
Variational Learning for Multi-Layer Networks of Linear Threshold
Units

Neil D. Lawrence,
Microsoft Research,
St George House,
1 Guildhall Street,

Cambridge, CB2 3NH, U.K.
neil@microsoft.com

Abstract

Linear threshold units (LTUs) were originally
proposed as models of biological neurons.
They were widely studied in the context of
the perceptron (Rosenblatt, 1962). Due to
the difficulties of finding a general algorithm
for networks with hidden nodes, they never
passed into general use. In this work we de-
rive an algorithm in the context of probabilis-
tic models and show how it may be applied
in multi-layer networks of LTUs. We demon-
strate the performance of the algorithm on
three data-sets.

1 Linear Threshold Unit Networks

Linear threshold units were proposed by McCulloch
and Pitts (1943) as a simple model of the biological
neuron. The state of a node, si, depends on its parents’
states and the parameters W = {wij} in the following
way

si = sign

∑

j

wijsj + wi0

 . (1)

When nodes of this type are to be implemented in pat-
tern recognition, the model is often chosen to be one
with a layered structure such as in Figure 1. In this

Input nodes

Hidden nodes

Target node

Figure 1: A LTU network with one layer of hidden units.

example there is a layer of input nodes, which repre-
sent input variables (that can be real valued as well

as binary), that is then connected to a layer of hid-
den nodes, whose activation function takes the form
of Eqn 1, which are in turn connected to a layer of
output nodes with the same activation function. The
structure can be more general, containing more layers
of hidden nodes and across layer connections (for ex-
ample between input and output nodes), and our the-
oretical results apply to all models of this type. For
simplicity though, we constrain our practical investi-
gations to models of the type depicted in Figure 1.
It is also possible to envisage cases where some or all
of the input variables are unobserved. We only in-
vestigate the case where they are all observed, which
is sometimes known as supervised learning. Models
of this type were implemented by Rosenblatt (Rosen-
blatt, 1962) in his perceptron. Perceptrons, however,
were limited by the use of fixed basis functions which
could not be adapted to the particular data-set under
consideration. In other words the parameters deter-
mining the output of the hidden nodes where taken
to be fixed. The generalised delta rule popularised
by Rumelhart et al. (1986) allowed networks to have
adaptive basis functions through the use of multiple
layers of adaptable weights. Unfortunately this rule
may not be applied when the basis functions are linear
threshold units. A common misconception is that this
is due to the basis functions’ discontinuity; a larger
problem is that they have a gradient of zero at all
points except at the discontinuity. This means that
any attempt to find the optimal parameters in such a
network gains no useful information from the gradient:
the gradient of the error surface as computed by the
generalised delta rule is zero at almost all points.

One approach to learning in these networks has been
to use ‘noisy weights’ (Hinton and van Camp, 1993).
This gives a probability of a threshold unit being ac-
tive which is a smooth function of the weights. How-
ever, the approach leads to some restrictions on the
structure of the network, in particular the approach,
without further approximation, only applies to regres-
sion networks containing only one hidden layer. In

this work the algorithm we derive is inspired by the
variational approach of mean field theory, in particu-
lar the work of Saul et al. (1996). Bounds used in the
mean field approach can become exact in the limits of
interest and present a tractable learning algorithm for
networks of LTUs.

2 From Sigmoid Belief Networks

Consider a sigmoid belief network (Neal, 1992) with
bi-valued nodes, si ∈ {−1, 1}. The probability of a
node being equal to one given the states of its parents
can be seen to be

P (si = 1|pa(si)) = σ

∑

j∈pa(si)

wij

T
sj +

wi0

T

 , (2)

where pa(si) is the set of nodes which are parents of
node i and σ(·) is the logistic sigmoid function1. The
‘temperature’ parameter T in Eqn 2 is in principle re-
dundant since it can be absorbed into the connectivity
matrix, however it will prove convenient to separate it.
Consider a potential function given by

Ei(si,wi,pa(si), T) =

∑

j

wij

T
sj

(si + 1)
2

, (3)

where we have absorbed the biases into the weights
in the usual manner by introducing a dummy variable
s0 = 1. The probability of the combined states of the
model, S, is

P (S) =
∏

i

P (si|pa(si))

=
∏

i

exp [Ei(si,wi, pa(si), T)]
∑

si
exp [Ei(si,wi, pa(si), T)]

. (4)

The variables may be partitioned into a visible set
V = {vi}, and a hidden set H = {hi}. In the context
of supervised learning, our observed data, V, may be
further split into two subsets: input data, I, and data
labels or output data, O. When the input data has
been fully observed it is unnecessary to infer its dist-
ribution, we therefore need only consider the distribu-
tion P (H,O|I). Marginalising over the latent vari-
ables of this distribution gives P (O|I) which in super-
vised learning is the distribution of interest.

P (O|I) =
∑

H
P (H,O|I). (5)

A training set consists of a set of observations of the
input variables, I1, . . . , IN , and the output variables,

1The logistic sigmoid is defined by σ(x) = 1
1+exp(−x) .

O1, . . . ,ON . The log likelihood of the data is a sum
over patterns

ln P (O|I) =
N

∑

n=1

ln

{

∑

Hn

P (Hn,On|In)

}

. (6)

Henceforth we suppress the summations over n to
avoid cluttering the notation. Additionally to main-
tain simple notation we will denote the observed values
of the individual variables (si for i ∈ I or i ∈ O) as an
expectation of that variable under the Q(H), 〈si〉Q(H)
or more concisely 〈si〉.

The size of the sum in Eqn 5 becomes impractical for
large networks. We must therefore seek an alterna-
tive approach to learning without performing the sum
explicitly.

2.1 Variational Inference

If we introduce a distribution Q(H|V), which we regard
as an approximation to the true posterior distribution,
then we may bound the likelihood below by

ln P (O|I) ≥
∑

H
Q(H|O, I) ln

P (H,O|I)
Q(H|O, I)

. (7)

The aim of this approach being to choose an approx-
imating distribution which leads to computationally
tractable algorithms and yet which is also flexible
enough to permit a good representation of the true
posterior. Variational approaches in sigmoid belief
networks are already well known (Saul et al., 1996).
The derivation we give here however is novel. We re-
derive the variational approach known as mean field
theory for networks containing bi-polar valued nodes.
We do so from the perspective of free-form varia-
tional optimisations rather than explicitly implement-
ing a functional form for our approximation (see also
(Haft et al., 1999)). We also handle the additional
intractability arising in the expectation of the normal-
ising constant (the denominator in Eqn 4) in different
manner to previous works.

To implement mean field theory, we first assume the
posterior approximation factorises across sub-sets of
the full variable set. If we assume that the posterior
factorises across each variable member, sj , we obtain

Q(H|O, I) =
∏

i∈H

Q(si), (8)

we may now perform a free-form optimisation
(MacKay, 1995) over the functional form of each factor

Q(si) leading to

Q(sj) ∝ exp

(

〈Ej(sj ,wj , pa(sj))〉Q
k∈pa(sj) Qk

−
∑

i∈ch(sj)

〈ln Z〉Q
k∈pa(i),k 6=j Qk

)

. (9)

where ch(sj) represents those nodes that are children
of the node sj and Z =

∑

si
exp [Ej(si,wi, pa(si))].

Also, here we have used Qk as shorthand for Q(sk).
The first term in the exponent is straightforward to
evaluate, the second term, however, proves more diffi-
cult. The cause is the log of the sum. We choose to
again apply a variational lower bound 7 to this term2.

lnZ ≥
∑

si

Q−(si|pa(si))Ei(si,wi, pa(si), T)

−
∑

si

Q−(si|pa(si)) ln Q−(si|pa(si)). (10)

It is straightforward to show, through free form opti-
misation, that this bound is maximised by setting

Q−(si|pa(si)) =
exp(Ei)

∑

si
exp(Ei)

, (11)

where we have used the shorthand Ei to represent
Ei(si,wi, pa(si), T)3.

2.1.1 Expectations under Q(H)

The expectation of a variable under the distribution
Q−(si|pa(si)) can easily be seen to be

〈si〉Q−i = tanh (Ei(1,wi, pa(si), T)) . (12)

we may now rewrite Eqn 9 as

Q(sj) ∝ exp

(

〈Ej(sj ,wj ,pa(sj))〉Q
k∈pa(sj) Qk

−
∑

i∈ch(sj)

〈

(wji

T
sj

) (〈si〉Q−i + 1)

2

〉

Q
k∈pa(i),k 6=j Qk

+
∑

i∈ch(sj)

H
(

Q−(si)
)

)

, (13)

where H(Q−(si)) is the entropy of the distribution
Q−(si). The argument of the exponential in Eqn 13
can be written in terms of a function of sj , which we

2In previous works, authors have chosen to upper bound
this term.

3In fact Q−(si|pa(si)) in Eqn 11 is recognised as the
true posterior distribution of si given its parents (cf Eqn 4).
Thus when Q− is set as shown in Eqn 11, the bound 10
becomes an equality.

denote E′
j(sj), a constant and the entropy term. Sub-

stituting Eqn 3 into Eqn 13 and collecting terms in sj

we write

log Q(sj) = E′
j(sj) +

∑

i∈ch(sj)

H
(

Q−(si)
)

+ const. (14)

where the function E′
j(sj) can be seen to be

E′
j(sj) = sj

(

∑

i

wij

2T
〈si〉

+
∑

i∈ch(sj)

wji

2T

(

〈si〉 −
〈

〈si〉Q−
〉)

)

. (15)

Now note that the expectation of si under Q− is also
dependent on sj (Eqn 12). We therefore rewrite this
expectation to bring out the dependence on sj ,

〈sj〉Q− =
sj

2

(

tanh

∑

k 6=j

wik

T
sk +

wij

T

− tanh

∑

k 6=j

wik

T
sk −

wij

T

)

+ const.

def= sjφij + const., (16)

where const. is a term constant in sj . Substituting this
representation back into Eqn 15 we obtain,

E′
j(sj) = sj

∑

i

wij

2T
〈si〉+

∑

j

wji

2T
(〈si〉 − 〈φij〉)

 ,

leading to

Q(sj) =
exp (E′(sj))

exp (E′(1)) + exp (E′(−1))
, (17)

This can be substituted into bound 7 along with Eqn 4
to determine the lower bound on the log-likelihood, as
we shall see in Section 4.

3 ... to Linear Threshold Units

The sigmoid belief network may be converted into a
network of linear threshold units by taking the limit of
Eqn 2 as the temperature goes to zero. The marginal
likelihood will then become discontinuous being equal
to 1 for a subset of the set of all possible values of S,
and 0 at all other times. This subset is the patterns
which the network has stored. The output of each node
is then deterministic as in Eqn 1 and our network is a
multi-layer network of LTUs.

We can now consider the behaviour of the distribu-
tion in Eqn 17 in the zero temperature limit, or more

specifically we discuss the behaviour of the expecta-
tion of si under this distribution in that limit. Using
the distribution in Eqn 17 the expectation of any node
can be seen to be

〈sk〉 = lim
T→0

tanh

E′(sj) +
∑

i∈ch(sj)

H(Q−(si))

 ,

When we take the limit the entropy term goes to zero
and, through substitution of Eqn 15 for E′(sj), we find

〈sk〉 = sign

(

∑

i

wij 〈si〉+
∑

i

wji

2
(〈si〉 − 〈φij〉)

)

.

Additionally the expectation 〈φij〉 also becomes
tractable,

lim
T→0

〈φij〉 =
1
2
sign

∑

k 6=j

wik 〈sk〉+ wij

−1
2
sign

∑

k 6=j

wik 〈sk〉 − wij

 .(18)

Updates of each 〈sj〉 for j ∈ H may then be under-
taken for each pattern n in the training set. Upon
presentation of each example Eqn 18 may be applied
to each node in random order until a stable solution is
reached.

4 Learning

In the last section we discussed how inference of latent
variables (or hidden units) may be performed in net-
works of LTUs. We now turn to the learning of the
parameters W = {wij}.

The variational lower bound on the log likelihood may
be written (from bound 7 substituting in Eqn 4 and
Eqn 8)

lnP (O|I) ≥
∑

i

〈Ei〉 −
∑

i

〈ln (1 + exp(Ei(si)))〉

+
∑

i

H (Q(si))
def= L. (19)

We may treat the second term of the bound as in
bound 10. Substituting in Eqn 3 and noting that the
entropy term will always go to zero in the zero tem-
perature limit. We obtain

L = lim
T→0

∑

ij

wij

2T
〈sj〉

(

〈si〉 −
〈

〈si〉Q−
〉)

. (20)

Clearly this limit does not exist unless 〈si〉 =
〈

〈si〉Q−
〉

for all i.

The limit is also bounded from above. Consider the
function TL

TL =
∑

ij

wij

2
〈si〉 〈sj〉 −

∑

ij

wij

2
〈si〉

〈

〈sj〉Q−
〉

. (21)

First of all note that both terms take the form
∑

ij 〈si〉wijxj . This form is maximised, for bi-valued
x, if xj = sign (

∑

i wij 〈si〉). Now recall that the form

of
〈

〈sj〉Q−
〉

= sign (
∑

i wij 〈si〉). Therefore Eqn 21
and Eqn 20 are bounded from above by zero. As we
mentioned before, the limit in Eqn 20 only exists if
〈si〉 = sign (

∑

i wij 〈si〉) for all nodes in the latent set,
H, and the output (or target) set, O. In other words
the limit only exists when the pattern is classified cor-
rectly and all hidden nodes have their expected values.
If this is the case the true likelihood for that pattern
is 1, and our bound on the log-likelihood (which is
0 = ln 1) is exact. The objective in learning therefore
is to adapt the parameters W so that this is the case.
Of course, we wish to make this the case for every pat-
tern in the training set so, reintroducing the index over
the N patterns, we really wish to optimise

L = lim
T→0

N
∑

n=1

∑

ij

wij

2T

〈

s(n)
j

〉

(

〈

s(n)
i

〉

−
〈

〈

s(n)
i

〉

Q−

〉)

.

We can envisage situations where the limit cannot ex-
ist for any parameterisation of W. Consider, for exam-
ple, the case where an identical input pattern has two
different labels. We make it our objective, therefore,
to satisfy the above equation for as many patterns as
we can given the constraints of our chosen model struc-
ture.

Optimisation of the weight parameters in Eqn 22 is in
effect a constrained optimisation with N constraints
imposed on the weight parameters associated with
each hidden and output node where, as long as the
constraints are all satisfied, the value of the objective
function is constant. For values of W that satisfy the
constraints the likelihood is one, for all other values it
is zero.

4.1 Perceptron Learning Rule

The constraints imposed lead to an optimisation prob-
lem at each node which is identical to that of the per-
ceptron with Eqn 21 providing the perceptron crite-
rion for each node (given the inferred values of 〈si〉).
To form a historical connection, we first simply derive
the perceptron learning rule for each node.

Gradient based optimisation of the weight parameters
could be achieved through differentiation of Eqn 21
with respect to wkl. Ignoring the dependence of

〈

〈si〉Q−
〉

upon the wkl we obtain

∂TL
∂wkl

=
〈sk〉 〈sl〉 −

〈

〈sl〉Q−
〉

〈sl〉

2
. (22)

If the weights are adjusted by simple gradient descent
the algorithm can be recognised as the perceptron
learning rule.

The solution to the constrained optimisation, which is
equivalent to learning a perceptron for every hidden
and output node, is not unique4 and may not exist. If
the solution does not exist then the perceptron learn-
ing rule will fail to converge. Ideally we seek the solu-
tion which we expect to generalise best on unseen data.
Therefore, rather than utilising the perceptron learn-
ing rule to optimise our weights, we utilise a maximum
margin approach to finding a solution.

4.2 Maximum Margin

A maximum margin classifier, also known as the opti-
mal perceptron, is a technique which can be justified
from the perspective of statistical learning theory.

Statistical learning theory relies on notions of capac-
ity which reflect the number of patterns that a classi-
fier may store (Vapnik, 1982). It is possible to place
bounds on the expected generalisation error of such
classifiers which hold with a certain confidence. These
bounds are functions of the model capacity. The mar-
gin size can be defined as the minimum distance the
classification boundary needs to be moved for an exam-
ple to be mis-classified. The model capacity is known
to be inversely related to margin size. Increasing the
margin decreases the capacity and hence should lead to
a classifier with better generalisation properties. Ad-
ditionally, the objective function in the region where
the constraints have been satisfied becomes convex,
and it can be shown that the solution for the weight
parameters becomes unique.

The maximum margin solution, shown in Figure 2, is
sometimes defined by data-points which lie on that
margin, known as support vectors, and by Lagrange
multipliers associated with those points. It may be
found through quadratic programming.

There remains the issue of separability. If the prob-
lem is not linearly separable, there will be no solu-
tion for the standard formulation of the quadratic pro-
gramming problem. Fortunately the quadratic pro-
gramming problem may be reformulated to allow er-
rors through the introduction of slack variables and

4The objective function is zero once all constraints are
satisfied, therefore any solution which satisfies the con-
straints is equally valid.

γγ

Figure 2: In linearly separable data, maximum margin
provides a unique solution. Circled data-points indicate
the support vectors and γ indicates the size of the margin.

a parameter, C, known as the error penalty. A slack
variable, ξn, represents the extent of the error on data-
point n. A penalty term of the form C

∑N
n=1 ξn may

then be introduced into the quadratic programming
problem. The solution found will naturally then be
sensitive to the choice of C.

5 Algorithm Overview and
Implementation

The algorithm as we have described it involves two
steps. The first step involves updating the expected
value of the hidden nodes,

〈

s(n)
i

〉

, for each data point,
n. The next step is to update the weight parameters,
W, by a quadratic programming problem, given the
expected values of the variables.

5.1 Some Algorithm Heuristics

Having described the fundamental theory behind our
algorithm, we also wish to mention some heuristics
which were found useful in the practical implementa-
tion of the algorithm, further details may also be found
in Lawrence, 2000.

5.1.1 Simulated annealing

The updates of Eqn 18 are taking place in a highly
discontinuous space. It may be advantageous to rein-
troduce the temperature parameter and perform deter-
ministic annealing during the updates of 〈sj〉, gradu-
ally reducing the temperature to zero.

5.1.2 Expectation Initialisation

The values for 〈sj〉 for j ∈ H may be initialised with
the values of sj obtained from a ‘forward pass’ through
the network.

5.1.3 Convergence

The algorithm converges when every training pattern
has been classified exactly. However, it is quite pos-

sible for the training error, in terms of the number of
mis-classifications, to increase after the inference and
learning steps. This may occur despite the overall ob-
jective function going down as it may coincide with
an increase in the number of hidden nodes which are
‘classified correctly’. It would therefore seem prudent
to store the network best training error achieved at
all times during learning and, in the case that learn-
ing doesn’t converge (e.g. for the reasons outlined in
Section 4) to utilise this network for the solution.

6 Experimental Assesment

In this section we apply the algorithm to three data-
sets. The first two data-sets are well known bench-
marking data-sets. The third data-set is from a medi-
cal imaging problem involving the analysis of fluores-
cent in-situ hybridisation (FISH) images. For these
experiments, updates were undertaken in the form of
a full inference step, i. e. updates of

{〈

s(n)
i

〉}

to con-
vergence, followed by learning of the parameters W to
convergence using the sequential minimal optimisation
(SMO) algorithm (Platt, 1998) to solve the quadratic
programming problem. The process of inference and
learning was repeated seven times for all data-sets.

6.1 The Pima Indians Diabetes Data

This well known benchmark data-set is demonstrated
here with the partitions used by Ripley (1996).
The objective is to create a classifier which predicts
whether the subjects are diabetic. The data consists
of seven inputs and a set of class labels. Ripley split
the data into a training set of 200 points and a test
set of 332 points. We normalised the data to be zero
mean and lie between −1 and 1. We then trained
networks with differing error penalties, C = 10k for
k = 0, 1 and 2, and different numbers of hidden units,
H = 10, 15 and 20. Ten different initialisations were
used for each parameterisation. We limited the mar-
gin optimisation to a maximum of 100,000 iterations
of Platt’s SMO algorithm. Simulated annealing was
implemented for updating hidden unit expectations.
The temperature was initialised at 1000 and the decay
rate was set to 0.8, i. e. at iteration k the temperature
was 1000×0.8k−1. Once the temperature dropped be-
low 0.001 it was taken to be zero. Once annealing was
complete, a maximum of a further 70 passes updating
the expectations of the latent nodes were permitted.

Results are summarised in Figure 3 and Table 1. The
other presented results are taken from Ripley (1996)
and Barber and Williams (1997).

The results on this data appear encouraging. Note
though the variability in performance with different

H

er
ro

rs

C = 100

60

70

80

90

10 15 20
H

er
ro

rs

C = 10

60

70

80

90

10 15 20

Figure 3: Results for the networks on the Pima Indians
data-sets for C = 10 and C = 100 (C = 1 is not shown due
to space constraints). Dots represent each of the ten differ-
ent networks initialisations. The network which achieved
the overall minimum error is marked with +. Also shown
is the mean and error-bars at one standard deviation for
each parameterisation.

initialisations shown in Figure 3. However the aver-
age performance was still in line with that of the neu-
ral network results. Some caution has to be exercised
with interpretation of these results. The best linear
threshold unit classifier had a better performance on
the test set than on the training set. This gives rise
to some suspicion that results on this data-set may be
somewhat partition sensitive due to the low number of
samples.

6.2 The Leptrograpsus Crabs Data

This is another benchmark data-set. The partitions
implemented here are from Ripley (1994). Five in-
put features are used to describe crabs of two different
species. The objective is to predict the sex of the crab
given these features. The data consisted of 80 training
points and 120 test points. The data was tested in the
same manner as the Pima Indians data-set, but with
different numbers of hidden units H = 10, 20, 30 and
40. The results are depicted in Figure 4, and the error
rates are shown in Table 1.

Similar conclusions may be drawn from the results on
the crabs data as were drawn for those on the Pima
Indians data but with the same reservations also. For
a better evaluation of the algorithm we turned to a
larger data-set from a medical application.

6.3 FISH Data

The FISH data-set was acquired from 400 images of
cell nuclei. The objective is to classify signals produced
by fluorescent in-situ hybridisation as either real sig-
nals, or artifacts of the slide preparation. The data
consists of twelve features of the images which are
based on shape and colour. The data were hand la-

H
er

ro
rs

C = 100

0

4

8

12

10 20 30 40
H

er
ro

rs
C = 10

0

4

8

12

10 20 30 40

Figure 4: Results for the networks on the Leptrograpsus
crabs data-sets for C = 10 and C = 100 (once again C = 1
is not shown but is similar).

model Pima crabs
Neural Network 75+ 3
Linear Discriminant 67 8
Logistic Regression 66 4
MARS (degree = 1) 75 4
PP (4 ridge functions) 75 6
2 Gaussian Mixture 64 -
Gaussian Process Classifier 68 3
Average LTU 73.97 6.08
Best LTU 63 2

Table 1: Number of classification errors for the Pima In-
dians and Leptrograpsus crabs data-sets. The table shows
some of the obtained results on the Pima Indians and Lep-
trograpsus crabs data-sets. The results labeled ‘Best LTU’
are those which obtained the minimum errors on the test
sets. Their parameterisations are depicted in Figure 4 and
Figure 3. The result labeled ‘Average Linear Threshold
Unit’ is the average of all the networks’ classification er-
rors.

belled by a trained cytologist, the problem is more fully
described in Lerner and Lawrence (1999). We followed
Lerner and Lawrence in partitioning the data into 2200
training points and 944 test points. For training the
linear threshold units we made use of a validation set
by further sub-dividing the training data. The valida-
tion set contained 314 points. Cross validation was not
a viable option for the LTU models as the results are
initialisation dependent. The inputs were normalised
to have zero mean and unit standard deviation for
these experiments. The results of the FISH experi-
ments are summarised in Table 2 and Figure 5.

The results for the linear threshold units stand up well
in comparison to the other classifiers. The best per-
forming LTU network gives results in line with that
of the support vector machine. The committee of
networks also gives a competitive result. The single
network selected by utilising the validation set gives

H

%
er

ro
r

C = 10

3
2

1

13

14

15

16

10 20 30
H

%
er

ro
r

C = 1

5

413

14

15

16

10 20 30

Figure 5: Results for the networks on the FISH data-sets
for C = 1 and C = 10. Dots represent each of the ten
different networks initialisations. The networks with the
five lowest validation set error are marked in order 1 to 5,
with 1 having the lowest validation error.

model error rate
Naive Bayesian Network 17.0 %
Neural Network 13.6 %
Bayesian Neural Network 11.8 %
Support Vector Machine 12.8 %
LTU (Best) 12.9 %
LTU (Average) 14.6 %
LTU (Validation Set) 13.9 %
LTU (Committee) 13.2 %

Table 2: Classification rates for the FISH data. The table
shows some of the obtained results on the FISH data-set.
The result labelled ‘Best’ is that which obtained the min-
imum error on the test sets, the ‘Average’ result was the
average error for all networks, the result labelled ‘Valida-
tion Set’ is that selected through the validation set and
finally that labelled ‘Committee’ is a result from an un-
weighted committee of five networks selected according to
the validation set error.

equivalent performance to a standard neural network.
The linear threshold units are placed at a disadvan-
tage with respect to the other techniques which were
trained on all the available training data. There is
some chance that performance could be improved by
further training of the selected models on the valida-
tion set.

7 Discussion

In this work we have presented an algorithm for learn-
ing in networks of linear threshold units. We demon-
strated the algorithm’s implementation with a variety
of data-sets.

The algorithm has an interesting parallel with the
expectation-maximisation (EM) algorithm (Dempster
et al., 1977), the ‘expectation’ step would be the de-

termination of the parameters {〈si〉} and the ‘maxi-
misation’ step is a quadratic program in W. It not
strictly correct, however, to call the fixed point equa-
tion update of

〈

s(n)
i

〉

an expectation step because the

function Q(H|V) is no longer probabilistic. This is
analogous to the relationship between K-means clus-
tering and EM optimisation of Gaussian mixture mod-
els (Bishop, 1995). K-means clustering may be seen as
the limit as the variance goes to zero of EM update of
a Gaussian mixture model. This method of learning
in networks of LTUs is merely the limit as the tem-
perature goes to zero of mean field theory for sigmoid
belief networks.

We have considered only linear threshold units in this
work. However it is possible to start with proba-
bilistic graphs containing soft-max nodes and linear-
Gaussian nodes and to arrive at networks containing
winner-takes-all and linear activation functions. For
the case of linear activation functions in the input rows
and winner-takes-all activation functions in the output
layer the derived equations are identical to the above.
For linear inputs the value of 〈si〉 for r = 1 becomes
continuous.

For the case of a network with linear inputs and only
one layer of weights the product TL (Eqn 21) is identi-
cal to the perceptron criterion (Rosenblatt, 1962) and
the weight update is the associated learning algorithm.

Finally this approach may provide a method of
performing inference in expert systems which use
if ... then rules for their knowledge base. Such a
system can be viewed as the zero temperature limit of a
DAG based on probability tables, just like networks of
linear threshold units are the zero temperature limit of
the sigmoid belief network. We could therefore apply
this approach to performing inference in such systems.

Acknowledgements

We would like to thank Boaz Lerner for providing the
FISH data-set used in these experiments.

References
Anderson, J. A. and E. Rosenfeld (Eds.) (1988). Neu-

rocomputing: Foundations of Research, Cambridge,
MA. MIT Press.

Barber, D. and C. K. I. Williams (1997). Gaussian pro-
cesses for Bayesian classification via hybrid Monte
Carlo. In M. C. Mozer, M. I. Jordan, and T. Petsche
(Eds.), Advances in Neural Information Processing
Systems, Volume 9. Cambridge, MA: MIT Press.

Bishop, C. M. (1995). Neural Networks for Pattern
Recognition. Oxford University Press.

Dempster, A. P., N. M. Laird, and D. B. Rubin (1977).
Maximum likelihood from incomplete data via the

EM algorithm. Journal of the Royal Statistical Soci-
ety, B 39 (1), 1–38.

Haft, M., R. Hoffmann, and V. Tresp (1999). Model-
independent mean field theory as a local method for
approximate propagation of information. Network:
Computation in Neural Systems 10, 93–105.

Hinton, G. E. and D. van Camp (1993). Keeping neu-
ral networks simple by minimizing the description
length of the weights. In Proceedings of the Sixth
Anuual Conference on Computational Learning The-
ory, pp. 5–13.

Lawrence, N. D. (2000). Variational learning in multi-
layer networks of linear threshold units. Draft report.

Lerner, B. and N. D. Lawrence (1999). A comparison
of state-of-the-art classification techniques with ap-
plication to cytogenetics. Submitted to Neural Com-
puting and Applications.

MacKay, D. J. C. (1995). Developments in probabilistic
modelling with neural networks—ensemble learning.
In Neural Networks: Artificial Intelligence and In-
dustrial Applications. Proceedings of the 3rd Annual
Symposium on Neural Networks, Nijmegen, Nether-
lands, 14-15 September 1995, pp. 191–198. Berlin:
Springer.

McCulloch, W. S. and W. Pitts (1943). A logical calculus
of the ideas immanent in nervous activity. Bulletin
of Mathematical Biophysics 5, 115–133. Reprinted
in Anderson and Rosenfeld (1988).

Neal, R. M. (1992). Connectionist learning of belief net-
works. Artificial Intelligence 56, 71–113.

Platt, J. C. (1998). Fast training of support vector
machines using sequential minimal optimization. In
B. Schölkopf, C. J. C. Burges, and A. J. Smola
(Eds.), Advances in Kernel Methods: Support Vector
Learning, pp. 185–208. Cambridge, MA: MIT Press.

Ripley, B. D. (1994). Flexible non-linear approaches to
classification. In V. Cherkassky, J. H. Friedman, and
H. Wechsler (Eds.), From Statistics to Neural Net-
works. Theory and Pattern Recognition Applications,
Series F: Computer and Systems Sciences, pp. 105–
126. Springer-Verlag.

Ripley, B. D. (1996). Pattern Recognition and Neural
Networks. Cambridge, U.K.: Cambridge University
Press.

Rosenblatt, F. (1962). Principles of Neurodynamics:
Perceptrons and the Theory of Brain Mechanisms.
Spartan.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams
(1986). Learning internal representations by error
propagation. In Parallel Distributed Programming:
Explorations in the Microstructure of Cognition, Vol-
ume 1: Foundations, pp. 318–362. Cambridge, MA:
MIT Press. Reprinted in Anderson and Rosenfeld
(1988).

Saul, L. K., T. S. Jaakkola, and M. I. Jordan (1996).
Mean field theory for sigmoid belief networks. Jour-
nal of Artificial Intelligence Research 4, 61–76.

Vapnik, V. N. (1982). Estimation of Dependences Based
on Empirical Data. New York: Springer-Verlag.

