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Abstract

Estimating word co-occurrence probabili-
ties is a problem underlying many appli-
cations in statistical natural language pro-
cessing. Distance-weighted (or similarity-
weighted) averaging has been shown to be a
promising approach to the analysis of novel
co-occurrences. Many measures of distri-
butional similarity have been proposed for
use in the distance-weighted averaging frame-
work; here, we empirically study their stabil-
ity properties, finding that similarity-based
estimation appears to make more efficient use
of more reliable portions of the training data.
We also investigate properties of the skew di-
vergence, a weighted version of the Kullback-
Leibler (KL) divergence; our results indicate
that the skew divergence yields better results
than the KL divergence even when the KL
divergence is applied to more sophisticated
probability estimates.

1 INTRODUCTION

Estimating the probability of co-occurrences of lin-
guistic objects is a fundamental tool in statistical ap-
proaches to natural language processing. For example,
consider the following speech understanding scenario.
Two similar-sounding transcription hypotheses for a
given utterance (presumably regarding an Al system)
have been produced:

1. This machine understands you like your mother.
2. This machine understands your lie cured mother.
Although both alternatives are grammatical, it is clear

that the first sequence of words is more likely and
so should be the preferred analysis in the absence of

any further information. Also, to interpret sentence 1,
which is ambiguous, we need to determine whether it is
more likely that the object of the verb “understands”
is “you”(i.e., the machine understands you as well as
your mother does) or “you like your mother” (that is,
the machine knows that you like your mother). Note
that we desire probability estimates, rather than deci-
sions as to which alternative is “correct”, because there
are situations in which the second sentence makes more
sense in context; indeed, the standard speech recogni-
tion architecture weighs these estimates against evi-
dence from other knowledge sources, such as the sys-
tem’s acoustic model.

The general problem we consider here is the estimation
of co-occurrence probabilities based solely on the fre-
quencies of the co-occurrences themselves; this is the
setting in which most state-of-the-art speech recogni-
tion systems are trained (Jelinek, 1997). A major chal-
lenge is estimating the probability of novel (previously
unseen) co-occurrences, which in the natural language
domain can make up a large percentage of test data
even when huge training sets are employed (Brown et
al., 1992; Rosenfeld, 1996).

A standard, state-of-the-art approach is to “back off”
to the unigram probability when a new co-occurrence
pair not found in the training data is observed:
P(ylz) o« P(y) (Katz, 1987); Chen and Goodman
(1996) show that this is one of the best methods for es-
timating co-occurrence pair probabilities. However, an
intuitively appealing alternative is to form an estimate
based on the frequencies of similar co-occurrences
(Saul and Pereira, 1997; Hofmann and Puzicha, 1998;
Dagan, Lee, and Pereira, 1999). This is, of course, the
idea underlying a large body of work that is variously
termed nearest-neighbor, case-based, memory-based,
instance-based, and lazy learning, among other des-
ignations (Cover and Hart, 1967; Stanfill and Waltz,
1986; Aha, Kibler, and Albert, 1991; Atkeson, Moore,
and Schaal, 1997).



Memory-based methods for classification have been
successfully applied to a variety of language under-
standing tasks. Typically, similarity between objects
is determined by the similarity of their correspond-
ing feature vectors, where the features are symbolic
(Stanfill, 1987; Cardie, 1993; Ng and Lee, 1996; Daele-
mans, van den Bosch, and Zavrel, 1999). In con-
trast, in our setting, the “features” are numeric co-
occurrence frequencies. Also, memory-based work has
concentrated on supervised learning, in which class la-
bels are provided in the training data; however, co-
occurrence probability estimation must be unsuper-
vised because the true probability distribution of lin-
guistic objects is not known. In short, our focus is
on distributional similarity: determining the similarity
between two empirically-determined conditional distri-
butions P(Y|z) and P(Y|z').

In previous work (Dagan, Lee, and Pereira, 1999), we
have demonstrated that using similarity-weighted av-
eraging has the potential to produce high-quality prob-
ability estimates for low-frequency co-occurrences,
yielding improvements on standard performance met-
rics of up to 20% with respect to back-off. Later work
(Lee, 1999) compared the behavior of several measures
of distributional similarity and introduced the skew
divergence, an approximation to the Kullback-Leibler
(KL) divergence, itself a classic measure of the distance
between distributions (Cover and Thomas, 1991).

In this paper, we study the stability of similarity mea-
sures when trained on frequency-filtered data, finding
that in comparison to Katz’s back-off, similarity-based
estimation is far more robust. This indicates that sim-
ilarity functions may make more efficient use of ar-
guably more reliable sections of the training data.

Also, we further study the skew divergence. We find
that roughly speaking, the skew divergences yielding
the best results are those that approximate the KL di-
vergence more closely. This leads to the question of
whether the good performance is due simply to “prox-
imity” to the KL divergence, which, for technical rea-
sons, cannot be directly applied to non-smoothed dis-
tributions. That is, we ask whether it is better to
approximate the KL divergence, or to use the KL di-
vergence itself on smoothed distributions. Our results
indicate that even if we use the KL divergence on dis-
tributions derived via sophisticated estimation meth-
ods, the skew divergence achieves better results.

2 DISTRIBUTIONAL SIMILARITY

For two objects = and 2’ co-occurring with objects
drawn from a finite set )), we seek to calculate the
similarity (or distance) between ¢(Y) = P(Y|x) and
r(Y) £ P(Y|z'), where these distributions are esti-

mated from a training corpus. For example, we can
infer that the word “business” might serve as a good
proxy for the word “company” because they both fre-
quently occur as the object of verbs like “acquire”, but
rarely as objects of the verb “defenestrate”.

There are many possible similarity (or distance) func-
tions. In section 2.1 we briefly introduce a few of the
most commonly-used measures, listed in Table 1. Sec-
tion 2.2 presents examples of similar words computed
using these functions.

2.1 FUNCTIONS

The Kullback-Leibler (KL) divergence D(q||r) is a clas-
sic measure of the “distance” between two probability
mass functions (Cover and Thomas, 1991). Unfortu-
nately, it is undefined if there exists a y € ) such
that ¢(y) > 0 but r(y) = 0. This property makes
it unsuitable for distributions derived via maximum-
likelihood estimates, which assign a probability of zero
to co-occurrences not appearing in the training data.
Unfortunately, in natural language tasks, such unseen
co-occurrences are very common in application (test)
data (Brown et al., 1992).

One option is to employ smoothed estimates so that
r(y) is non-zero for all y, as was done in our previ-
ous work (Dagan, Lee, and Pereira, 1999). Another
alternative is to use approximations of the KL diver-
gence that do not require ¢ to be absolutely continuous
with respect to . Two such functions are the Jensen-
Shannon divergence' (J. Lin, 1991) and the skew di-
vergence (Lee, 1999). The Jensen-Shannon divergence,
which is symmetric, considers the KL divergence be-
tween ¢, r, and the average of ¢ and r, under the as-
sumption that if ¢ and r are similar to each other,
they should both be “close” to their average. The
asymmetric skew divergence, on the other hand, sim-
ply smooths one of the distributions by mixing it, to a
degree determined by the parameter o, with the other
distribution (observe from Table 1 that at o = 1, the
approximation is exact).

Another way to measure distributional similarity
is to treat the distributions as vectors and apply
geometrically-motivated functions. These include the
Euclidean distance, the cosine, and the Ly (or Man-
hattan) distance.

We also include in our study two functions of a some-
what different flavor that have been previously used in
language processing tasks. The confusion probability,
which estimates the substitutability of two given words
(Sugawara et al., 1985; Essen and Steinbiss, 1992;

!The Jensen-Shannon divergence in Table 1 is a special
case of the function defined by J. Lin (1991).



Table 1: Similarity functions for probability distributions. The function avg(q,r) in the Jensen-Shannon diver-
gence is the averaged distribution (q(y) + r(y))/2. The skew divergence constant « lies in the range [0, 1].

KL DIVERGENCE D(q |l ) =
JENSEN-SHANNON  JS(g,r) =
SKEW DIVERGENCE  $4(q, 1) =
EUCLIDEAN euc(q, r) =
COSINE cos(q, 1) =
Ll Ll(qa T) =
CONFUSION conf(q,r, P(z")) =
Tau 7(q,7) =

(3, (alw) —r)?)
=, awrw) /3, 402 2, rm)?
>y la(y) —r(y)|

P(a') 32, a(y)r(y)/Py)
51 i (a() — ave)) () — )] / (205)

>y a(y)(logq(y) —logr(y))
(o mstar) 2 e vt
D(r|lag+ (1 -a)r)
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Table 2: Nearest neighbors to the word “company”, most similar first. Italics designate words appearing in only
one column. The words “government” and “organization” have been abbreviated.

SKEW (a=.99) J.-S. Ly COSINE CONFUSION TAU EUCLIDEAN
1 AIRLINE BUSINESS  BUSINESS talk GOVT. YEAR CITY
2 BUSINESS AIRLINE AIRLINE hostage YEAR STATE AIRLINE
3 BANK FIRM STATE primary PEOPLE PEOPLE INDUSTRY
4  AGENCY BANK BANK referendum  percent GOVT. PROGRAM
5 FIRM STATE FIRM lead syndrome GROUP ORG.
6 department AGENCY AGENCY  hearing BUSINESS country BANK
7 manufacturer GROUP GOVT. stake TODAY BUSINESS  SYSTEM
8 network GOVT. CITY discussion ~ FIRM PROGRAM TODAY
9 INDUSTRY CITY GROUP post MEETING TODAY series
10 GovT. INDUSTRY ORG. MEETING stock SYSTEM portion

Grishman and Sterling, 1993), is based not only on
the conditional distributions P(Y|z) and P(Y'|z") but
also on marginal probabilities. The tau coefficient,?
a statistical measure of the association between ran-
dom variables (Liebetrau, 1983), is based on probabil-
ity rankings rather than the actual probability values:
roughly speaking, 7(q, r) is larger if there are few pairs
(y1,92) such that g(y1) > q(y2) but 7(y1) < 7(y2), or
vice versa. Hatzivassiloglou (1996) applied this mea-
sure to the task of grouping related adjectives.

2.2 EXAMPLES OF SIMILAR WORDS

In order to provide some intuition about the measures
described in the previous section, we now present an
example of similar words derived by each function.

2There are actually three versions of the tau coefficient;
we are using 7. See Liebetrau (1983) for discussion of this
issue.

We computed similarity between nouns based on their
occurrences as the heads of direct objects of verbs in a
newswire corpus (details of the training set are given
in section 3.2 below). That is, the training data con-
sisted of noun-verb pairs such as (company, acquire);
we used maximum-likelihood estimation for the condi-
tional distributions P(Y|z), e.g.

#(company, acquire)
#(company)

P(acquire|company) = ,
where #(-) denotes frequency in the corpus. Then, for
each noun z’, we computed the similarity of P(Y|z’) to
P (Y| company). We note that no linguistic knowledge
was employed other than the fact that certain nouns
occurred as the objects of certain verbs.

Table 2 shows the ten nearest neighbors to the word
“company” according to each of the measures de-
scribed above (except the KL divergence, which, as
mentioned earlier, cannot be applied to maximum-



likelihood estimates). The left-to-right sequence of
the table foreshadows the functions’ relative empiri-
cal performances in best-first order; these results are
presented in section 3.3.

We first observe that many of the nearest neighbors,
such as “business” and “firm”, indeed seem semanti-
cally quite similar to the word “company”. The L; dis-
tance and Jensen-Shannon divergence appear highly
correlated.® But there is noticeable variation between
the lists; for instance, no word is in the top ten for
every metric, although “business” and “government”
appear in five of the seven rankings. To highlight this
variability, we have italicized all words that are in the
top ten according to one similarity function but not
considered a nearest neighbor by any of the others.
Evidently, the cosine metric is strikingly different from
the other measures, perhaps because of the length nor-
malization it incorporates (note in Table 1 that oth-
erwise the cosine looks somewhat similar to the con-
fusion probability). Also, four of the other six lists
contain novel words as well, with the two asymmet-
ric functions (the confusion probability and the skew
divergence) exhibiting a higher percentage of unique
neighbors.

We thus see that the various functions can exhibit
qualitatively different behaviors. In the next section,
we evaluate their performances quantitatively.

3 EXPERIMENTS

3.1 METHODOLOGY

Our ultimate goal is the accurate estimation of co-
occurrence probabilities. It would therefore seem
that we should directly evaluate the probabilities as-
signed by similarity-based models. However, we then
run into a methodological problem: how should we
define the similarity-based models? An attractive
paradigm, though certainly not the only possibility, is
the distance-weighted averaging framework, where the
relative frequencies of the nearest neighbors are aver-
aged together after being weighted by their similarity
to the target (Atkeson, Moore, and Schaal, 1997). Un-
fortunately, even if we settle on distance-weighted av-
eraging, we must choose among many possible weight
functions. The difficulty is that we want our stability
analyses to be independent of these various decisions
in order to factor out the choice of metric from the
choice of model, since for many similarity measures it
is not at all clear what the optimal weight function is.
(In previous work, we have seen that different weights
for the same similarity measure can lead to substantial

3Indeed7 the L, distance bounds the Jensen-Shannon
divergence (J. Lin, 1991).

decreases in performance (Dagan, Lee, and Pereira,
1999).)

We therefore employed the following experimental
framework. Similarity functions are compared by ex-
amining their ability to choose the more likely of two
test co-occurrences (z,y1) and (x,y2). The decision
is made by taking a majority vote of the k near-
est neighbors according to the measure under con-
sideration, where a neighbor z’ wotes for (x,y;) if
P(y1]2") > P(yz|z’), and vice versa. By plotting per-
formance as a function of the number of most simi-
lar neighbors considered, one can compare the rank-
ings induced by different similarity functions indepen-
dently of the numerical values they assign: we should
clearly prefer function f over function g if, for all k, a
higher percentage of f’s k most similar words vote cor-
rectly. This methodology allows us to compare func-
tions directly without needing to consider issues such
as weighting functions, number of nearest neighbors
selected, etc. In practice, of course, these factors are
important. However, it is desirable to concentrate our
efforts on finding weight functions for inherently better
similarity functions, so it makes sense to first identify
which similarity measures are the most promising be-
fore considering what the best weighting scheme is.

3.2 INITIAL DATA AND PERFORMANCE
METRICS

The datasets were constructed from a collection of
over 730,000 verb-noun co-occurrence pairs from the
Associated Press 1988 newswire involving the 1000
most frequent nouns. These were extracted via part-
of-speech tagging and pattern matching tools due to
Church (1988) and David Yarowsky. We randomly
selected 80% to serve as training data. From the re-
maining 20%, we created five equal-sized disjoint sets
of co-occurrences not also appearing in the training
corpus (recall that our goal is to model unseen co-
occurrences). Finally, these five sets were transformed
into test sets by replacing each pair (x, y1) with the test
instance ((z,y1), (z,y2)), where y2 was randomly cho-
sen among those verbs with approximately the same
frequency as y;.4

In order to evaluate performance, we calculated the
error rate, defined as

%(# of incorrect choices + (# of ties)/2),

where T is the size of the test set. Ties — instances in

4Other ways to create test alternatives include con-
structing instances in which two pairs (z,y1) and (x,y2)
were both unseen in the training data but occur in the
test data; however, this narrows the size of the test corpus
considerably.
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Figure 1: Average error rates for similarity measures as a function of &k, the number of nearest neighbors. Left:
trained on full. Right: trained on sparse. The key is ordered by performance.

which both alternatives are deemed equally likely —
are treated as half-mistakes.

Each of the performance graphs depicts the average
error rate over the five test sets (standard deviations
were fairly small and so error bars are omitted for clar-
ity). Unless otherwise specified, maximum-likelihood
estimates were used for the base probabilities that
serve as the input to back-off and the similarity mea-
sures. By our reasoning above, the “best” similarity
measures should achieve the smallest error rates, and
achieve these as early as possible.

3.3 EXPERIMENT 1: DEPENDENCE ON
LOW-FREQUENCY EVENTS

In our first experiment, we examined the perfor-
mance of similarity metrics on frequency-filtered train-
ing data. We are interested in the relative dependence
of similarity measures on low-frequency events, since
such events may constitute unreliable evidence. In-
deed, Katz (1987) suggested that deleting singletons
— events occurring only once — from the data can cre-
ate more compact training sets without affecting the
quality of statistical estimates. To study this issue, we
constructed two training sets, full and sparse, where
full was the training corpus described in the previ-
ous section. The sparse set was created from full by
omitting all co-occurrence pairs appearing only once;
this resulted in a 15% reduction in size.

As a baseline, we computed the performance of back-
off, which does not use distributional similarity infor-
mation. Recall that when presented with two unseen
co-occurrences (z,y1) and (z,y2), back-off will prefer
the alternative for which y; is more frequent in the

training corpus. When trained on full, back-off’s av-
erage error rate was 51.5%: by construction of the test
sets, back-off is reduced to random guessing. With
sparse as the training set, the average error rate rose
to 60.5%, for a difference of 9 percentage points.

Figure 1 shows the performance of the similarity mea-
sures for both training sets. Despite the large drop in
training set size, the general shapes of the curves and
relative performance orderings® are remarkably stable
across the two training corpora, with the skew diver-
gence yielding the best results.® The major changes
are that the best achievable error rates rise — the aver-
age increase is 4.2 percentage points — and the minima
are generally achieved at higher values of k for sparse,
indicating that it is more difficult to select good near-
est neighbors when singleton co-occurrences are miss-
ing. On the other hand, the performance degradation
that the similarity measures suffer is less than half
that for the baseline back-off. Thus, we conclude that
in comparison to back-off, similarity measures do not
depend as much on information carried by singleton
events. This suggests that similarity-based estimation
takes greater advantage of higher-frequency events,
which may be more reliable information sources.

3.4 EXPERIMENT 2: SKEW VALUES

Given that a skew divergence achieved the best error
rates in the previous experiment, we now study the
family of skew divergences more carefully. Recall the

5 A hypothesis as to why the functions seem to “clump”
appears in our previous work (Lee, 1999).

5By the paired t-test, the differences between the skew
divergence and the L; distance are significant at the .01
level for k > 75 (full) and k > 200 (sparse).
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by increasing .

definition:
Salg,r) =D (r||lag+ (1 —a)r),

where « controls the degree to which the function ap-
proximates D(r||q). In application, for a given test
instance ((x,y1), (z,y2)), we use the neighbors z’ such
that so(P(Y|z), P(Y]z')) is smallest — since we are
using a similarity-based estimate for the distribution
of verbs conditioned on object x, we are evidently con-
sidering the maximum-likelihood estimate to be unre-
liable, and hence it is the empirical P(Y|x) that needs
to be smoothed.”

Since the KL divergence is a standard and well-
motivated distributional distance measure and «’s role
appears to be simply to guarantee that the skew diver-
gence is always defined, two natural questions arise.
First, does increasing «, thereby bringing the skew
divergence closer to the KL divergence, always yield
better results? Second, given that (1 — a)r serves to
smooth ¢, should the proper value of (1 — «) depend
on some measurement of the sparseness of the data?

To investigate these issues, we examined how varying
the value of o changed the performance of the skew
divergence for both of our training sets. The results
are shown in figure 2. Again, we see that the shapes
and relative orderings of the performance curves are
preserved across training sets, with the error rates ris-
ing and the minima shifting to the right for sparse.
And again, the skew divergences as a family are also
less affected by frequency filtering than the baseline,
back-off.

"Indeed, in our experiments, approximating D(q||r) did
not perform as well.

However, the role that « plays is not entirely clear.
The highest value yielded the best performance and
very small values resulted in the worst error rates, as
one might expect; but the relationship between error
rate and « for intermediate settings is not so simple.
In particular, it appears that the skew divergence for
a = 0.33 does a relatively poor job of selecting good
neighbors for small values of k, but the words ranked
between 50 and 100 are very good predictors; as a con-
sequence, it achieves lower best-case error rates than
for the larger values a = 0.5 and o = 0.66.

In answer to the second question, Figure 2 shows that
the best setting of & does not vary when we use sparse
for training instead of full, which we may take as a
stability result regarding high values of c. This finding
may indicate that it is always better to choose a high
setting of this parameter, thus obviating the need for
extra training data to tune it; of course, further exper-
iments are necessary to validate this claim.

3.5 EXPERIMENT 3: COMPARING
SKEW AND KL DIVERGENCES

The previous experiment demonstrated that larger val-
ues of o are to be preferred; that is, the best results
come about when we choose a skew divergence that
is very close to the KL divergence D. It might there-
fore seem that the optimal thing to do is to actually
use the KL divergence itself, rather than approximate
versions.

As mentioned in section 2.1, we cannot apply the KL
divergence directly to the maximum-likelihood esti-
mates used as the input to the other similarity func-
tions in experiments 1 and 2. However, we can first
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apply some other estimation technique that produces
smoothed distributions (i.e., where P(y|x) > 0 for all
y), and use these as input to D. Then, the question
is whether using the KL divergence on smoothed dis-
tributions can provide better results than using an ap-
proximation of the KL divergence on non-smoothed
input. To investigate this issue, we looked at com-
puting the KL divergence between probability distri-
butions estimated using back-off, which we recall has
been described as one of the best techniques for es-
timating the probability of co-occurrence pairs (Chen
and Goodman, 1996).

Effect of applying D to smoothed distributions vs. using a skew divergence
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Figure 3: Average error rates for the KL divergence,
skew divergence, and cosine trained on full.

Figure 3 shows that even when a state-of-the-art es-
timation method is used in conjunction with the KL
divergence to calculate distributional similarity®, it is
better to use the skew divergence. Indeed, we see that
D’s error rate is on par with that of the cosine metric.
Thus, it appears that highly sophisticated smoothing
techniques would be needed in order to use the KL
divergence effectively, so much so that the skew diver-
gence may be of greater utility than the function it is
supposed to approximate.

4 RELATED WORK

The distributional similarity functions we studied here
have been applied to other natural language processing
tasks. For example, McCarthy (2000) used the skew
divergence to analyze verb arguments. Lapata (2000)
looked at using similarity-based estimation to ana-
lyze nominalizations. Interestingly, she found that al-
though the Jensen-Shannon divergence was very good

8The smoothed estimates were not used to determine
which alternative a neighbor voted for; doing so resulted
in a 10 percentage-point increase in average error rate.

for predicting object relations, the confusion probabil-
ity was superior for subject relations. We intend to
investigate this issue in future work.

The computation of distributional word similarity has
also been proposed as a way to automatically con-
struct thesauri; see Grefenstette (1994), Hatzivas-
siloglou (1996), D. Lin (1998) , and Caraballo (1999)

for some recent examples.

This paper has considered distributional similarity in
a nearest-neighbor, locally-weighted framework. How-
ever, an alternative is to build a cluster-based prob-
ability model that groups co-occurrences into global
classes; examples in the language processing litera-
ture include the work of Brown et al. (1992), Pereira,
Tishby, and Lee (1993), Kneser and Ney (1993), and
Hofmann and Puzicha (1998). Rooth et al. (1999) use
such clustering techniques to learn subcategorization
frames and other lexical information. Recent work has
attempted a comparison of the nearest-neighbor and
clustering paradigms (Lee and Pereira, 1999).

Finally, we note that stability issues are clearly also
relevant to memory-based classification, i.e., in super-
vised settings. Daelemans, van den Bosch, and Zavrel
(1999) describe a suite of experiments exploring the ef-
fects on classification error of editing the training data
in various ways.
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