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Methodologies
Bayesian:

- often make strong assumptions (in the 
prior) on the data generation process

- optimality guaranteed here

Online Learning:

- adversarial setting (against Nature) where 
there is no data generation process 

- weaker notion of optimality



Motivation

How do Bayesian algorithms fare in a more 
adversarial setting?

Often Bayesian methods make assumptions we don’t 
believe (eg i.i.d. assumptions)

Often models chosen for computational tractability

Bayes rule looks like an ‘expert’ algorithm so we 
would expect it to perform well.
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The Setup



The Setting

inputs x in Rn and outputs y in R

 sequence of examples

- not specifying generative model for S

- St is the subsequence from time 1 to t

Using a model,

- at time t, we predict with p(y|xt,St-1)

S= {(x1,y1), . . . ,(xT ,yT)}



The Model

Consider a generalized linear model:

For example,

- linear least squares:

- logistic regression:

Assume a prior: 

p(y|x,!) = p(y|!Tx)

p(y|x,!)∼ "(!Tx)y(1−"(!Tx))1−y

p(y|x,!)∼N (!Tx,"2)

p(!)∼N (!0,"2In)



Loss at a Timestep

at time t-1, we have a posterior 

Bayesian Model Averaging:

at time t, our loss is -log p(yt|xt,St-1)

p(y|xt,St−1) =
Z
!

p(y|xt,!)p(!|St−1)d!

− log p(!|St−1)



Total Losses
Our loss:

“Expert” loss:

Another loss w.r.t. Q:

LBMA(S) =
T

!
t=1
− log p(yt|xt,St−1)

L!(S) =
T

"
t=1
− log p(yt|xt,!)

LQ(S) =
Z
!

Q(!)L!(S)d!



A Useful Bound



A General Online Bound

Theorem: For all sequences S and distributions Q:

Proof:

- similar to Freund & Schapire

- show that:

LBMA(S) = LQ(S)+KL(Q||p)−KL(Q||p(!|ST))

LBMA(S)≤ LQ(S)+KL(Q||p)



Bounds for BMA



An Upper Bound
Suppose

- for linear regression 

- for logistic regression c=1

Theorem: Then

-

- the second term is a penalty from our prior

- the log term is how fast the loss grows

|!2 log p(y|"Tx)/(!"Tx)2|≤ c

c= 1/!2

LBMA(S)≤ L!(S)+
1

2"2
||!||2+ n

2
log

(
1+

Tc"2

n

)



Proof Idea

Recall

For Q, choose 

Then use derivative bound to show       is 
close to 

Optimize 

LBMA(S)≤ LQ(S)+KL(Q||p)

N(!,"2In)

!

LQ(S)
L!(S)



A Lower Bound
Theorem: For linear regression, the upper 
bound is tight. 

Proof: exhibit a “worst case” sequence

- We can restrict Nature to use a 
generative model for S that is i.i.d.

- Nature uses a p(y|xt) that is in our model

- in this sense, the worst case isn’t much 
different than an average case



Bounds for MAP



MAP Estimation

Use the max     of           for the prediction

- the loss is

- recall BMA has loss

In practice, MAP often used (computational 
reasons?)

We consider both cases of linear and logistic 
regression.

!̂t−1 p(!|St−1)

−logp(yt|xt, !̂t−1)

−logp(yt|xt,St−1)



Ridge Regression
Use the squared loss:

- which is essentially just the sum log loss

Corollary: The MAP loss is a multiplicative 
factor of         worse.

Vovk has a better bound for this case

- the algorithm is related to ridge 
regression (but it is nonlinear)

LMAP(S) =
1

2

T

!
t=1

(yt + "̂Tt−1xt)
2

!2+"2



Why is MAP worse?
Theorem (Lower Bound): The upper bound for 
MAP cannot have a multiplicative factor of 1. 

Compare 

- BMA’s loss

-

- to MAP’s loss

LBMA(S) =
T

!
t=1

1

2s2t
(yt− "̂Tt−1xt)2+ log

√
2#s2t

LMAP(S) =
1

2

T

!
t=1

(yt + "̂Tt−1xt)
2



MAP for logistic regression

BMA is intractable

MAP is widely used 

- essentially regularized logistic regression

- involves solving a convex program

Theorem: The loss for MAP is multiplicatively 
worse by a factor of 4.



Conclusions

Some Bayesian algorithms perform well in an 
adversarial setting

Open Problem: Can the dimensionality 
dependence on the bounds be removed with 
further assumptions? 


