]ly

e Predict 7; = SGN(f(w;) 'xy) € {—1,1}
e Get label y, € {—1,1}

e If mistake then update w1 := wi + yr x4

Notice:
e p = 2 gets (first-order) Perceptron

e p=0O(Inn) gets Weighted Majority /Winnow

e 2 <p < O(lnn) interpolates between the two extremes

27



Learning linear-threshold functions/13

p-norm Perceptron convergence theorem/1

Arbitrary sequence S = (x1,v1), ..., (®p,yr) € R® x {—1,1}

V=D Y p Il

# mistakes < inf Dy(u; S) +

v>0, |lullg=1 | S—— Y
”]oss” of u

M is set of mistaken trials ¢,

Dy(u; S) = > ey max{0,1 — yyu' @/}
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Learning linear-threshold functions/13

p-norm Perceptron convergence theorem /2

When S is separated by u : ||u||; = 1 with margin
v < gz Vi (}/p+ 1/q = 1/)

dual norms

gets
# of mistakes < (p — 1)

maXge M ||513t||129

2

~y

Pointwise bound:

Depends on p-norm radius R

and (¢g-norm) margin vy




Learning linear-threshold functions/14

p-norm algorithms with kernels/1 (wild slide)
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Learning linear-threshold functions/14

p-norm algorithms with kernels/2 (wild slide)

p-norm hypothesis: w =) .-, v ®(x;)

p-norm margin: = f(w) ' ®(x)

31



Learning linear-threshold functions/14

p-norm algorithms with kernels/3 (wild slide)

Example: p =4, f(w) = w’

w = y1P(x1) + y2P(x2)
follow pattern (a + b)% = a® + 3a2b + 3ab? + b

)P (22) + 3y192° P (x1)D? (2) +

+3y1®(x1)D(x3) +ya®(x3) =
+ 3y1®(z123) + 12 ®(x3)

Then p-norm margin f(w)' ®(x)=

nK( @) @) +3yK (eiey, ©) +3y K (123, ¢) +1K( 5 ,x)
~— —— —— ~—
SV SV SV SV
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Generalization bounds/1
Given
0-1loss
e class H of £1 functions/ _— inour case

e i.i.d. sequence S 7/(3(1,Y1), eoes (X, Yp) over R® x {—1,1},

want to compute hyf;othesis H=H s with small risk
risk(H) = Ex,y [loss(V, H(X))]:

P (risk(f]) < inf risk(h) + e) >1—-0
heH
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Generalization bounds/2: VC Uniform conv.

Key quantity is empirical risk

T
. 1
I‘lSkemp(h) = T Z lOSS(}/ta h(Xt))

t=1
constant VC—di m(H)

VC-bound:

P (Sup riskemp(h) — risk(h)|
heH

AN

—> H = arginf} 4 riskemp(h) is s.t.

~ In 2
P (risk(H) < inf risk(h) + 20\/d+ n2/9

~ heH

34



Generalization bounds/3:
Data-dep. uniform conv./1

\/d+ln2/5
T

CT(S) — CT(SaH)

( empirical VC-entropy

. . Rademacher complexity
is sample statistic: <

Maximum discrepancy

Lo

Stronger than VC since Cr(S) = E[C7(S)] << /d/T
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Generalization bounds/3:
Data-dep. uniform conv./2

Others (e.g., margin-based bounds for linear-threshold

functions)

P <3h € H : risk(h) < riskemp(h) + Cr(h,S) + ¢/ ln;/5> >1-9

Leave algorithmic problem of computing h € ‘H optimizing
trade-oft
I'lSkemp(h) VS CT(h, S)
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On-line pointwise — i.i.d. data-dependent/1

S = (3317?/1)7---7(513T,yT) Xt%

< predict
Alg A yt

-

i T

Incur loss get feedback Yyt
Pointwise bounds so far: 0-1 Losstys. $9

Total # mistakes 4(S ) < < som _functlon(S )

n, Ry Ry Ai, Y R y(dud)
(Hdving) (1*Pec) (2ndPerc)  (p-norm)
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On-line pointwise — i.i.d. data-dependent /2

Ho

v

H1

’

v

<« (X1y1)

« (X2y2)

Sweep through sequence of examples S just once!

Get sequence of hypotheses

H07 Hla H27 seey HT . Ht — Ht((wla y1)7 eey (wt7yt))

Goal: Extract one with small risk

Early ref: [L| (separate test set)
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On-line pointwise — i.i.d. data-dependent/3

Which one?
1. Last one: Hr (back to uniform convergence ...)

2. Average one: H = %Zfzo H; € |0,1]

(convex upper bound on 0-1 loss)
3. Best penalized one:

I'iSkemp(Ht, t+ 1) —

0

past

H = argmin riskemp (H¢, ¢+ 1) + \/
t=0...T—1

39



On-line pointwise — i.i.d. data-dependent /4
Proof technique

A
r ~

T

1

- Z loss(Yy, Hi—1(Xy))
t=1

# of mistakes

(*) (Hoeffding-Azuma)
(**) bounded and convex (Jensen)

(***) general bounded (Chernoff-Hoeffding)

40



On-line pointwise — i.i.d. data-dependent /5
Simplest bounds

Convex: ]P’(risk(ﬁ >

bound on range of convex loss

More general: P (risk(f[ )
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On-line pointwise — i.i.d. data-dependent/6
Some applications: plug and play/1

Recall bound on Halving Algorithm for separable case:

< 70 (nlog(R/~)

Just plug back into
P <risk(f1) > My 46

Gets

P (risk(ﬁ)

Similar to |[GH]

42



On-line pointwise — i.i.d. data-dependent/6
Some applications: plug and play/2

Recall bound on Kernel Perceptron:

! o Ve K@, e

< inf — (D,y(f; S)

T >0, feHg,||fll=1 T Y

Separable case:
maxte m K (@1, Tt)

<1

Plug back into
P <risk(ﬁ) > + 6

Similar to [BM] for SVM

|
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On-line pointwise — i.i.d. data-dependent/6
Some applications: plug and play/3

Recall bound on Kernel Second-order Perceptron

(separable case)

1043, In(1 4 )

< —

Plug into

P <risk(ﬁ) >

Try it yourself with other algs.
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On-line pointwise — i.i.d. data-dependent/7

Remarks

These bounds:

are algorithm-specific (NO uniform convergence
arguments, closer in spirit to algorithmic

stability /luckiness)
proven by simple large deviation on martingales
refer to efficient algs (on-line, one sweep)

are tight (I believe ...)
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On-line pointwise — i.i.d. data-dependent/8
Refinements

Tigher bound 1:

] > ] — <
P(I‘lSk(H)_t:(I)I}.l%l_l< +6\/T—tln5>>_5’

where = - Z;F:Hl loss(Y;, H;—1(X;)) (loss on suffix)

Tigher bound 2:

~ 1. T
. S 1.7
P(rlsk(H)_ —I—O(T ln(S—I-

(Uses Bernstein-type inequalities for martingales)
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Conclusions

e Pointwise bounds for on-line algorithms directly turn to
(tight) data-dependent i.i.d. bounds

Easy plug and play

Resulting algs. are still as efficient as on-line (one cycle

over training sequence)

Simple proofs, algorithm-specific, no uniform convergence

Can be generalized to regression frameworks
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