
Stochastic System Monitoring and Control∗

Gregory Provan†

Rockwell Science Center
1049 Camino Dos Rios, Thousand Oaks, CA 91360

gmprovan@rsc.rockwell.com

Abstract

In this article we propose a new technique for
efficiently solving a specialized instance of a
finite state sequential decision process. This
specialized task requires keeping a system
within a set of nominal states, introducing
control actions only when forbidden states
are entered. Instead of assuming that the
process evolves only due to control actions,
we assume that system evolution occurs due
to both internal system dynamics and control
actions, referred to as endogenous and exoge-
nous evolution respectively. Since controls
are needed only for exogenous evolution, we
separate inference for the case of endogenous
and exogenous evolution, obtaining an infer-
ence method that is computationally simpler
than using a standard POMDP framework
for solving this task. We summarize the prob-
lem framework and the algorithm for per-
forming sequential decision-making.

1 Introduction

Sequential stochastic decision processes over discrete
time are encountered frequently in practice, and one
well-known technique to solve them is Partially Ob-
servable Markov Decision Processes (POMDPs) [1,
10]. However, inference on POMDPs is computation-
ally very expensive, e.g. computing an optimal pol-
icy for a finite horizon is PSPACE-hard [11]; for real-
time control tasks this inefficiency can be problematic.
In addition, the POMDP framework has a number of
strong assumptions, such as system evolution being
(implicitly) tied to control actions.1

∗Research supported in part by The Office of Naval Re-
search under contract number N00014-98-3-0012.

†Tel: (805) 373-4726.
1It is possible to take the null action and allow system

evolution due to the internal system dynamics, but here

In this article we describe a specialized instance of the
POMDP framework that is geared towards efficiently
solving stochastic monitoring and control tasks, and
propose a technique for solving this task. This spe-
cialized task requires keeping a system within a set
of steady-state nominal states, introducing control ac-
tions only when forbidden states are entered; the mon-
itoring phase runs continuously, with the control phase
invoked only when necessary. To take advantage of this
task structure, we relax the assumption that system
evolution is (implicitly) tied to control actions (called
the implicit-event model in [3]), and the correspond-
ing assumption that a control action is taken at every
time step. We instead assume that system evolution
occurs due to both internal system dynamics and con-
trol actions, referred to as endogenous and exogenous
evolution respectively; this model is called the explicit-
event model in [3].

We propose a technique for solving this task, in which
we separate the representations and algorithms for the
cases of endogenous and exogenous evolution. We per-
form inference on the implicit-event and explicit-event
models as appropriate, rather than always solving
the implicit-event model (as in the standard POMDP
framework), or interleaving the models. We call this
approach the on-demand control approach. Our pro-
posed inference method is computationally simpler
than using a standard POMDP framework for solving
this task, with the efficiency gains being proportional
to the relative proportions of endogenous and exoge-
nous evolution. In the limit, if we assume that there
is no strictly endogenous evolution, then our approach
is identical to the standard POMDP approach.

Our contributions are as follows. We provide a for-
mal framework for solving stochastic monitoring and
control tasks, in contrast to the ad hoc solutions of-
ten adopted in approaches that merge condition mon-
itoring with control. For this particular task, we pro-

we make it explicit that the system’s dynamics can alter
system state independent of any control actions.

vide a solution method that takes advantage of task
characteristics to improve the efficiency of the general
POMDP approach. We illustrate our method using a
process control example.

The remainder of the article is organized as follows.
Section 2 introduces our notation and defines the tasks
we are solving. Section 3 describes the inference meth-
ods we use. Section 4 outlines the application of this
framework to a process-control system. Section 5 com-
pares and contrasts this approach with related mate-
rial, and Section 6 summarizes our contributions.

2 Task Specification

This section formalizes the general task that we are
solving, and then applies this framework to the moni-
toring and control context.

2.1 Generic Task Specification

We are interested in solving a set of control optimiza-
tion tasks in which the set of system states S, obser-
vations Z and control actions A are specified using
a discrete set of possible values. Our general goal is
to drive the system though a sequence of such states
while minimizing some criterion, such as energy ex-
penditure. The goal that is the focus of this paper is
that of steady state monitoring and control: we wish
to maintain a system in a steady-state nominal condi-
tion without entering into particular forbidden states;
in case a forbidden state is entered, a sequence of con-
trol actions is executed to drive the system back into
a nominal steady-state. Within this framework, there
are two main tasks: (1) monitoring that the system is
in a steady-state nominal condition; and (2) execut-
ing controls to drive the system back to a steady-state
nominal condition if a forbidden state is entered. Note
that task (1) involves no control actions, but rather
state classification.

We start by presenting the standard notation for such
control optimization tasks, where we assume that state
transitions occur only due to control actions.2 For
each state si ∈ S for which the agent selects a con-
trol a ∈ A, the agent receives an immediate reward
with expected value ϕ(si, a), at which point the sys-
tem makes a transition to state sj ∈ S with probability
Pr(sj |si, a) ∈ [0, 1], and the agent makes an observa-
tion zj ∈ Z with probability Pr(zj |sj , a) ∈ [0, 1].

The actual system state cannot be directly observed,
but its probability is inferred from the observations Z
and control actions A. Let Σ denote a vector of state
probabilities, called a belief state, where Σ(si) denotes

2We adopt the notation introduced in [8].

the probability that the system is in state si. If action
a is taken and observation z follows, the successor be-
lief state, denoted Σa

z , is determined by revising each
state probability as follows:

Σa
z(sj) =

Pr(z|sj , a)
∑

si∈S Pr(sj |si, a)Σ(si)
Pr(z|Σ, a)

, (1)

where the denominator is a normalizing factor:

Pr(z|Σ, a) =
∑
sj∈S

Pr(z|sj , a)
∑
si∈S

Pr(sj |si, a)Σ(si).

Our task is to select a sequence of actions, called
a policy, that optimizes a performance criterion V .
We summarize this implicit-event model using MI =
〈S, A, Z, V, Σ〉. In many cases, the objective is to max-
imize the expected total discounted reward over an
infinite horizon, given a discount factor β. Typically,
value iteration is performed over the one-step function
for each belief state Σ:

V ′(Σ) = max
a∈A

[∑
s∈S

Σ(si)ϕ(si, a) + β
∑
z∈Z

Pr(z|Σ, a)V (Σa
z)

]
.

(2)
It is well-known that value iteration coverges to the
optimal value function in the limit.

2.2 On-Demand Control Specification

The generic (implicit-event) approach makes two
strong, related assumptions. The first strong assump-
tion is that the system makes transitions only due to
control actions, i.e. actions exogenous to the system.
An alternative view of this assumption is that effects of
system-internal (or non-control) events are folded into
the transition probabilities associated with the action
[3]. The second assumption is that there is a control
action at every time step. Together, these assumptions
require a computational model in which effects of ac-
tions must be evaluated to compute the value function.

In our new formulation, we relax both of these as-
sumptions. In contrast to assuming only exogenous
transitions, we distinguish exogenous transitions from
system-internal, or endogenous, transitions. In other
words, the system evolves over a set of discrete time
steps due to both endogenous and exogenous events;
we assume that only one action can take place at any
given time. To specify this notion, we define exogenous
actions (events) a ∈ A and endogenous events γ ∈ Γ.
This results in state transitions from si ∈ S to sj ∈ S
that occur either with probability Pr(sj |si, a) ∈ [0, 1]
(exogenous transition) or Pr(sj |si, γ) ∈ [0, 1] (endoge-
nous transition), at which point the agent makes an ob-
servation zj ∈ Z with probability Pr(zj |si, a) ∈ [0, 1]

(resp. Pr(zj |si, γ) ∈ [0, 1]). We summarize this
implicit-event model using MI = 〈S, Γ, Z, V, Σ〉.
We relax the second assumption, since in many real-
world applications (loosely defined under monitoring
and control), an agent does not apply controls to the
system continuously, but only in particular states. For
example, a control loop may monitor a process con-
trol system, taking control actions only when the fluid
pressure deviates from the nominal value. Note that
we are really interested in distinguishing the equiva-
lence classes of nominal states and forbidden states.

To formalize this notion, we partition the system state
S into two disjoint sets, Sy and Sn, such that S =
Sy ∪Sn and Sy ∩Sn = ∅; Sy is the subset of forbidden
states for which control actions are necessary, and Sn

is the subset of states for which no control actions are
necessary. In other words, as long as the system is in
some state s ∈ Sn, no control actions are taken: this
is the monitoring phase. Once the system enters into
some forbidden state s ∈ Sy, a set of control actions
are taken: this is the control phase.3

There are now two forms of state evolution, those due
to endogenous and those due to exogenous events, re-
spectively denoted by the following reformulations of
Equation 1:

Σγ
z (sj) =

Pr(z|sj , γ)
∑

si∈S Pr(sj |si, γ)Σ(si)
Pr(z|Σ, γ)

,

Σa
z(sj) =

Pr(z|sj , a)
∑

si∈S Pr(sj |si, a)Σ(si)
Pr(z|Σ, a)

.

Note that we could also represent the endogenous evo-
lution case without using control actions, but purely
in terms of probabilistic transitions, such as using
Markov transition matrices or a Bayesian network.

2.3 Model Specification

We adopt the standard control-theoretic decomposi-
tion of a system into plant and control models:

1. Plant Model: this specifies the physical behavior
of the system, i.e., the control to sensor (observ-
able) mapping: f : A 7→ Z;

2. Control Model: this specifies the control behavior
of the system given the sensor values (with no
feedback from the plant model), i.e., the sensor to
control mapping: g : Z 7→ A.

By composing these two models, we can specify the
feedback control behavior of the system based on the

3We assume that there could be either a sequence of
control actions, or a single action, followed by a return to
the monitoring phase.

system behavior defined by the plant network. The
plant model corresponds to our endogenous model,
and the composite model to our exogenous model.

Distinguishing endogenous and exogenous evolution
can result in a larger model that is more complicated
to evaluate. For example, one could interleave the en-
dogenous and exogenous models, and place a number
of contraints over this interleaved model [3].

Rather than adopt an approach like this, we tailor to
the task structure a simpler model: for the monitoring
phase we use a model that is a simple extension of the
plant model, and for the control phase we augment
this monitoring model with additional control struc-
ture. These two models may differ in the events and
value functions defined. For example, different value
functions are used in the two phases. The value func-
tion for the monitoring phase is specified based on state
values only, and is independent of the exogenous con-
trol action. This means that the expected value can be
computed relatively efficiently, since optimization over
the set of all possible control actions is unnecessary.
To see this greater simplicity, compare the monitor-
ing value function of Equation 3 to the control value
function of Equation 2.

V ′(Σ) =

[∑
s∈S

Σ(si)ϕ(si, γ)

]
. (3)

From Equation 2 the expected value for the control
phase (using the standard POMDP computation) is
computed based on both the system state and the con-
trol actions.

Our main interest during the monitoring phase is esti-
mating the probability distributions over the operating
modes of particular system components. We use D to
denote the set of system components of interest. An
unobservable variable, called an assumable, is associ-
ated with every component whose operating mode (or
health state) we want to diagnose, and it specifies the
operating modes of its associated component, such as
nominal, overdrive and broken.

3 Modeling and Inference Method

This section maps our task framework into a compu-
tational framework.

3.1 Model Specification

We specify our system as an Influence Diagram (ID)
[12]. An influence diagram consists of a factored prob-
ability distribution, which is represented as a Bayesian
network [12], together with a set of decision nodes and
value nodes. A Bayesian network (BN) consists of a
directed acyclic graph G(X, E) of nodes X and edges

,'
�

,'
�

,'
�

,'
�

7LPH

VOLFH �

7LPH

VOLFH �

7LPH

VOLFH �

7LPH

VOLFH�

Figure 1: Structure of Generic ID with 4 time slices.
Each block represents a time-slice model, with directed
edges joining adjacent time-slices

E ⊆ X × X . The graph specifies the probability fac-
toring as follows: the joint probability is given by the
product of the probabilities of each Xi ∈ X condi-
tioned on its parent variables in the graph pa(Xi), i.e.

Pr(X) =
∏

i

Pr(Xi|pa(Xi)).

There is a large body of work on computing maximal
expected values for IDs–many are reviewed in [3]. We
adopt a standard algorithm, as defined in [14].

We represent the sequential decision aspect of our task
by explicitly denoting the discrete time indices of each
variable in our model. We call this temporal model a
Temporal ID, or TID. Through this process, we can
identify a sequence of time slices, where we represent
the time slice for time t with an influence diagram
where all variables are indexed by t and all arcs in this
ID are synchronous, i.e., the arcs join nodes with the
same temporal index. A sequence of time-slice IDs has
a set a diachronic arcs joining nodes with time index
t to nodes with time index t + 1. Figure 1 shows the
structure of a generic ID with 4 time slices.

In our ID model, we use a value node for the optimiza-
tion criterion, decision nodes for events, and chance
nodes for all other system entities. If we use the stan-
dard implicit event model, then we obtain an ID as
shown in Figure 2. We represent an ID using a DAG
with oval nodes to depict chance variables, square
nodes to depict action variables, and diamond nodes to
depict value functions. In Figure 2 we denote a single
assumable as the node labeled Dx, three sensor nodes
Z1, Z2, Z3, three event (decision) nodes A1, A2, A3,
and a single value node. Note that the three event
nodes directly influence the topmost three nodes in
the suceeding time slice.

Figure 3 compares the explicit-event model we use for
monitoring with the implicit-event model we use for
control Note that the monitoring model now has a
single decision node that has as predecessor nodes the
assumable node Dx and the three sensor nodes; using
this structure, this decision node determines if a for-

=� =� =�

$� $� $�

'[
=� =� =�

$� $� $�

'[

7LPH VOLFH � 7LPH VOLFH �

Figure 2: Structure of Generic Implicit-Event model
with 2 time slices. We denote the diachronic arcs using
dotted lines, and the synchronous edges using solid
lines.

bidden state has been reached (in expectation) based
on its predecessors.

=� =� =�

$� $� $�

'[

�E� &RQWURO PRGHO

$
'

=� =� =�

'[

$
'

�D� 0RQLWRULQJ

PRGHO

Figure 3: Comparison of Implicit-Event and Explicit-
Event models.

During monitoring, for every time-slice we input evi-
dence e consisting of the control-node and sensor-node
values. For some threshold probability p∗, set ς of
forbidden values of node Dx, and evidence e in the
network, the decision node AD takes on values given
by

AD =
{

monitor if Pr(Dx = ς|e) ≤ p∗

control otherwise. (4)

This decision node can then be used to invoke the
control model to drive the system back into a non-
forbidden state when [AD = control]. Note that, using
an approach described in [15], we could alternatively
model this decision node as a chance node.

So if we are performing only monitoring, we would cre-
ate a model that has a TID consisting of a sequence of
monitoring time slices, as shown in Figure 4. Using
our on-demand control representation, we build up
a model consisting of time-slice models as required,

=� =� =�

'[

=� =� =�

'[

$
'

$
'

=� =� =�

'[

$
'

7LPH VOLFH � 7LPH VOLFH �7LPH VOLFH �

Figure 4: Pure monitoring using Monitoring Explicit-
Event models.

i.e., we introduce control time-slices only when neces-
sary. For example Figure 5 shows a case where the
first monitoring time slice indicates that a forbidden
state has been entered, requiring a sequence of control
time-slices, which determine the optimal sequence of
actions required to drive the system out of the forbid-
den state set. Once this has been accomplished, the
only model that is needed is a monitoring model, until
another forbidden state is entered.

=� =� =�

$� $� $�

'[

=� =� =�

$� $� $�

'[

7LPH VOLFH � 7LPH VOLFH �

$
'

$
'

=� =� =�

'[

$
'

7LPH VOLFH �

Figure 5: Structure of on-demand Implicit-Explicit
model with 3 time slices. The first time-slice involves
monitoring, followed by two time-slices for control

3.2 Inference Algorithm

We solve this task using a two-step procedure, using
the steps of estimation and control optimization.

State Estimation this task computes the probabil-
ity distribution of the assumables given the con-
trols and sensors as evidence. We need to use only
the plant Bayesian network for this task, treat-
ing the control nodes not as decision nodes but
as observable evidence nodes with fixed values.
We compute the monitoring value function (Equa-
tion 3): if this value function indicates that the
probability of an undesirable state s ∈ Sy exceeds
a threshold, the system switches to Control Re-
configuration mode.

Control Optimization this task initializes the as-
sumables as evidence and computes the optimal
(stochastic) control. We must use a feedback con-
trol network for this task, which includes the plant
network integrated with the control sub-network.
In this phase a set of optimal controls is derived to
drive the system back to a desirable state s ∈ Sn,
and the cycle repeats.

We adopt a two-step procedure because these two com-
putations are typically quite different. In the first case,
we have no control over the endogenous events, but we
instead merely want to monitor these actions. In the
second case, we are actually sending controls to the
system and want to optimize the value of this sequence
of controls.

For computational efficiency, several approaches can
be used to take advantage of the problem structure.
We outline two here. First, it is possible to have
different models and inference algorithms for the two
phases. In our implementation, we model system dy-
namics in the monitoring phase using a Bayesian net-
work, which stochastically estimates assumable states
given a sequence of sensor data. Given an output of Σ̂,
we perform the test Σ̂(Sy); As long as the test is false,
i.e., the assumable state is not forbidden, the estima-
tion cycle continues. Whenever the forbidden state is
entered, then the control phase begins. We extend the
Bayesian network model to a TID for the control re-
configuration phase. The TID is used to generate the
least-cost set of control actions that will drive the sys-
tem back to a non-forbidden assumable state. After
executing this stage for a number of time-slices deter-
mined by the same test Σ̂(Sy), the system returns to
the monitoring phase again. Hence in the monitoring
phase we are merely updating the probabilities in the
Bayesian network, and in the control reconfiguration
phase we are computing on optimal decision sequence
in the Influence diagram. Figure 6 depicts how we
could organize inference using two separate modules.

021,725

&21752/

$� Σ

Σ
Σ �6

\
�"

\HV

QR

\HV

QR Σ �6
\
� "

Figure 6: Inference using two disjoint modules, one for
monitoring and one for control.

Second, it is possible to have a single model, but to
use a control method to focus inference on the mon-
itoring part of the model, and use the full POMDP
model only when necessary. Figure 5 depicts the kind
of network that would be generated on demand, given
a sequence of observable data. This approach can be
implemented by taking advantage of structural prop-
erties of observations in POMDPs [6].

3.3 Complexity Considerations

This section briefly discusses the efficiency gains ob-
tained by modeling and solving systems using this new
approach versus modeling and solving systems using
POMDPs. Inference on POMDPs is computationally
very expensive, e.g. computing an optimal policy for
a finite horizon of T is worst-case exponential in both
T and the size S of the action transition matrix [11].
The complexity of the on-demand approach is depen-
dent on the relative frequency of monitoring and con-
trol phases. On the one extreme, with all control we
obtain a complexity identical to that of the traditional
POMDP approach; the greater the degree of monitor-
ing the greater the corresponding increase in efficiency
over the traditional POMDP approach. This is be-
cause the complexity of monitoring is independent of
horizon T , but is worst-case exponential in particular
graph parameters, such as the size of the largest clique
in a clique-tree representation of the graph, or in the
size of the graph-width [7]. The monitoring phase does
not perform value maximization, but instead computes
the posterior probability of the assumables. Given
that the monitoring network is smaller than the con-
trol network and shares much of the same structure, it
is likely that evaluating a single time-slice of the mon-
itoring network is computationally simpler than that
of the single time-slice control network. In real-world
applications where device failure is unlikely, the bulk
of time is spent in the monitoring phase, rendering
this on-demand approach significantly more efficient
that the standard POMDP approach for this class of
applications.

4 Example

This section applies our approach to a monitoring and
control example, that of a motor/pump loop. This
loop is a simplification of a large class of process-
control loops common to many types of industry, such
as chemical processing.

4.1 Pump Loop Description

Figure 7 shows an example of a pump loop, which
consists of a fluid tank, a pump connected to a motor,

and a pipe loop through which the liquid is pumped. In
this pump loop, water flows from the tank to the inlet
of the pump and returns to the tank from the outlet of
the pump. Of particular interest to this example is the
pump inlet and outlet valves used to control the water
flow. The water pressure at both the inlet and the
outlet of the pump are measured using two pressure
sensors. A turbine flowmeter is used to measure the
water flow.

Pipe1

Pipe2

Pipe3

Inlet
Valve

Tank

Motor/Pump

Pressure
Sensor (P in)

Pressure
Sensor (P out)

Flow
Meter

Outlet
Valve

Figure 7: Pump Loop example.

We select a simplified version of this pump-loop, in
order to focus on the techniques rather than the details
of the example. In particular, we assume we want to
control the pressure through the system by controlling
the pressure throughput on the pump. We assume that
the motor driving the pump has two speeds, normal
and high, and that we can set the inlet valve for the
pump to four degrees of opening, namely {closed, 50%,
75%, open}.
We are mainly interested in a particular fault that
commonly occurs in pump loops: pump cavitation.
We assume that the pump can be in one of three
operating modes, normal, overdrive and cavitating.
Normal and overdrive constitute nominal operating
modes. The cavitating mode is one in which pressure
imbalances within the pump create bubbles, which are
transported with the fluid flow from the low pressure
region to the high pressure region in the pump cham-
ber, where they collapse violently and cause problems
[4]. Cavitation can be a serious problem resulting in
early failure of pumping systems today. This undesir-
able phenomenon could lead to increased volumetric
losses, high noise levels, early failure of pump seals,
and severe material damages to pumps.

Given this possibility of cavitation, our control task
is to maintain the pressure within the pump loop un-

der nominal system modes, and then reduce the pump
speed (and fluid flow) if cavitation occurs, in order to
restore system operation to non-cavitating conditions.

We create a system model as follows. We describe two
components in our model: a motor/pump and an inlet
valve, together with the following sensors: inlet and
outlet pressure and pump vibration. The combination
of pressure and vibration sensors allows us to distin-
guish cavitating from nominal conditions [13]. We as-
sume that we can measure the values of pressures Pin

and Pout, and can control the values of input-valve
control actuator ΨV and the motor-pump actuator,
ΨMP . We assume that we have (unmeasureable) inlet
and outlet pressures, Pin and Pout repectively, and a
mode variable for the motor-pump, MP , which takes
on values {normal, overdrive, cavitating}. We also
have inlet and outlet pressure sensors, ZPin and ZPout

repectively.

The controller for a simple valve-pump system oper-
ates as follows: given an input flow with pressure Pin,
this controller governs the actuator settings of valve
ΨV and pump ΨMP to maintain an output pressure
Pout such that Pmin ≤ Pout ≤ Pmax.

Figure 8 depicts the structure of the plant model. This
network depicts the physical inter-relationships for the
pump-loop, without specifying any actions or value
functions. To specify this network, we need to identify
prior distributions on ΨV , ΨMP and MP , as well as
the conditional distributions Pr(Pout|Pin, AMP , MP),
Pr(ZPin |Pin), and Pr(ZPout |Pout).

Ψ
9 Ψ

03

3
LQ

3
RXW

=
3RXW

=
3LQ

03

Figure 8: Plant network.

Figure 9 depicts the structure of the control model for
two time slices. This figure uses much of the struc-
ture of the plant model, except that we now define
event nodes for (1) whether we do monitoring or con-
trol (AM), (2) setting the valve (AV), and (3) set-
ting the motor-pump (AMP). Note that the event AV

(resp. AMP) at time t then governs the setting of the
corresponding actuator ΨV (resp. ΨMP) at time t+1.

3
LQ

3
RXW

=
3RXW

=
3LQ

03

$
0

$
9

$
03

V

3
LQ

3
RXW

=
3RXW

=
3LQ

03

$
0

$
9

$
03

V

7LPH VOLFH � 7LPH VOLFH �

Ψ
9 Ψ

03
Ψ

9 Ψ
03

Figure 9: Feedback control network.

In our process control example, during the monitoring
phase we set the threshold probability for entering for-
bidden states, i.e., the p∗ of Equation 4, to 0.66. This
computation requires only state estimation. In con-
trast, for the control reconfiguration phase we compute
the expected value function based on both the system
state and the control action sequence that must be
taken to ensure that Pout returns to its nominal range.
In this case we have a value function V (si, a) that is
based on state values for input and output pressures,
and mode settings of valve and pump, as well as set-
tings for the actions taken given the particular state.

4.2 Results

We ran some experiments with this simple pump-loop
example to test the relative time and space require-
ments for the standard (POMDP) approach and the
on-demand control approach. Running the system for
10 and for 20 time steps, we varied the initial actuator
settings to generate scenarios with different percent-
ages of steps consisting of monitoring. Note that the
POMDP and On-Demand approaches are identical in
the case of 0% monitoring.

Table 1 summarizes data from these experiments av-
eraged over 10 runs. Space requirements grow roughly
linearly with T , and decrease roughly linearly with in-
creases in percentage of monitoring. For the temporal
Bayesian network used for monitoring, the worst-case
time complexity is independent of T , and the space
complexity is linear in T , as indicated by the data. In
terms of time, however, the percentage of monitoring
significantly reduces the time, and the time require-
ments increase roughly exponentially with T when op-

timal control is computed.4

% Space (Kb) Time (s.)
Monitoring T =10 T =20 T =10 T =20

0 511 988 191.10 *
20 371 723 37.31 135.54
50 213 422 4.96 23.12
100 136 289 1.19 1.27

Table 1: Comparative results for On-Demand Ap-
proach on the simple pump-loop. Data is presented
for fixed horizons of T =10 and 20.

5 Relation to Other Work

There is a great deal of work in POMDPs and
probabilistic planning that use approximation ap-
proaches. Rather than use approximation algorithms,
e.g. [2], other special-case algorithms [8], or domain-
independent hierarchical abstractions [9], we introduce
a structural “approximation”, namely tailoring the
problem structure to the actual task being performed.
This approach is not as general as the above-mentioned
approaches, but it produces a relatively efficient solu-
tion to the problem class being addressed.

This work also bears some resemblance to to stochastic
automata [5]. In the area of formal methods, a number
of stochastic automata or stochastic process algebra
models have been proposed, e.g. [5]. These approaches
are concerned primarily with specification, and only
secondarily with computational issues. In contrast, we
focus on both aspects.

6 Summary and Conclusions

We propose a technique for creating on-demand mod-
els tailored to the task of monitoring and control. This
approach is computationally more efficient than the
traditional POMDP approach, which solves a control
optimization task over the entire time horizon neces-
sary. Our approach breaks up the inference into two
steps, estimation and control optimization, and solves
the simpler estimation task when control optimization
is not necessary. The greater the percentage of time
that only state estimation is required, the greater is
the computational advantage of using the proposed
approach over the POMDP approach; if control op-
timization is required all the time, the proposed ap-
proach is identical to the POMDP approach.

4The * indicates that the run did not run to completion
after 20 hours.

References

[1] K.J. Astrom. Optimal control of markov decision
processes with incomplete state estimation. Jour-
nal of Math. Annal. Appl., 102:174–205, 1965.

[2] C. Boutilier, R. Brafman, and C. Geib. Struc-
tured reachability analysis for markov decision
processes. In Proc. Intl. Conf. on Uncertainty in
Artificial Intelligence (UAI), pages 24–32, 1998.

[3] C. Boutilier, T. Dean, and S. Hanks. Decision-
theoretic planning: Structural assumptions and
computational leverage. Journal of AI Research,
11:1–94, 1999.

[4] C.E. Brennen. Cavitation and Bubble Dynamics.
Oxford University Press, Oxford, England, 1995.

[5] P.R. D’Argenio, J.-P. Katoen, and E. Brinksma.
A compositional approach to generalised semi-
markov processes. In Proceedings of the 4th In-
ternational Workshop on Discrete Event Systems,
WODES’98, Caligari, Italy, pages 391–387. IEE,
1998.

[6] Adnan Darwiche and Gregory Provan. The Ef-
fect of Observations on the Complexity of Model-
Based Diagnosis. In Proc. AAAI National Con-
ference. Morgan-Kaufmann Publishers, 1997.

[7] R. Dechter. Bucket Elimination: A unifying
framework for Reasoning. Artificial Intelligence
Journal, 107, October 1999.

[8] E. Hansen. Solving POMDPs by Searching in Pol-
icy Space. In Proc. Intl. Conf. on Uncertainty in
Artificial Intelligence (UAI), 1998.

[9] M. Hauskrecht, N. Meuleau, L. Kaelbling,
T. Dean, and C. Boutilier. Hierarchical Solu-
tion of Markov Decision Processes using Macro-
actions. In Proc. Intl. Conf. on Uncertainty in Ar-
tificial Intelligence (UAI), pages 220–229, 1998.

[10] Leslie Pack Kaelbling, Michael L. Littman, and
Anthony R. Cassandra. Planning and acting in
partially observable stochastic domains. Artificial
Intelligence Journal, 101, 1998.

[11] C. Papadimitriou and J. Tsitsiklis. The Complex-
ity of Markov Chain Decision Processes. Mathe-
matics and Operations Research, 12(3), 1987.

[12] J. Pearl. Probabilistic Reasoning in Intelligent
Systems. Morgan Kaufmann, 1988.

[13] G. Provan and Y.-L. Chen. Component-based
modeling and diagnosis of process-control sys-
tems. In Proc. 1999 IEEE Intl. Symposium on
Computer-Aided Control System Design, pages
194–199, Kohala Coast, HI, August 1999.

[14] J. Tatman and R. Shachter. Dynamic Program-
ming and Influence Diagrams. IEEE Trans. Sys-
tems, Man and Cybernetics, 20:365–379, 1990.

[15] N. Zhang. Probabilistic Inference in Influence Di-
agrams. In Proc. Intl. Conf. on Uncertainty in
Artificial Intelligence (UAI), 1998.

