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Abstract

We derive a very general regret bound in the framework of prediction
with expert advice, which challenges the best known regret bound for
Bayesian sequence prediction. Both bounds of the form

v/ Loss x complexity hold for any bounded loss-function, any prediction
and observation spaces, arbitrary expert/environment classes and
weights, and unknown sequence length.
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Sequential /online predictions
In sequential or online prediction, fort = 1,2, 3, ...,
our predictor p makes a prediction 1y} € )
based on past observations xq, ..., ;1.
Thereafter z; € X is observed and p suffers loss /(x, 7).

The goal is to design predictors with small total loss or cumulative
T
Loss1.7(p) :== > i Uz, y1).

Applications are abundant, e.g. weather or stock market forecasting.

| Loss /(z,y) X = {sunny , rainy}
Example' y L umbrella 0.1 0.3
~ | sunglasses 0.0 1.0

Setup also includes: Classification and Regression problems.



Bayesian Sequence Prediction



Bayesian Sequence Prediction - Setup

Assumption: Sequence x1...xp is sampled from some distribution /s,
i.e. the probability of x; := x1..2; 1 is pu(z~4).

The probability of the next symbol being x;, given x4, is p(xs|x-4)
Goal: minimize the u-expected-Loss =: Loss.
More generally: Define the Bayes,, sequence prediction scheme

yp = arg ;ﬂelgl} Z p(ze|z<i)l(xe, ye),
Lt

which minimizes the p-expected loss.

It 11 is known, Bayes , is obviously the best predictor in the sense of
achieving minimal expected Ioss:_Lossl:T(Bayesu) < Lossi.7(Any p)



The Bayes-mixture distribution ¢

Assumption: The true (objective) environment 4 is unknown.

Bayesian approach: Replace true probability distribution 1 by a
Bayes-mixture £.

Assumption: We know that the true environment p is contained in
some known (finite or countable) set M of environments.

The Bayes-mixture £ is defined as
E(T1.m) Z wyV(x1.m) With Z w, =1, w, >0VWVv
veM veM
The weights w, may be interpreted as the prior degree of belief that

1

the true environment is v, or k¥ = Inw_ * as a complexity penalty

(prefix code length) of environment v.

Then &(x1.,,) could be interpreted as the prior subjective belief
probability in observing x1.,,.



Bayesian Loss Bound

Under certain conditions, _Lossl;T(Bayesg) is bounded by Loss;.7(Any p)
(and hence by the loss of the best predictor in hindsight Bayesu):

_Lossl;T(Bayesg) < _Lossl;T(Any p)+2\/_Lossl:T(Any p)-kH+2kH* Yue M

Note that Loss;.; depends on (.. Proven for countable M and X, finite
YV, any k", and any bounded loss function ¢ : X x ) — |0, 1] [H'01-03]

For finite M, the uniform choice k¥ = In | M| Vv € M is common.

For infinite M, k¥ = complexity of v is common (Occam,Solomonoff).



Prediction with Expert Advice



Prediction with Expert Advice (PEA) - Setup

Given a countable class of £ experts,
each Expert, € £ at times t = 1,2, ... makes a prediction vy .

The goal is to construct a master algorithm, which exploits the experts,
and predicts asymptotically as well as the best expert in hindsight.

More formally, a PEA-Master is defined as:

Fort=1,2, .. 7T

- Predict y " := PEA(2<¢,y,, Loss)

- Observe x; := Env(y <y, 2«4, y25"7)

- Receive Loss;(Expert,) := ¢(x,ys) for each Expert, € £
- Suffer  Loss;(PEA) := {(xy, y} M)

Notation: x-; := (z1,....,2:_1) and y; = (Y5 )ecce.



Goals

BEH := Best Expert in Hindsight = Expert of minimal total Loss.
Lossi.7(BEH) = min.c¢ Lossy.7(Expert,).

0) Regret := Loss;.7(PEA) — Lossy.7(BEH)
shall be small (O(y/Loss;.7(BEH)).

1) Any bounded Loss function (w.l.g. 0 < Loss; < 1).
Literature: Mostly specific Loss (absolute, 0/1, log, square)

2) Neither (non-trivial) upper bound on total Loss,
nor sequence length 7" is known. Solution: Adaptive learning rate.

3) Infinite number of Experts. Motivation:
- Expert, = polynomial of degree e = 1,2, 3, ... through data -or-
- £ = class of all computable (or finite state or ...) Experts.



Weighted Majority (WM)

Take expert which performed best in past with high probability
and others with smaller probability.

At time ¢, select Expert I"M with probability

P = ¢] o w® - exp|—n;-Loss;(Expert,)]

n: = learning rate, w® = initial weight.

Littlestone&Warmuth'90 (Classical)]: 0/1 loss and n;=const.
Freund&Shapire’97 (Hedge)] and others: General Loss, but n;=const.
Cesa-Bianchi et al.’97]: Piecewise constant 7;. Only 1/w® = |£| < oc.
Auer&Gentile’00, Yaroshinsky et al.’'04]: Smooth 7; 0, but only 0/1 Loss
and 1/w® = |£] < 0.
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Follow the Perturbed Leader (FPL)

Select expert of minimal perturbed and penalized Loss.

Let )Y be i.i.d. random variables and k£° complexity penalty.

FPL
1

Select expert := arg min, {n;Loss;(Expert,) + k¢+Q¢}

[Hannan'57]: Q¥ & Uniform|0, 1], [Kalai&V.'03]: P|Qf = u] = %exp(—]u!)

Both: k¢ =0, Regret=0O(\/|&|-T).
[Hutter&Poland'04]: P[Qf = —u] = exp(—u) (u > O),
General k¢ and £ and 7; oc 1/v/Loss = Regret=0(\/k¢-Loss).

For all PEA variants (WM & FPL & others) it holds:
P[I, =] = {!%9°1 if Expert, has {Sm“”} Loss.

small

17— 00

I; — Best Expert in Past (7 = learning rate)

n—0

I == Uniform distribution among Experts.
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FPL Regret Bounds for |£| < oo and k¢ = In |£]

Since FPL is randomized, we need to consider expected-Loss =: Loss.
Regret := Loss,.;(FPL) — Loss;.7(BEH).

Static 1 =4/ ln—T|8| —  Regret <2./T In|&]

Dynamic 7y = 1n2_\tg| —>  Regret < 2,/27-In €|
Self-confident 7, = e —
cir-confident 7 2(Loss_, (FPL)+1)

Regret < 2,/2(Loss;.7(BEH) + 1)-In|&| + 81n|&]

: . n|&
Adaptive n; = \/gmm {1, \/Loss<1t(|“B|EH”)} —

Regret < 2./2Loss;.77(BEH) In|&] + 51n |€|-In Lossy.7(BEH)+3In|E|+6

No hidden O() terms!




FPL Regret Bounds for |£| = oo and general £°
Assume complexity penalty k¢ such that »  _.exp(—k®) <1

We expect In |E| ~ k¢, i.e. Regret = O(y/k¢-(Loss or T))).

Problem: Choice of 7; = \/kT depends on e. Proofs break down.
Choose: 1, = \/7 =  Regret < keV -, i.e. k° not under V .

Solution: Two-Level Hierarchy of Experts:

Group all experts of (roughly) equal complexity.

o FPL™ over subclass of experts with complexity k¢ € (K — 1, K].
Choose 1/* = /K /2Loss—; = constant within subclass.

o Regard each FPL® as a (meta)expert. Construct from them (meta)
FPL. Choose 7, = \/1/Loss<t and £ = % +21n K.

— | Regret < 2./2k¢-Loss;.7(Expert,) - (1 + 0(1“::)) + O(k®)




PEA versus Bayes



PEA versus Bayes Bounds — Formal

Formal similarity and duality between Bayes and PEA bounds is striking:

_Lossl:T(Bayesg) < _Lossl:T(Any p) + 2\/_Lossl;T(Any p)- -kt + 2kH

Loss,.;(PEA) < Loss;.7(Expert,) + c-+/Loss;.1(Expert,)-k¢ + b- k°
c =2v/2 and b = 8 for PEA = FPL.

beats In environ- expectation function
predictors ment w.r.t. of
Bayes all p e M environment M
PEA || Expert, € £ | any zy...xp | prob. prediction E

Apart from these formal duality, there is a real connection between both
bounds.



PEA Bound reduced to Bayes Bound

Regard class of Bayes-predictors {Bayes, : v € M} as class of experts £.

The corresponding FPL algorithm then satisfies PEA bound

Loss;.;(PEA) < Lossi.r(Bayes,) + c: \/LosslzT(Bayesu)k“ +b-k*.

Take the p-expectation, and use _Lossl:T(Bayesu) < Lossi.7(Any p)
and Jensen’s inequality, to get a Bayes-like bound for PEA

Loss(PEA) < Lossi.z(Any p) + ¢-+/ Lossi.r(Any p)-k# + b-k* Yu € M

Ignoring details, instead of using Bayes,, one may use PEA with
same/similar performance guarantees as Bayes,.

Additionally, PEA has worst-case guarantees, which Bayes lacks.

So why use Bayes at all?



Open Problems

We only compared bounds on PEA and Bayes. What about the
actual (practical or theoretical) relative performance?

Can FPL regret constant ¢ = 21/2 be improved to ¢ = 27
For Hedge/FPL? Conjecture: Yes for Hedge, since Bayes has ¢ = 2.

Generalize existing bounds for WM-type masters (e.g. Hedge) to
general X', ), £, and ¢ € [0, 1], similarly to FPL.

Generalize FPL bound to infinite £ and general k€ without the
hierarchy trick (like for Bayes) (with expert dependent 7;7)

Try first to prove weaker regret bounds with /Loss;.7 ~ VT,



More on (PEA) Regret Constant

Constant ¢ in Regret = c-v/Loss-k¢ for various settings and algorithms.

n Loss | Optimal | LowBnd Upper Bound
static | 0/1 17 1? V2 [V'95]
static any V2 | V2 [V'95] V2 [FS'97], 2 [FPL]
dynamic | 0/1 V27 1 [H'03]? | v/2 [YEYS'04], 2/2 [ACBG'02]
dynamic | any 27 V2 [V'95] 2v/2 [FPL], 2 [H'03]

Major open Problems
e Elimination of hierarchy (trick)
e Lower regret bound for infinite #Experts

e Same results (dynamic 7, any Loss, |€| = co) for WM




Some more FPL Results
Lower bound: Loss,.;(FPL) > Lossy.p(BEH) + 2L if k¢ =In|g].
Bounds with high probability (Chernoff-Hoeffding):

P[|Lossy.7 — Lossy.p| > v/3cLoss;.;] < 2exp(—c) is tiny for e.g.
c = 9.

Computational aspects: It is trivial to generate the randomized decision
of FPL. If we want to explicitly compute the probability we need to
compute a 1D integral.

Deterministic prediction: FPL can be derandomized if prediction space

)V and loss-function Loss(x, 1) are convex.



Thanks!

Questions?

Details:

http://www.idsia.ch/“marcus/ai/expert.htm [ALT 2004]
http://www.idsia.ch/“marcus/ai/spupper.htm [IEEE-TIT 2003]



