
An Improved Training Algorithm for Kernel Fisher Discriminants

Sebastian Mika∗

GMD FIRST.IDA
Kekuléstr. 7

12489 Berlin, Germany
mika@first.gmd.de

Alexander Smola∗

Australian National University
Canberra 0200 ACT

Australia
alex.smola@anu.edu.au

Bernhard Schölkopf
Microsoft Research
1 Guildhall Street

Cambridge CB2 3NH, UK
bsc@scientist.com

Abstract

We present a fast training algorithm for the
kernel Fisher discriminant classifier. It uses
a greedy approximation technique and has
an empirical scaling behavior which improves
upon the state of the art by more than an or-
der of magnitude, thus rendering the kernel
Fisher algorithm a viable option also for large
datasets.

1 INTRODUCTION

Kernel Fisher Discriminant (KFD) (Mika et al., 1999,
2000) is a nonlinear generalization of Fisher’s Discrim-
inant (Fisher, 1936). The nonlinearity is introduced
by the use of kernel functions (Mercer, 1909), in anal-
ogy to Support Vector Machines (SVMs) (Boser et al.,
1992), Kernel PCA (Schölkopf et al., 1998) and various
other techniques.

On a large number of benchmarks, KFD has shown
classification accuracies on a par with SVMs. In addi-
tion, unlike SVMs, the outputs of KFD lend them-
selves to a probabilistic interpretation: empirically,
the distributions of the two classes projected onto the
Fisher direction of discrimination can be approximated
very well by Gaussians, which allows the estimation of
conditional class probabilities. In this sense, KFD can
be considered a “probabilistic variant” of SVMs (cf.
also (Tipping, 2000)). Unfortunately, so far, there has
been no efficient algorithm for KFD — all the known
algorithms effectively scaled like O(`3), where ` is the
sample size. In the current paper, we propose a much
more efficient algorithm, utilizing sparse greedy ap-
proximation techniques (Smola and Schölkopf, 2000;
Smola and Bartlett, 2001).

∗Work done while SM and AS were visiting MSR Cam-
bridge

2 THE KERNEL FISHER
DISCRIMINANT REVISITED

For some set X , let {xi ∈ X | i = 1, . . . , `} be
our training sample and y ∈ {−1,+1}` be the vec-
tor of corresponding class labels. Furthermore define
1 ∈ R` as the vector of all ones, and let 1+,1− ∈ R`
be the positive and negative parts of y, i.e. 1+ =
max(y, 0), 1− = max(−y, 0). In the linear case, it
is known that Fisher’s discriminant is computed by
maximizing the coefficient1

J(w) =
w>SBw
w>SWw

(1)

of between and within class variance, i.e. SB = (m+−
m−)(m+ −m−)> and SW =

∑
i,yi=1(xi −m+)(xi −

m+)>+
∑
i,yi=−1(xi − m−)(xi − m−)>, where m±

denotes the sample mean for class ±1.

It can be shown that this approach results in the op-
timal (in this case linear) decision for two Gaussian
distributions with equal covariance structure. In spite
of the fact that Fisher’s discriminant often yields use-
ful results even when this assumption is violated, its
basic limitation is that the discriminating direction
is linear. To overcome this limitation, Mika et al.
(1999) proposed to use the same approach as in Sup-
port Vector Machines (Boser et al., 1992) or Kernel
PCA (Schölkopf et al., 1998): kernel functions. In a
nutshell, the idea is to first apply a nonlinear map-
ping Φ : X → F to the data and then to perform
the same linear algorithm on the mapped data. If F
is sufficiently rich, this increases the chance of find-
ing a good linear, separating direction in the mapped
space. This linear direction in the feature space F
then implicitly yields a nonlinear direction in the in-
put space. To avoid having to work in F explicitly,
we use the kernel trick, i.e. we choose a feature space
whose dot product can efficiently be computed by a

1In this case X has to be a subset of a metric space,
e.g. X ⊆ RN .

kernel k : X × X → R,

k(xi,xj) = (Φ(xi) · Φ(xj)),

and formulate everything in terms of dot products in
F , i.e. in kernels on X × X .

3 FISHER’S DISCRIMINANT IN
FEATURE SPACE

To solve Fisher’s problem in a kernel feature space
F one needs a formulation which makes use of the
training samples only in terms of dot products. One
can prove (Mika et al., 1999) that the solution w ∈ F
of (1) can be expanded as

w =
∑`

i=1
αiΦ(xi), αi ∈ R. (2)

It is straightforward to find an expression similar to (1)
for the coefficientsα (Mika et al., 1999). However, here
we will use a different formulation for finding α, build-
ing on the following observation: the goal of Fisher’s
discriminant is to find a one dimensional projection on
which the class means are far apart while the within
class variance is small.

In (Mika et al., 2001) it was shown that KFD can be
cast in a slightly more general form as the following
convex, quadratic optimization problem:

min
α,b,ξ

1
2
‖ξ‖2 +

C

2
P(α) (3)

subject to:

Kα+ 1b = y + ξ (3a)
1>+ξ = 0, 1>−ξ = 0. (3b)

Here, C is a regularization constant, and P a regular-
ization functional (Mika et al., 1999) which we assume
to be quadratic in the following, e.g. P(α) = ‖α‖2
or P(α) = α>Kα. For C = 0 one obtains Fisher’s
original algorithm in the feature space F . However,
as pointed out e.g. by Friedman (1989) working in the
space F which has an effective dimension of ` with
only ` training samples is an ill posed problem. Thus,
introducing some form of regularization is mandatory.
The projection of a test point onto the discriminant
is computed by (w · Φ(x)) =

∑
i αi k(xi,x). The pro-

gram essentially states that the output for each train-
ing sample should be close to its label, where we pe-
nalize the squared error of the deviation (constraint
(3a)), and that the average deviation from the label
should be zero, separately for each class (constraints
(3b)).
However, for large data sets, solving (3) is expensive
in terms of time and memory. Contrary to SVMs, the

solutions are not sparse and deriving efficient decom-
position techniques for the programming problem is
difficult. In (Mika et al., 2001), it was proposed to
use a `1 regularizer in (3) as an approximation to a
`0 regularizer which would just count the number of
non zero elements in α. While this solved the prob-
lem of non-sparsity and was a promising candidate to
use chunking techniques there was no really efficient
algorithm for large sample sizes yet.

Using a `0 regularizer or to add a nonlinear constraint
of the form: Find a solution α with at most m non–
zero elements, would in principle be optimal. Unfortu-
nately, such a constraint is impossible to deal with an-
alytically. Finding the true optimal solution would re-
quire to search the space of all possible solutions which
make use of m possible αi, i.e. one had to solve

(
`
m

)
problems.

We will presently derive an algorithm which might be
viewed as a greedy approximation to such a solution.
Along the lines of (Smola and Bartlett, 2001; Smola
and Schölkopf, 2000), we will iteratively approximate
the solution to (3) with as few non-zero αi as possible.

4 THE ALGORITHM

To proceed, let us rewrite (3). Define

a =
[
b
α

]
c =

[
`+ − `−
K>y

]
A± =

[
`±

K>1±

]
H =

[
` 1>K

K>1 K>K + C P

]
. (4)

Here, `± denotes the number of samples in class ±1.
Then the problem (3) can equivalently be rewritten as:

min
a

1
2
a>Ha− c>a +

`

2
(5)

subject to:

A>+a− `+ = 0 (5a)
A>−a + `− = 0. (5b)

Forming the Lagrangian of (5) with multipliers λ±

L(a, λ+, λ−) =
1
2
a>Ha− c>a

+ λ+(A>+a− `+) + λ−(A>−a + `−) +
`

2
, (6)

and taking derivatives with respect to the primal vari-
ables a one obtains the dual

max
a,λ+,λ−

−1
2
a>Ha− λ+`+ + λ−`− +

`

2
(7)

subject to:

Ha− c + (λ+A+ + λ−A−) = 0. (8a)

Now we use the dual constraint (8a) to solve for a, i.e.

a = H−1 (c− (λ+A+ + λ−A−)) . (8)

This equation is well defined if H has full rank. If not
we can still perform this step as we will approximate
H−1 instead of computing it directly. Resubstituting
(8) into the dual problem (which has no constraints
left) yields the following problem in the two variables
λ+ and λ−:

max
λ+,λ−

−1
2

[
λ+

λ−

]>[A>+H−1A+ A>+H
−1A−

A>−H
−1A+ A>−H

−1A−

] [
λ+

λ−

]
+
[
−`+ + c>H−1A+

`− + c>H−1A−

]>[
λ+

λ−

]
− 1

2
c>H−1c +

`

2
. (9)

This problem can be solved analytically, yielding op-
timal values for λ+ and λ− which substituted into (8)
yield values for a or α and b, respectively.

4.1 A SPARSE GREEDY
APPROXIMATION

Of course, this problem is no easier to solve than the
original one nor does it yield a sparse solution: H−1

is an (`+ 1)× (`+ 1) matrix and for large datasets its
inversion is not feasible, neither in terms of time nor
memory cost. Now, the idea is to use the following,
greedy approximation scheme (cf. (Smola and Bartlett,
2001)). Instead of trying to find a full set of ` αi’s for
the solution (2), we approximate the optimal solution
by a shorter expansion containing only m� ` terms.

Starting with an empty expansion m = 0, one selects
in each iteration a new sample xi (or an index i) and
resolves the problem for the expansion (2) containing
this new index and all previously picked indices; we
stop as soon as a suitable criterion is satisfied. This
approach would still be infeasible in terms of compu-
tational cost if we had to solve the quadratic program
(5) anew in each iteration or invert H in (8) and (9).
But with the derivation made before it is possible to
find a close approximation to the optimal solution in
each iteration at a cost of O(κ`m2) where κ is a user
defined value (see below).

Writing down the quadratic program (3) for KFD
when the expansion for the solution is restricted to
an m element subset I ⊂ [`]

wI =
∑
i∈I

αiΦ(xi) (10)

of the training patterns amounts to replacing the `× `
matrix K by the ` × m matrix Km, where Km

ij =

k(xi,xj), i = 1, . . . , ` and j ∈ I. Analogously, we
can derive the formulation (5) using the matrix Km

in (4). The problem is of order m ×m now. Assume
we already know the optimal solution (and inverse of
H) using m kernel-functions. Then H−1 for m + 1
samples can be obtained by a rank one update of the
previous H−1 using only m basis functions: The fol-
lowing Lemma (e.g. (Golub and van Loan, 1996)) tells
us how to obtain the new H−1.
Lemma 1 (Sherman–Woodbury–Formula).
The inverse of a symmetric, positive matrix can be
computed as:[

H B
B> C

]−1

=[
H−1 + (H−1B)γ(H−1B)> −γ(H−1B)

−(γ(H−1B))> γ

]
,

where γ = (C −B>H−1B)−1.

Note that for our case B is a vector and C a scalar.
This is an operation of cost O(m2) as we already know
the inverse of the smaller system.

4.1.1 Selection Rules

The last major problem is to pick an index i in each
iteration. Choosing one index at a time can be con-
sidered as a coordinate wise descent method with the
difference that we update all coordinates which were
already chosen in each iteration. As we are dealing
with a convex, quadratic optimization problem any
selection rule will finally lead to the (optimal) solu-
tion of the full problem. As we are only adding kernel
functions to the expansion, it is easy to see that this
convergence is monotonic with respect to the primal
objective. The interesting question is how one has to
choose the sequence of indices such that this greedy
approach will get close to the full solution as soon as
possible. Here we propose two heuristic selection cri-
teria which we believe to be reasonable:

Minimizing the objective

One possibility is to choose the i for which we get
the biggest decrease in the primal-objective (or equi-
valently as they are identical for the optimal coeffi-
cients a, the dual-objective (7)). This would corre-
spond to a steepest descent method in a restricted
space of the gradients.

Minimizing the dual infeasibility

Another, slightly more sophisticated way can be de-
rived as follows. For quadratic programs there are
three optimality criteria: (i) primal feasibility, (ii) dual
feasibility, and (iii) the duality gap, i.e. the difference
between the primal and dual objective value. For an

optimal solution it is necessary and also sufficient to
fulfill these three conditions. If we inspect the se-
quence of solutions a generated by our approach we
find that by construction (i) and (iii) are always ful-
filled, i.e. each intermediate solution is primal feasible
and the primal and dual objectives are identical2. But
the dual constraints (8a) are only fulfilled for those in-
dices, i.e. rows, which have already been chosen. Thus
another possible selection criterion is to reduce the
dual infeasibility as much as possible by picking the
index i which corresponds to the biggest (absolute) vi-
olation. But, contrary to the value of the objective,
this violation is not guaranteed to decrease monotoni-
cally. Such an approach exhibits strong connections to
column generation algorithms as used e.g. in Boosting
(Bennett et al., 2000; Rätsch et al., 2000).

4.1.2 A probabilistic speed-up

Whichever selection rule one uses, testing it for all
`−m indices which are unused so far is — again, too ex-
pensive. One possible solution lies in a second approx-
imation. Instead of choosing the best possible index
it is usually sufficient to find an index for which with
high probability we achieve something close to the op-
timal achievement. It turns out (Smola and Schölkopf,
2000) that it can be enough to consider 59 randomly
chosen indices from the remaining ones:

Lemma 2 (Maximum of Random Variables).
Denote by ρ1, . . . , ρm identically distributed indepen-
dent random variables with a common cumulative
distribution function F . Then the cumulative
distribution function of ρ = maxi∈[m] ρi is Fm.

This means that e.g. for the uniform distribution on
[0, 1] maxi∈[m] ρi is distributed according to ρm. Thus,
to obtain an estimate that is with probability 0.95
among the best 0.05 of all estimates, a random sample
of size κ := (log 0.05/ log 0.95) = 59 is enough.

4.1.3 Termination

Still open is the question when to stop. If one wanted
to compute the full solution this approach would not
be very efficient as it would take O(κ`3) which is worse
than the original problem. A principled stopping rule
would be to measure the distance of wI to the solu-
tion of the full problem and then to stop when this falls
below a certain threshold. Unfortunately the full solu-
tion is, for obvious reasons, not available. Instead one
could try to bound the difference of the objective (3)
for the current solution to the optimal value obtained

2Strictly speaking this only holds true for m > 1. The
prove is straight forward and can be done by using the re-
lation c = A+−A−, the condition (8), and the optimality
of λ± for (9)

for the full problem as done in (Smola and Bartlett,
2001). But in our case an efficient way to bound this
difference is not available. Instead we have chosen two
very simple heuristic which turned out to work well in
the experiments: Using the selection criterion which
minimizes the objective function, stop when the av-
erage improvement in the dual objective (7) over the
last p iterations is less than some threshold θ. If using
the selection criterion which minimizes the maximal
dual infeasibility, terminate if this maximum is smaller
than some threshold, again averaged over the last p it-
erations. The longer the averaging process, the more
confident we are that the current solution is not at a
plateau. The smaller the threshold, the closer we are
to the original solution (indeed, setting the threshold
to zero forces the algorithm in both cases to take all
training samples into account).

The complete algorithm for a sparse greedy solution
to the KFD problem is schematized in Figure 1. It
is easy to implement using a linear algebra package
like BLAS and has the potential to be easily paral-
lelized (the matrix update) and distributed. Further-
more, in multi-class problems (if one is using a one
against the rest scheme) it is possible to consider all
two-class problems simultaneously. Testing the same
subset of indices for each classifier would result in a
reasonable speedup, as the computation of the rows of
the kernel matrix for each picked index is among the
most expensive parts of this algorithm and must now
only be done once.

5 OBTAINING PROBABILITIES AS
OUTPUTS

One of the advantages of KFD over e.g. SVM is that
the outputs of KFD can be interpreted in a probabilis-
tic manner. If one is interested in probabilities these
are straightforward to obtain. Implicitly the optimiza-
tion problem for KFD assumes Gaussian distribution
for the likelihood functions, an assumption which is
empirically supported by examining the output his-
tograms on different datasets: they exhibit a strong
Gaussianity (Mika et al., 2001; Bradshaw et al., 2000).
If we estimate mean and variance of these Gaussians
using the training data it turns out that the class la-
bel is the mean (i.e. µ+ = 1, µ− = −1), due to the
constraints (3b), and that the variances of the class
conditional densities are given by σ2

+ = 1
`+−1

∑
yi=1 ξ

2
i

and σ2
− = 1

`−−1

∑
yi=−1 ξ

2
i . In some cases it might

be advantageous to estimate µ± and σ± from a sep-
arate validation set in which case they can simply be
computed from the outputs

q(x) := (w · x) + b =
∑
i

αi k(x,xi) + b

arguments: Sample X = {x1, . . . ,x`},y = {y1, . . . , y`}
Maximum number of coefficients
or parameters of other stopping criterion: OPTS
Regularization constant C
κ and kernel k

returns: Set of indices I and corresponding α’s.
Threshold b.

function SG-KFD(X,y, C, κ, k, OPTS)
m ← 0
I ← ∅
while termination criterion not satisfied do
S ← (κ elements from [`]\I)
objmax ←∞
for i ∈ S do
Compute column i of kernel matrix
Update inverse adding the i-th kernel, compute optimal a
Compute new dual objective
if dual objective < objmax do

iopt ← i
objmax ← dual objective

endif
endfor
Update inverse H and solution a with kernel iopt
I ← I∪{iopt}
Check termination criterion

endwhile

Figure 1: The Sparse Greedy Kernel Fisher Algorithm (for the selection criterion which minimizes the objective)

obtained by projecting this data set onto the direc-
tion w. No matter which way the parameters are
estimated, one obtains the following class-conditional
densities:

p(x|y = ±1) = p(q(x)|y = ±1) =(
2πσ2

±
)−1/2

exp
(

(q(x)− µ±)2

2σ2
±

)
The prior, if it is unknown for the problem at hand, can
be estimated from the training data, i.e. P (y = ±1) =
`±/`, `± denoting the number of samples from the
respective class. Using Bayes’ theorem the conditional
probabilities are then given by:

P (y = ±1|x) = P (y = ±1|q) =
p(q|y = ±1)P (y = ±1)

p(q|y = 1)P (y = 1) + p(q|y = −1)P (y = −1)
,

where q = q(x) is defined as above.

6 EXPERIMENTAL EVALUATION

We now report some experiments to illustrate that the
run-time behavior of our new algorithm improves sig-
nificantly over the full quadratic optimization of (3).

Furthermore, we show that the approximation does
not significantly degrade the quality of the solutions.
All timing experiments were carried out on a Pentium
III, 500 MHz and 512 MB memory running Linux.
To implement the new approach we used a single
threaded, optimized BLAS. Timings were measured
with the system command clock(). We compared
this to an implementation of the quadratic program
given by (3), which is partly in matlab and calls ex-
ternal C functions for all time–consuming operations,
i.e. solving the quadratic program. Here timings were
measured by the matlab command cputime(). The
quadratic optimizer used was loqo) which implements
an interior point algorithm (Vanderbei, 1997).

6.1 TIMING

First we compare the runtime of the new algorithm to
the previous implementation. We used a one-against-
the-rest task constructed from the USPS handwritten
digit data set. The data are N = 256 dimensional
and the set contains 7291 samples, categorized into
ten classes. All experiments were done with a Gaus-
sian kernel exp(‖x− y‖2/(0.3 ·N)) and using a regu-
larization constant C = 1. We compared against the
program given by (3) with the regularizer P = ‖α‖2.

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

10
3

10
4

Number of Samples

C
P

U
 T

im
e

in
 S

ec
on

ds

Figure 2: Runtime of sparse greedy KFD training. Depicted is the number of samples in the training set versus
the CPU time of the proposed algorithm (dash dotted lines; using the selection criterion minimizing the objective
(cf. Section 4.1.1)) and the QP formulation (3) (solid line). The estimates are averages over ten trials, one for
each of the ten one–against–the–rest problems in the USPS database. The three lines for KFD are generated
by requiring different accuracies on the dual error function in the stopping criterion, namely 10−a, a = 1, . . . , 3
relative to the function value (in that order from bottom to top). There is a speed-accuracy tradeoff in that for
large a, the algorithm converges more slowly. In the log-log plot it can be seen that the QP algorithm roughly
scales cubic in the number of samples while the new algorithm scales with an exponent of about 3

2 for large
sample sizes.

The results of our findings are given in Figure 2. It
can be seen that the new training algorithm halves the
scaling exponent of the training time for large sample
sizes. In addition, it is important to keep in mind
that the sparse greedy approach only needs to store
at most an m × m matrix, where m is the maximal
number of kernel functions chosen before termination.
In contrast, previous approaches needed to store `× `
matrices.

6.2 PERFORMANCE

As our new approach is an approximation to the origi-
nal (theoretically exact) algorithm, the question arises
how good the quality of this approximation is. To
this end, we repeated the above experiment on the
USPS database for different regularization constants
C = 10−3, 10−4, 10−5 and different kernel widths c =
0.3 ·N, 0.4 ·N, 0.5 ·N . Using the objective-based selec-
tion criterion, the algorithm was terminated when the
average achievement in the dual objective over the last
five iterations was less than 10−1, 10−2, 5 · 10−3, 10−3,
respectively, relative to the objective or when a max-
imum of 500 coefficients was found. As the purpose
of this experiment is to show that our new approach
is capable of producing results comparably to the full
system, no model selection was performed and just the
best results on the test set are reported (cf. Table 1).
A small improvement in the test error can be achieved

by using an optimized threshold b rather than the one
given by the algorithm itself. This optimized b is found
by training a linear support vector machine on the one
dimensional outputs of the training date, i.e. we try to
find a threshold which maximizes the smallest distance
of the projections to the decision boundary (details
e.g. in (Mika et al., 1999)). So far the best result for
KFD on the USPS dataset (without using prior knowl-
edge) was 3.7% (Mika et al., 2000), using an expansion
restricted to the first 3000 training patterns and the
optimized threshold. From Table 1 it can be seen that
our new approach produces results close to the QP so-
lution, however, using a significantly smaller number
of kernel functions (less than 500 vs. 3000). It can be
observed that the chosen precision for the termination
criterion is an important parameter. Still, although
the high precision of 10−3 takes longer to train, the
runtime of our new approach is more than ten times
smaller than solving the QP with 3000 patterns.

Preliminary experiments with the second selection cri-
terion, i.e. selecting the kernel which has the largest
dual infeasibility have shown no significant advantage
yet. However, when terminating the algorithm if the
average constraint violation over the last iterations is
less than some threshold (analogously to the criterion
used for the first selection criterion) this threshold pa-
rameter is slightly more well behaved. For the first se-
lection criterion this parameter is difficult to adjust in

Table 1: Minimal 10–class test error on the USPS dataset using the parameters described in the text. Shown
is the threshold on the improvement in the dual objective used to terminate the algorithm (Tolerance), the test
error using the threshold given by the algorithm itself, and the test error using an extra, optimized threshold
b (see text). The best result of 3.8% is almost identical to the result of 3.7% obtained on the same dataset
using an expansion fixed to the first 3000 training samples (Mika et al., 2000). Note, moreover, that for our new
algorithm the number of samples in the expansion (2) is less than 500 in each single classifier.

Tolerance 10−1 10−2 5 · 10−3 10−3

test error with QP threshold 10.4% 6.4% 5.3% 3.9%
test error with optimized threshold 10.3% 6.3% 5.3% 3.8%

so far that small changes can lead to a large change in
the number of iterations performed. The performance
on the USPS set, adjusting the parameters such that
an approximately equal number of kernels is chosen, is
slightly worse for the infeasibility criterion (4.2% for
the optimal parameters).

7 CONCLUSION

We presented a new algorithm for kernel Fisher dis-
criminants. These algorithmic advances are crucial
for the possibility of applying the KFD algorithms to
problems that had previously been beyond its reach.
First, since it trains significantly faster, and second,
since it requires less memory.

Acknowledgments

SM was support by the DFG under contract Ja 379/9–
1. Thanks to Gunnar Rätsch for fruitful discussions.

References

K.P. Bennett, A. Demiriz, and J. Shawe-Taylor. A col-
umn generation algorithm for boosting. In P. Lan-
gley, editor, Prooceedings, 17th ICML, pages 65–72,
San Francisco, 2000. Morgan Kaufmann.

B.E. Boser, I.M. Guyon, and V.N. Vapnik. A train-
ing algorithm for optimal margin classifiers. In
D. Haussler, editor, Proceedings of the 5th Annual
ACM Workshop on Computational Learning The-
ory, pages 144–152, 1992.

B. Bradshaw, B. Schölkopf, and J. Platt. Kernel meth-
ods for extracting local image semantics. unpub-
lished manuscript, private communication, 2000.

R.A. Fisher. The use of multiple measurements in tax-
onomic problems. Annals of Eugenics, 7:179–188,
1936.

J.H. Friedman. Regularized discriminant analysis.
Journal of the American Statistical Association, 84
(405):165–175, 1989.

G.H. Golub and C.F. van Loan. Matrix Computations.
John Hopkins University Press, Baltimore, London,
3rd edition, 1996.

J. Mercer. Functions of positive and negative type and
their connection with the theory of integral equa-
tions. Philos. Trans. Roy. Soc. London, A 209:415–
446, 1909.

S. Mika, G. Rätsch, and K.-R. Müller. A mathemati-
cal programming approach to the Kernel Fisher al-
gorithm. In Advances in Neural Information Pro-
cessing Systems 13, 2001. to appear.

S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K.-
R. Müller. Fisher discriminant analysis with kernels.
In Y.-H. Hu, J. Larsen, E. Wilson, and S. Douglas,
editors, Neural Networks for Signal Processing IX,
pages 41–48. IEEE, 1999.

S. Mika, G. Rätsch, J. Weston, B. Schölkopf, A.J.
Smola, and K.-R. Müller. Invariant feature extrac-
tion and classification in kernel spaces. In S.A. Solla,
T.K. Leen, and K.-R. Müller, editors, Advances in
Neural Information Processing Systems 12, pages
526–532. MIT Press, 2000.

G. Rätsch, A. Demiriz, and K. Bennett. Sparse re-
gression ensembles in infinite and finite hypothesis
spaces. Neurocolt techreport, Royal Holloway Col-
lege, 2000. submitted to Special Issue of Machine
Learning.

B. Schölkopf, A.J. Smola, and K.-R. Müller. Nonlinear
component analysis as a kernel eigenvalue problem.
Neural Computation, 10:1299–1319, 1998.

A.J. Smola and P.L. Bartlett. Sparse greedy gaussian
process regression. In Advances in Neural Informa-
tion Processing Systems 13, 2001. to appear.

A.J. Smola and B. Schölkopf. Sparse greedy matrix
approximation for machine learning. In P. Langley,
editor, Proc. ICML’00, pages 911–918, San Fran-
cisco, 2000. Morgan Kaufmann.

M.E. Tipping. The relevance vector machine. In S.A.
Solla, T.K. Leen, and K.-R. Müller, editors, Ad-
vances in Neural Information Processing Systems
12, pages 652–658. MIT Press, 2000.

R.J. Vanderbei. LOQO user’s manual – version 3.10.
Technical Report SOR-97-08, Princeton University,
Statistics and Operations Research, 1997. Code
available at http://www.princeton.edu/˜rvdb/.

