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Abstract

Empirical study of sensitivity analysis on
a Bayesian network examines the effects of
varying the network’s probability parameters
on the posterior probabilities of the true hy-
pothesis. One appealing approach to model-
ing the uncertainty of the probability param-
eters is to add normal noise to the log-odds
of the nominal probabilities. However, the
paper argues that differences in sensitivities
found on true hypothesis may only be valid
in the range of standard deviations where
the log-odds normal distribution is unimodal.
The paper also shows that using average pos-
terior probabilities as criterion to measure
the sensitivity may not be the most indica-
tive, especially when the distribution is very
asymmetric as is the case at nominal val-
ues close to zero or one. It is proposed, in-
stead, to use the partial ordering of the most
probable causes of diagnosis, measured by a
suitable lower confidence bound. The paper
also presents the preliminary results of our
sensitivity analysis experiments with three
Bayesian networks built for diagnosis of air-
plane systems. Our results show that some
networks are more sensitive to imprecision in
probabilities than previously believed.

1 INTRODUCTION

Sensitivity analysis is a method to investigate the ef-
fects of imprecision of a model’s parameters on its
output. For a probabilistic model, or a Bayesian net-
work more specifically, performing a sensitivity analy-
sis yields insight into the robustness of the network’s
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performance in diagnosis or prediction under uncer-
tainty in its probabilistic parameters. Basically, there
are two approaches to sensitivity analysis: theoreti-
cal and empirical. The theoretical approach estab-
lishes a function expressing a posterior probability
of interest in terms of the parameters under study
(e.g., [Laskey, 1995, Castillo, Gutierrez, & Hadi, 1997,
Kjærulff & van der Gaag, 2000]). The empirical meth-
ods examine the effects of varying the network’s pa-
rameters on diagnostic or predictive performance (e.g.,
[Pradhan et al., 1996, Coupé et al., 1999]).

The common present belief, to a great degree based
on a series of experiments in [Pradhan et al., 1996], is
that Bayesian networks are, on the average, insensi-
tive to inaccuracies in the numeric value of their prob-
abilities. Henrion et al. [1996] further elaborated one
of the experiments and explored the possible explana-
tions of the low sensitivity. In [Henrion et al., 1996],
the conclusions were drawn based on the average of
the probabilities of the true diagnosis with simulated
scenario cases run by imparting random noise on the
nominal probabilities of known networks at increasing
levels of uncertainty. The reported results differen-
tiated between true-positive diagnosis cases and true-
negatives, and between the effect of noise on the priors
of conditional probabilities (also called link probabili-
ties), leak probabilities, and prior probabilities.

This paper argues that differences in sensitivities found
in [Henrion et al., 1996] between true-positive and
true-negative results may not be valid because the log
odds-normal distribution, which is used to generate
random noise on probabilities, may not be a suitable
distribution in the range of standard deviations where
the differences were observed. The presence of true-
positive and true-negative biases in Bayesian network
diagnosis results from misevaluation of the network
by experts, and should be corrected once those bi-
ases are detected. Differences in network sensitivity
due to noise on the different types of probabilities is a
quantifiable random effect that depends on the distri-



bution used to model the added noise and possibly, on
the topology of the network.

The paper also shows that comparing the average re-
sults of the simulated posterior probabilities to the
nominal posterior probabilities may not be the most
indicative measure of network sensitivity because in-
formation about the effect of the noise distribution
variance is lost, especially when the distribution is
very asymmetric as is the case at nominal values close
to zero or one. It is in the variation of these pos-
terior probabilities that imprecision in parameters is
reflected. Although the difference in computed poste-
riors derived from noisy versus nominal probabilities is
indicative of the sensitivity of the network, the partial
ordering of the posterior probabilities is argued to be
a more critical indicator of the outcome of the diag-
nosis. It is proposed then to assess the sensitivity of
the network based on the effect that the uncertainty in
probabilities has on the partial ordering of the proba-
ble causes, measured using a suitable lower confidence
bound.

A series of experiments were designed to investigate
the sensitivity of three Bayesian networks built for di-
agnosis of airplane systems, to imprecision in different
type of probabilities: prior probabilities, conditional
probabilities, and leak probabilities. We varied the
probability parameters in the networks by introduc-
ing log-odds normal noise for the following range of
standard deviations: 0.1, 0.25, 0.5, 0.8, and 1, respec-
tively. The criterion we used to measure the sensitiv-
ity of the networks is a set of lower confidence bounds
(50%, 80%, 90%, 95%, and 99%). Our results showed
that generally, increasing noise level to the probabil-
ities produced higher sensitivities in the tested net-
works. The results also suggested that prior proba-
bilities turned out to be more influential parameters
to diagnosis in our networks, compared with condi-
tional probabilities and leak probabilities. In contrast
to the common belief that Bayesian networks are gen-
erally insensitive to imprecise probabilities, our results
showed that some networks can show significant sensi-
tivity to imprecision in probabilities even with a small
variance in the noise distribution. Our results agree
with recent findings of high sensitivities reported by
[Coupé et al., 1999] in an empirical study using a
Bayesian network from medical prognosis and treat-
ment planning.

The paper is organized as follows: Section 2 elabo-
rates our arguments related to the empirical approach
to sensitivity analysis. Section 3 describes the sensitiv-
ity experiments conducted on three large production
networks built for diagnosis of airplane systems. In
Section 4, we give a brief conclusion about the results
of our experiments.

2 LOG-ODDS NOISE AND
MEASURES OF SENSITIVITY IN
BAYESIAN NETWORK

The two main points of this paper are: a) the log-odds
normal distribution, although it has appealing proper-
ties for modeling the noise of probabilities, it may not
be valid for assessing network sensitivity for values of
standard deviations greater than one, and b) the use
of averages for comparing the posterior probabilities,
derived from noisy probabilities, to the nominal pos-
teriors may hide the effect of the variance of the noise
distribution, especially for probability values near zero
or one. We will deal with each point separately.

2.1 VALIDITY OF LOG-ODDS NORMAL
DISTRIBUTION

The log-odds normal distribution is a suitable model
for noise imposed on probabilities because the sampled
probability remains in the [0,1] range and because it
recognizes differences imparted by noise to probabili-
ties near 0 or 1 versus those in the middle of the range
near 0.5 [Henrion et al., 1996]. However, in this paper
we argue that this distribution may not be valid for
standard deviations greater than one for the purpose
of assessing network sensitivity to probability noise.

Equation 1 illustrates the probability density of the
log-odds normal distribution:

Y = log
p

1− p
+ ε , (1)

where ε ∼ N(0, σ), transitions from unimodal to bi-
modal for values of σ > 1. A simplified equation
for the distribution of the nominal probabilities with
added noise, p′, in terms of the nominal p and noise ε
is

p′ =
1

1 + (p−1 − 1) 10−ε
. (2)

The relation between the noisy odds and the nominal
odds is then:

1− p′

p′
=

1− p
p

10ε , (3)

or odds′ = odd ∗ 10ε, where odds′ = 1−p′
p′ and odds =

1−p
p .

This indicates that error introduced by the log-odds
normal noise ε reflects the scale of the change of odds
by a factor of 10ε.



Table 1 shows values of p′ computed from Equation 2
for various values of p and ε. Note that the values of ε
correspond to values of σ in the standard normal dis-
tribution. For values of ε > 1, the difference between
the noisy and nominal probabilities increases rapidly
for values of the nominal probability that are close to
zero. The effect is also large but less pronounced for
values of nominal probabilities in the mid-range to-
wards p = 0.5.

The log-odds normal distribution is an adequate model
of noise added to probabilities for values of σ < 1,
where the distribution is unimodal. For values of σ > 1
the distribution becomes bimodal as shown in Figure 1.
Using the distribution in that range to describe the
noise on the priors is equivalent to considering an ex-
pert who assesses a prior probability, known to be near
zero, and erring in judgment by such margin that the
true prior probability may, in fact, be close to one!
This is what the log-odds normal distribution implies
for large values of σ.

Figure 1: The log-odds normal distribution centered
around the nominal prior of 0.8, for various values of
σ

2.2 MEASURES FOR ASSESSING
BAYESIAN NETWORK SENSITIVITY

In using Bayesian networks for diagnosis the partial or-
dering of probable causes resulting from the update of
the posterior probabilities given a set of findings con-
stitutes the diagnosis. While the most probable cause
is often given the highest consideration, typically, in
multiple fault-diagnostic systems it is a particular set
of the top causes (e.g., the top five) and their partial
ordering that is most informative. Since very seldom
the diagnosis singles out a particular cause, the par-
tial ordering provides guidance for subsequent actions.
The effect that noise has on the posterior partial or-
dering of the causes is, therefore, a significant measure
of the network sensitivity.

Table 2 shows the top five suspect parts selected from
a Bayesian network diagnosis system representing a

particular test case scenario of an airplane fault. It
compares posterior probability from the nominal net-
work with the average posteriors from one hundred
noisy networks. The noise distribution used was the
log-odds normal with σ = 0.5. Note that the devi-
ation of the average posterior from the nominal does
not appear to be substantial.

The top of Table 3 shows the average change in rank
order for the five suspect parts of Table 2. This aver-
age reflects the average absolute-value change in rank
for each part from its nominal rank that is due to
noise added to the network probabilities. The aver-
age change in rank shows that noise with σ = 0.5
is expected on the average to affect a change in the
rank of the top five suspect parts by approximately
one ranking order. By itself, this is not a bad result
considering the size of the variance of the distribution
used. However, it is somewhat misleading.

Typically, for airplane diagnosis, the reliability esti-
mates of most airplane parts is of order greater than
105 hours for the mean time between part failures.
The corresponding prior probabilities are therefore ap-
proximately of order smaller than 10−5. At such low
probabilities the log-odds normal distribution is very
asymmetric and the average rank does not adequately
represent the effect that the noise imparts on the net-
work. Shown at the bottom of Table 3 are lower-bound
confidence estimates for confidence levels from 50% to
99%. The data show that for noise with σ = 0.5, there
is a 50% chance that the ranking order of the parts
could change by at least one position. For the most
probable suspect part (i.e., Part 1), there is a 20%
chance that it could drop by more than two ranks, a
10% chance that it may drop by more than three or-
ders in rank, and a 1% chance that it may drop by
more than four. For networks with high sensitivity to
noise, the nominal diagnosis could advise the airplane
maintainer to unleash a series of irrelevant actions that
could result in unnecessary and costly delays and can-
cellations.

This analysis, we believe, is more representative of the
sensitivity of the network due to noise in the network
probabilities. The remainder of the paper will present
data compiled from several airplane diagnosis networks
under various test scenarios, and will distinguish the
network sensitivity to noise contributions from prior
probabilities, conditional probabilities, and leak prob-
abilities.



Table 1: Values of the noisy p′ computed from Equation 2 for different values of the nominal p and noise ε.

Values Values of p and percentage of (p′ − p)/p
of ε 0.0001 % 0.01 % 0.1 % 0.25 % 0.5 %
0.1 0.00013 26 0.013 26 0.12 23 0.30 18 0.56 11
0.3 0.00020 100 0.020 98 0.18 81 0.40 60 0.67 33
0.5 0.00032 216 0.031 210 0.26 160 0.51 105 0.76 52
0.7 0.00050 401 0.048 382 0.36 258 0.63 150 0.83 67
1 0.00010 899 0.092 817 0.53 426 0.77 208 0.91 82
3 0.09092 90817 0.91 8999 0.99 891 1.00 299 1.00 100
5 0.90910 908999 1.00 9890 1.00 900 1.00 300 1.00 100

Table 2: The nominal posteriors of the top five suspect parts from an airplane diagnosis compared to the average
from one hundred noisy posteriors (log-odds normal, σ = 0.5).

Part 1 Part 2 Part 3 Part 4 Part 5
Nominal posterior 0.40 0.29 0.11 0.07 0.07
Average posterior 0.35 0.28 0.15 0.07 0.07

Standard Deviation 0.24 0.23 0.15 0.07 0.09

Table 3: Lower confidence bounds and average changes of the ranks for the five most probable causes.

Part 1 Part 2 Part 3 Part 4 Part 5
Average rank change 1.02 1.05 1.26 1.21 1.15
Standard deviation 1.19 0.93 0.90 0.83 1.06

50th percentile 1 1 1 1 1
80th percentile 2 2 2 2 2
90th percentile 3 2 2 2 2.9
95th percentile 3 3 3 2 3
99th percentile 4 3.99 3 3 4



3 SENSITIVITY EXPERIMENT

3.1 MEASURE OF DIAGNOSTIC
PERFORMANCE

As indicated in Section 2.2, average posterior prob-
abilities may not be an adequate measure to assess
sensitivity of Bayesian networks with respect to di-
agnosis, especially when the probability distribution
is extremely skewed by adding in the log-odds nor-
mal noise. Instead, lower confidence bounds on rank
changes of the diagnosis recommended by a partial-
ordered list of suspect parts, better reflect the effect
that random noise has on the network.

In our experiments, we use lower confidence bounds
for 0.50, 0.80, 0.90, 0.95, 0.99 percentiles of the di-
agnosis ranks over test cases to quantify diagnostic
performance. Average and standard deviation of rank
changes are also calculated for comparison.

3.2 NETWORKS AND TEST CASES

We used three large networks built for diagnosing three
major airplane systems. A number of test case scenar-
ios were defined for each network. These scenarios rep-
resented real-life cases encountered during routine air-
plane maintenance procedures. Each test case consti-
tutes a set of findings, used as inputs to the networks,
which do not necessarily isolate the failed parts with
certainty, but rather generate a ranked list of the most
likely suspect parts. The ranked list of parts is what
constitutes the diagnosis given a particular test case
scenario. For illustration purposes and without loss of
generality we denote the three networks as Net 1, Net
2, and Net 3. The airplane parts are also denoted by
numbers associated with their posterior ranking order,
i.e., Part 1, Part 2, etc.

3.3 EXPERIMENTAL DESIGN

We tested with three networks built for diagnosing air-
plane part failure. For each network, we first classified
the nodes into different sets according to their proba-
bility types: prior, conditional and leak. To generate
a noisy network, we added noise to each set of nodes
independently for a given level of noise and scenarios.
Each scenario was run one hundred times with the
same noise distribution for each set of nodes. A noisy
network was generated in each run. The total number
of networks used in our experiment were 34503, con-
sisted of 3 types of probability * 5 levels of noise * 100
runs * (3+5+15) scenarios, plus 3 original networks
without noise.

The test began with a diagnosis on the nominal net-
work given the findings defined in the scenario. For

this network, the nominal partial ordering of the rec-
ommended failed parts was generated. The rank of
each probable failed-part was recorded according to
the partial ordering. Under the same situation, (i.e.,
the same set of nodes, the same noise distribution,
and the same scenario), the noisy networks were used
to compute the noisy rank changes of the diagnosed
failed-parts from the rank changes computed with the
nominal network. The effect of noise was assessed by
computing statistics on the rank changes, such as aver-
age and standard deviation of rank changes, and 0.50,
0.80, 0.90, 0.95, 0.99 percentiles of lower confidence
bounds.

3.4 RESULTS

Figure 2 plots the average rank changes over one hun-
dred cases across different scenarios of the most prob-
able failed parts in Net 3 affected by five levels of prior
noise. As expected, performance degrades as the noise
increases. Note that the rank of the most probable
failed-part drops, on the average, about one position
when noise is distributed with σ(orstd) = 0.1, and it
drops about two positions when noise is distributed
with σ = 1.0.

Figure 2: Rank changes of the most probable failed
parts in Net 3 based on 100 run cases across different
scenarios and prior noise.

Since with σ = 1.0 the most probable failed part will
change on the average almost three rank positions, it
may look as if the diagnosis performance is robust and
insensitive to the imprecise prior probabilities. How-
ever, looking at the lower confidence bounds, Figure
2 indicates that there is a 90% chance that the most
probable failed part will stay within the top five rank
positions for noise with σ < 0.5. Conversely, with
σ >= 0.5, there is a 90% chance that the most prob-
able failed part will disappear from the top five rec-
ommended parts given by the diagnosis, which could



possibly result in incorrect diagnosis by the network.

Figure 3 illustrates the rank changes of the top five
most probable failed parts in Net 3 when the prior
noise is distributed with σ = 1.0. From the chart, we
see that 0.50 percentile lower bound for the five parts
are smaller than rank average, further indicating the
asymmetry of the noise distribution.

Figure 3: Rank changes of the top five most probable
failed parts in Net 3 based on 100 run cases across
different scenarios and prior noise ε ∼ N(0, 1.0).

Also note the high standard deviations of the rank.
This illustrates that the sensitivity of the noisy net-
works varies greatly with different scenarios. The noisy
network may be pretty robust for some of the observa-
tions, but may be quite sensitive to others. Therefore,
different scenarios play an important role in testing
sensitivity of Bayesian networks.

The effect of noise on conditional probabilities and on
leak probabilities is much smaller than that on prior
probabilities for all of the three networks in our ex-
periments. As shown in Figure 4, the average rank
changes are smaller than 1 even when the conditional
noise is distributed with σ = 1.0. The 0.99 percentile
lower bounds are all smaller than 4. Therefore, in 99
percent of the time, the top five most probable failed-
parts would stay in the top positions in the partial
ordering given by the diagnosis.

As was the case with noise added to prior probabilities,
the same trend is observed with conditional probabil-
ities when noise level increasing. Namely, when the
noise added to the conditional probability tables be-
comes higher, the network becomes more sensitive, as
a result, the diagnosis capability of the networks de-
grades.

Figure 5 shows the rank changes of the most prob-
able failed part in Net 1 based on one hundred run
cases across different scenarios and different prior noise

Figure 4: Rank changes of the top five most probable
failed parts in Net 3 based on 100 run cases across
different scenarios with CPT noise ε ∼ N(0, 1.0).

distributions. The rank changes in Net 1 are much
smaller than the rank changes found in Net 3, which
indicates that different networks may have a different
degree of sensitivity to imprecise probabilities. How-
ever, the rank changes in Net 2 were close to those of
Net 1.

Figure 5: Rank changes of the most probable failed
part in Net 1 based on 100 runs cases across different
scenarios and prior noise.

4 CONCLUSION

We argue in this paper that the log-odds normal distri-
bution is valid as a model for sensitivity analysis only
in the range of standard deviations where the distri-
bution is unimodal. The paper also shows that using
average posterior probabilities as criterion to measure
the sensitivity may not be the most indicative, espe-
cially when the distribution is very asymmetric as is



the case at nominal values close to zero or one. It
is proposed, instead, to use the partial ordering of the
most probable causes of diagnosis, measured by a suit-
able lower confidence bound on the change in the rank
order. Preliminary results of our sensitivity analysis
experiments were shown with three Bayesian networks
built for diagnosis of airplane systems. Our results
showed that some networks are more sensitive to im-
precision in probabilities than previously believed.
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