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Abstract

With the aim of improving knowledge on the

geographical distribution and characteriza-

tion of malignant tumors in the Autonomous

Community of the Basque Country (Spain),

age-standardized cancer incidence rates of

the 6 most frequent cancer types for patients

of each sex between 1986 and 1994 are ana-

lyzed, in relation to the towns of the Com-

munity. Concretely, we perform a geographi-

cal clustering of the towns of the Community

by means of Bayesian networks and condi-

tional Gaussian networks. We present sev-

eral maps that show the clusterings encoded

by the learnt models. In addition to this, we

outline the cancer incidence pro�le for each

of the obtained clusters.

1 INTRODUCTION

One of the basic problems that arises in a great va-

riety of �elds, including pattern recognition, machine

learning and statistics, is the so-called data clustering

problem (Anderberg 1973, Hartigan 1975, Kaufman

and Rosseeuw 1990). Despite the di�erent interpre-

tations and expectations it gives rise to, the generic

data clustering problem involves the assumption that,

in addition to the observed variables or predictive at-

tributes, there is a hidden variable. This last unob-

served variable would reect the cluster membership

for every case in the database. Thus, the data clus-

tering problem is also referred to as an example of

learning from incomplete data due to the existence of

such a hidden variable. Incomplete data represents a

special case of missing data where all the missing en-

tries are concentrated in a single variable: the hidden

cluster variable. That is, we refer to a given database

as incomplete when all the cases are unlabeled.

From the point of view adopted in this paper, the data

clustering problem may be de�ned as the inference

of the joint generalized probability distribution for a

given database. Concretely, we focus on the unsuper-

vised learning of Bayesian networks (Pearl 1988, Pe~na

et al. 2000a, 2000b) and conditional Gaussian net-

works (Lauritzen and Wermuth 1989, Lauritzen 1992,

1996, Pe~na et al. 2000c, 2000d) to obtain a geograph-

ical clustering of the towns of the Autonomous Com-

munity of the Basque Country (ACBC) according to

their cancer incidence rates. Then, the learning is per-

formed from a set of databases where every town is de-

scribed by the age-standardized cancer incidence rates

of the 6 most frequent cancer types for patients of each

sex between 1986 and 1994.

The remainder of this paper is organized as follows. In

Section 2, we introduce Bayesian networks and condi-

tional Gaussian networks applied to data clustering.

Section 3 is dedicated to explain the problem of can-

cer incidence in the ACBC and the construction of the

databases used in the subsequent learning process. We

present some experimental results in Section 4. Basi-

cally, the results consist of some coloured maps repre-

senting the clusterings encoded by the learnt models.

Finally, we draw conclusions in Section 5.

2 BAYESIAN NETWORKS AND

CONDITIONAL GAUSSIAN

NETWORKS FOR DATA

CLUSTERING

In this section, we introduce two classes of probabilistic

graphical models applied to data clustering: Bayesian

networks and conditional Gaussian networks.

All through this paper we follow the usual convention

of denoting variables by upper-case letters and their

states by the same letters in lower-case. We use a let-

ter or letters in bold-face upper-case to designate a set

of variables and the same bold-face lower-case letter or

letters to denote an assignment of state to each vari-



able in a given set. The joint generalized probability

distribution of X is represented as �(x). Additionally,

�(x j y) denotes the generalized conditional probabil-

ity distribution of X given Y = y. If all the variables

in X are discrete, then �(x) = p(x) is the joint prob-

ability mass function of X. Thus, p(x j y) denotes
the conditional probability mass function of X given

Y = y. If all the variables in X are continuous, then

�(x) = f(x) is the joint probability density function of

X. Thus, f(x j y) denotes the conditional probability
density function of X given Y = y.

When facing a data clustering problem it is assumed

the existence of a (n+1)-dimensional random variable

X partitioned as X = (Y; C) into a n-dimensional ob-

served variable Y and a unidimensional discrete hid-

den variable C. In the particular case of every compo-

nent Yi of Y being discrete, the probabilistic graphical

models that we aim to learn are called Bayesian net-

works. On the other hand, if every component Yi of

Y being continuous, then the probabilistic graphical

models are named conditional Gaussian networks.

2.1 BAYESIAN NETWORKS

Given a discrete random variable X = (Y; C) =

(Y1; : : : ; Yn; C), a Bayesian network (BN) forX (Pearl

1988, Pe~na et al. 2000a, 2000b) is a graphical fac-

torization of the joint probability distribution of X.

When applied to data clustering, a BN is de�ned by a

directed acyclic graph s (model structure) determining

the conditional (in)dependencies among the variables

of Y and a set of local probability distributions. The

model structure yields to a factorization of the joint

probability distribution for X as follows:

p(x) = p(c)p(y j c) = p(c)

nY
i=1

p(yi j pa(s)i; c) (1)

where pa(s)i denotes the state of the parents of Yi in

s, Pa(s)i, consistent with x.

The local probability distributions of the BN are

those in Equation 1 and we assume that they de-

pend on a �nite set of parameters �s 2 �s. More-

over, let sh denote the hypothesis that the conditional

(in)dependence assertions implied by s hold in the

true joint probability distribution of X. Therefore,

Equation 1 can be rewritten as follows:

p(x j ���s; s
h) = p(c j ���s; s

h)p(y j ���c
s
; sh)

= p(c j ���s; s
h)

nY
i=1

p(yi j pa(s)i;�
c
i ; s

h) (2)

where �c
s
= (�c1 ; : : : ;�cn) denotes the parameters for

the local probability distributions when C = c.

In this paper, we limit our discussion to the case in

which the local probability distributions of each vari-

able of the BN consist of a set of multinomial distri-

butions, one for each con�guration of the parents and

the cluster variable C.

2.2 CONDITIONAL GAUSSIAN

NETWORKS

A random variable X = (Y; C) = (Y1; : : : ; Yn; C), be-

ing Y continuous and C discrete, is said to have a

conditional Gaussian distribution (Lauritzen and Wer-

muth 1989, Lauritzen 1992, 1996) if the distribution

of Y, conditioned on each state of C, is a multivariate

normal distribution:

f(y j C = c) � N (y;�(c);�(c)) (3)

whenever p(c) = p(C = c) > 0. Given C = c, �(c) is

the n-dimensional mean vector, and �(c), the n � n

variance matrix, is positive de�nite.

We de�ne a conditional Gaussian network (CGN) for

X (Lauritzen and Wermuth 1989, Lauritzen 1992,

1996, Pe~na et al. 2000c, 2000d) as a probabilistic

graphical model that encodes a conditional Gaussian

distribution for X. Thus, a CGN is de�ned by a di-

rected acyclic graph s (model structure) determining

the conditional (in)dependencies among the variables

of Y, a set of local probability density functions and

a multinomial distribution for the variable C. The

model structure yields to a factorization of the joint

generalized probability density function for X as fol-

lows:

�(x) = p(c)f(y j c) = p(c)

nY
i=1

f(yi j pa(s)i; c) (4)

where pa(s)i denotes the state of the parents of Yi in

s, Pa(s)i, consistent with x.

The local probability density functions and the multi-

nomial distribution of the CGN are those in the

previous equation and we assume that they depend

on a �nite set of parameters �s 2 �s. Moreover,

let sh denote the hypothesis that the conditional

(in)dependence assertions implied by s hold in the

true joint generalized probability density function of

X. Therefore, Equation 4 can be rewritten as follows:

�(x j �s; s
h) = p(c j �s; s

h)f(y j �c
s
; sh)

= p(c j �s; s
h)

nY
i=1

f(yi j pa(s)i;�
c
i ; s

h) (5)

where �c
s
= (�c1 ; : : : ;�cn) denotes the parameters for

the local probability density functions when C = c.



In order to encode a conditional Gaussian distribu-

tion for X, each local probability density function of

the CGN should be the linear-regression model. Thus,

when C = c:

f(yi j pa(s)i;�
c
i ; s

h)

� N (yi;m
c
i +

X
yj2pa(s)i

b
c
ji(yj �m

c
j); v

c
i ) (6)

where N (y;�; �2) is a univariate normal distribution

with mean � and standard deviation � (� > 0).

Given this form, a missing arc from Yj to Yi implies

that b
c
ji = 0 in the linear-regression model. When

C = c, the local parameters are �ci = (mc
i ;b

c
i ; v

c
i ),

i = 1; : : : ; n, where bci = (bc1i; : : : ; b
c
i�1i)

t is a column

vector.

The interpretation of the components of the local

parameters �ci , i = 1; : : : ; n, is as follows: given

C = c, m
c
i is the unconditional mean of Yi, v

c
i is

the conditional variance of Yi given Pa(s)i, and b
c
ji,

j = 1; : : : ; i � 1, is a linear coe�cient reecting the

strength of the relationship between Yj and Yi.

2.3 UNSUPERVISED LEARNING OF BNS

AND CGNS

In order to perform the unsupervised learning of BNs

and CGNs, we consider two techniques: the well-

known Bayesian Structural EM (BS-EM) algorithm

(Friedman 1998) to learn CGNs, and the Bayesian

Structural BC+EM (BS-BC+EM) algorithm (Pe~na et

al. 2000a) to learn BNs. Whereas the former algo-

rithm has received special attention in literature and

it has motivated several variants of itself due to its

good performance, the latter is an improved version of

the BS-EM algorithm for discrete domains.

When applying the BS-EM and BS-BC+EM algo-

rithms to a data clustering problem, we assume that

we have a database of N cases, d = fx1; : : : ;xNg,
where every case is represented by an assignment to

n of the n + 1 variables involved in the problem do-

main. So, there are (n + 1)N random variables that

describe the database. Let O denote the set of ob-

served variables, that is, the nN variables that have

assigned values. Similarly, let H denote the set of hid-

den or unobserved variables, that is, the N variables

that reect the unknown cluster membership of each

case of d.

Both algorithms perform a search over the space of

models based on the well-known EM algorithm (Demp-

ster et al. 1977, McLachlan and Krishnan 1997) and

the direct optimization of the Bayesian score. This re-

sults in an attempt to maximize the expected Bayesian

loop l = 0; 1; : : :

1. Compute the MAP parameters b�sl for sl given o
2. Perform search over model structures, evaluating

each model structure by:

Score(s : sl) = E[log �(h;o; sh) j o; b�sl ; shl ]
=
P

h
p(h j o; b�sl ; shl ) log �(h;o; sh)

3. Let sl+1 be the model structure with the highest

score among these encountered in the search

4. if Score(sl : sl) = Score(sl+1 : sl)

then return (sl, b�sl)

Figure 1: The BS-EM and BS-BC+EM algorithms.

score at each iteration instead of the true Bayesian

score. As it is shown in Figure 1, both algorithms are

comprised of two steps: an optimization of the model

parameters and a structural search for model selection.

Concretely, the optimization of the parameters (step 1

in Figure 1) consists of the search for the maximum

a posterior parameters (MAP) for the current model.

The di�erence between the BS-EM and BS-BC+EM

algorithms is that, whereas the former makes use of

the EM algorithm to perform such a search, the lat-

ter takes advantage of the BC+EM method (Pe~na et

al. 2000a, 2000b). The BC+EM method represents

an alternative technique to perform the parameter

search step in discrete domains. It exhibits a faster

convergence rate as well as a more e�ective and ro-

bust behaviour than the EM algorithm. Basically, the

BC+EM method is comprised of an alternation be-

tween the Bound and Collapse method (Ramoni and

Sebastiani 1998, 1999) and the EM algorithm.

To completely specify the BS-EM and BS-BC+EM al-

gorithms, we have to decide on the structural search

procedure (step 2 in Figure 1). The usual approach

is to perform a greedy hill-climbing search over model

structures considering all possible additions, removals

and reversals of one arc at each point in the search.

This structural search procedure is desirable as it ex-

ploits the decomposition properties of BNs and CGNs,

and the factorization properties of the Bayesian score

for complete data. However, any structural search

procedure that exploits these referred properties can

be used. The log marginal likelihood of the expected

complete data is usually chosen as the score to guide

the structural search.

The direct application of the learning algorithms as

they appear depicted in Figure 1 may result in unreal-

istic and ine�cient solutions due to the fact that the

computation of Score(s : sl) implies a huge compu-

tational expense as it takes account of every possible

completion of the database. It is common to use re-



Figure 2: Map of the towns of the ACBC (the 3 major

towns appear indicated).

laxed versions of these algorithms that only consider

the most likely completion of the database to com-

pute Score(s : sl) instead of considering every pos-

sible completion. Thus, these relaxed version of the

BS-EM and BS-BC+EM algorithms are comprised of

the iteration of a parametric optimization for the cur-

rent model, and a structural search once the database

has been completed with the most likely completion by

using the best estimate of the joint generalized prob-

ability distribution of the data so far (current model).

The completion is achieved by calculating the poste-

rior probability distribution of the cluster variable C

for each case of the database, p(c j yi; b�sl ; shl ). The

case is assigned to the cluster where the maximum of

this posterior probability distribution of C is reached.

We use these relaxed versions in our experiments.

3 CANCER INCIDENCE IN THE

ACBC BETWEEN 1986 AND 1994

The ACBC is located in the north of Spain (Figure 2)

and it covers some 7,234 sq km (1.4 % of the total area

of Spain). According to the 1986-1994 census, the pop-

ulation of the ACBC was around 2,100,000 inhabitants

on average (5 % of the population of Spain).

With the purpose of obtaining a geographical cluster-

ing of the towns of the ACBC, we created one database

for patients of each sex from the cancer registry of the

ACBC between 1986 and 1994. The male database

summarized all the records of male patients in 231

cases, while the female database summarized all the

records of female patients in 221 cases. Each case in

the male and female databases represented one town

of the ACBC with more than 100 male inhabitants for

the former database and with more than 100 female in-

habitants for the latter database. Each town of each of

the 2 databases was characterized by 6 attributes rep-

Table 1: The 6 most frequent cancer types for patients

of each sex by their body sites encoded according to

the ICD-O.

Male patients

Cancer type ICD-O

m1 140-149

m2 150-159

m3 160-165

m4 185-189

m5 169, 196

m6 170, 171, 173, 175, 190-195, 199

Female patients

Cancer type ICD-O

f1 140-149, 160-165

f2 150-159

f3 174

f4 169, 196

f5 179-184, 188, 189

f6 170, 171, 173, 190-195, 199

resenting the age-standardized cancer incidence rates

per 100,000 of the 6 most frequent cancer types for

patients of that concrete sex. Table 1 shows these

6 cancer types for patients of each sex by their body

sites encoded following the International Classi�cation

of Diseases for Oncology (ICD-O) (WHO, 1976).

Age-standardized cancer incidence rates may be de-

�ned as the hypothetical rates that would be observed

in a population with a standard age distribution re-

ferred to as standard population. They allow compar-

isons between populations with di�erent age distribu-

tions. In our case, the 1991 census of the ACBC was

used as the standard population. Each of the 6 age-

standardized cancer incidence rates, here denoted as

ASCIRi, i = 1; : : : ; 6, was calculated as follows:

ASCIRi =

PA

j=1 aijqjPA

j=1 qj

(7)

where A = 19 represents the number of age-groups and

qj , j = 1; : : : ; A, the population of the j-th age-group

in the standard population (
PA

j=1 qj = 100; 000). Ad-

ditionally, aij , j = 1; : : : ; A, denotes the age-speci�c

cancer incidence rate per 100,000 of the i-th cancer

type for the j-th age-group calculated as:

aij =
tij

rj

105 (8)

being tij the number of patients su�ering from the i-th

cancer type who belong to the j-th age-group, and rj

the risk population for the j-th age-group.



Figure 3: Maps showing the geographical clusterings

encoded by the learnt models (white towns are those

towns excluded from out study).

As the 2 databases constructed were essentially con-

tinuous, every age-standardized cancer incidence rate

was discretized into 4 equal frequency intervals in or-

der to perform the unsupervised learning of BNs.

3.1 RESULTS

In this subsection, some experimental results are pre-

sented. In order to do this, the models learnt by

the BS-EM and BS-BC+EM algorithms from the

constructed databases are analyzed to obtain several

coloured maps of the ACBC showing the geographical

clusterings encoded by these models (see Figure 3).

The analysis of the elicited models also helps us to

characterize each of the obtained clusters in relation

to the rest of them by their cancer incidence pro�le.

It should be noticed that the learnt models do not pro-

vide us with explicit partitions of the databases into

clusters but with an encoding of the joint generalized

probability distribution of each of the databases previ-

ously constructed. However, every learnt model allows

us to obtain a clustering that partitions the towns into

clusters by assigning each of them to the cluster with

the highest posterior probability given that concrete

model.

From a structural point of view, the models elicited by

the BS-EM and BS-BC+EM algorithms are very sim-

ple, i.e., very few arcs between predictive attributes

are learnt. Thus, these learnt BNs and CGNs indicate

us that the majority of the cancer incidence rates is

conditionally independent of the rest given a value for

the cluster variable C. This fact is considered reason-

able by the experts.

Figure 3 shows the clusters for patients of each sex

encoded by the learnt BNs and CGNs when assum-

ing the existence of 2 (k = 2) and 3 (k = 3) clusters.

For the continuous databases, we only report the re-

sults achieved when k = 2 as those are almost exactly

repeated when k = 3.

It is interesting to notice that there are 2 main clus-

ters almost independently of both the database used

in the learning and the assumed number of clusters.

The cluster labeled with 1 (dark grey) groups the most

densely populated and industrial towns of the ACBC,

while the cluster labeled with 0 (light grey) represents

the small villages. This result is much more noticeable

for the male than for the female databases because the

cluster labeled with 1 groups the most densely popu-

lated and industrial towns of the ACBC more accu-

rately for the former database than for the latter.

It is also worth paying attention to the clusters ob-

tained for the discrete male database when k = 3:

the cluster that represents the most densely populated

area in the clustering obtained for the same database

with k = 2 appears divided into 2 sub-clusters (dark

grey and black) showing a di�erent cancer incidence

pro�le for the 3 major towns of the ACBC: San Se-

basti�an and Bilbao share the same pro�le as they be-

long to the same cluster (black), whereas Vitoria ap-

pears to have a di�erent one as it is grouped under the

cluster labeled with 1 (dark grey).

Roughly speaking about the characterization of each

cluster according to the BNs learnt from the discrete

male (k = 2) and discrete female (k = 2; 3) databases,

the cluster representing the most densely populated

area of the ACBC shows higher cancer incidence rates

than the cluster that groups the small villages in the 6

cancer types considered. Similar results are observed

according to the CGNs learnt from the continuous

male database. However, the results for the contin-

uous female database do not follow this tendency: the

most densely populated area exhibits higher cancer in-

cidence rates than the least densely populated area in

3 out of the 6 cancer types (f2, f4 and f6), and lower

rates in the remaining 3. We attribute this disparity

between the learnt BNs and CGNs to the normality

assumption made by the latter models and the dis-

cretization that the former models require.

It is specially appealing the fact that, when learning

BNs from the discrete male database with k = 3, the



cluster labeled with 2 (black) shows higher cancer in-

cidence rates than the other 2 clusters in the 6 cancer

types considered. We should recall that San Sebasti�an

and Bilbao belong to this referred cluster, while Vito-

ria appears in the cluster labeled with 1.

In spite of the disrupting e�ects that the required dis-

cretization process may imply, BNs appear to be more

appropriate than CGNs when applied to the data clus-

tering problem depicted in this paper. In our opin-

ion, the assumption of normality made when learning

CGNs is too strong for the continuous databases con-

sidered (few data and too sparse), whereas the assump-

tion of multinomiality implied when learning BNs is a

more realistic approach.

4 CONCLUSIONS

With the aim of improving knowledge on the geograph-

ical distribution and characterization of the 6 most fre-

quent cancer types in the ACBC, BNs and CGNs have

been elicited from continuous and discrete databases.

The learnt models have helped to present several geo-

graphical clusterings of the towns of the ACBC as well

as to characterize each of the clusters obtained accord-

ing to the cancer incidence pro�le of the towns belong-

ing to it. The classes of probabilistic graphical models

considered have exhibited a promising behaviour in the

problem domain depicted in this paper as they have

provided us with valuable insights. However, the re-

sults reported in this study should be considered as a

preliminary stage for further investigation in this �eld

due to the fact that this work has been carried out by

taking into account a very short number of towns and

some of them had short population for providing us

with reliable estimates.
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