A Kernel Approach for Vector Quantization
with Guaranteed Distortion Bounds

Michael E. Tipping & Bernhard Scholkopf
Microsoft Research, 1 Guildhall Street, Cambridge, UK

{mtipping,bsc}@microsoft.com

Abstract

We propose a kernel method for vector quan-
tization and clustering. Our approach allows
a priori specification of the maximally al-
lowed distortion, and it automatically finds
a sufficient representative subset of the data
to act as codebook vectors (or cluster cen-
tres). It does not find the minimal number of
such vectors, which would amount to a com-
binatorial problem; however, we find a ‘good’
quantization through linear programming.

1 Introduction

Vector quantization (VQ) is a ubiquitous data sum-
marization technique [3], commonly utilised in signal
processing applications, most notably in speech and
image coding. The purpose of VQ is to represent a set
of £ data vectors

Ti,..., 0 €X (1)
by a reduced number of m ‘codebook’ vectors

Yis---Ym € X, (2)

such that some measure of average distortion is mini-
mized when each z is represented by the ‘nearest’ (in
terms of some desired metric over X) y.

Often, a ‘good’ codebook is found by a greedy local
minimization of the distortion measure, an example of
which is that based on the standard /s metric:

¢
Bvg =) llei —y(@)|?, ®3)
i=1
where
y(w;) = argmin||z; — y;||*. (4)

Yj

In practice, one would specify m, initialize y and utilise
one’s favourite optimization algorithm to minimize a
distortion measure such as (3). Compression is then
realized since, given receiver knowledge of the code-
book, each x can be encoded in log, m bits.

The approach of pre-specification of m is natural, as
it may be influenced by external factors such as band-
width or storage capacity. Here, however, we consider
the case where it is desired to guarantee (for the ‘train-
ing’ set) a mazimum level of distortion for any encoded
z and automatically find an appropriate value for m.
A restriction we impose is that the codebook vectors
must be a subset of the data. Finding the minimal
such subset which can represent the data with a given
level of distortion is of course a combinatorially hard
problem, but we can obtain an effective ‘sparse’ code-
book using linear programming methods as detailed in
the next section. In Section 3 we offer some illustra-
tive examples of application of the method, and wrap
up with some discussion in Section 4.

We are aware of one other VQ implementation (which
is quite different in that there is no distortion guar-
antee) which exploits linear programming [4], while
there has been recent interest in providing guarantees
for other algorithms [5].

For other kernel approaches to unsupervised learning
using linear programming formulations, cf. [1, 6].

2 Clustering via Linear Programming

Suppose we are given data
T1,...,%0 € X, (5)

where X' is some space endowed with a metric d.

By the term kernel we will presently refer to functions
kE:XxX =R (6)

In particular, we will consider the kernel that indicates

whether two points lie within a distance of R > 0,

k(xﬂwl) = 1{(m,z’)€X><X: d(z,z")<R} (7)

We consider what in the Support Vector (SV) com-
munity is sometimes called the empirical kernel map

[7]
pe(z) = (k(z1,), ..., k(zy, 2)). (8)
Suppose we can find a vector w € R¢ such that
w ' pg(z;) >0 (9)

holds true for all 4 = 1,...,£. Then each point x; lies
within a distance R of some point z; which has a pos-
itive weight w; > 0. To see this, note that otherwise
all nonzero components of w would get multiplied by a
component of ¢, which is 0, and the above dot product
would equal 0.

Therefore, up to an accuracy of R (measured in the
metric d), the z; with nonzero coefficients w; can be
considered an approximation of the complete training
set (formally, they define an R-cover of the training
set in the metric d). However, so far we have said
nothing that prevents us from simply using the triv-
ial solution, w; = 1 for all ¢. In order to keep the
number of nonzero coefficients small, we will consider
the following optimization problem: for some ¢ > 0,
compute

i 10
min [Iwl, (10)
subject to w ' ¢y(z;) > 1. (11)

In this formulation, we have slightly modified the con-
straint (9). To understand this, note that whenever
we have a vector w satisfying (9), we can rescale it to
satisfy (11). For the optimization, however, we must
use (11) to ensure that the target function (10) cannot
be trivially minimized by shrinking w.

In vector quantization, we are looking for a small code-
book of vectors to approximate the complete training
set. Therefore, the ideal thing to do would be to uti-
lize ¢ = 0, in which case ||w||; simply counts the num-
ber of nonzero coefficients of w. This, however, leads
to a combinatorial optimization problem. ‘Nice’ op-
timization problems can be obtained using ¢ = 1 or
q = 2. We will use the former, which is closer to ¢ = 0.
From the work on sparse decompositions (e.g. [2]), lin-
ear programming machines (e.g. [8]), and reduced set
SVM methods [7], it is well known that penalizers of
the form ||w||; lead to sparse solutions.

In practice, we use a slightly adjusted penaliser of the
form)", vi|w;|, where ; := ni_l, with n; the number

of examples in the support of k(z;,x). While not af-
fecting the constraints, this assists in the removal of
more ‘redundant’ codebook vectors.

To derive the final optimization problem, we introduce
the matrix K;; = k(z;,z;) and decompose w accord-
ing to w; = a; — B, ending up with

¢
min > ilai + Bi) (12)
i=1

a,3cRr?
Ka-g>1 (9
a,3 >0, (14)

subject to

where the inequalities are understood to hold for each
component of the lhs vectors.

At the end of the optimization, the nonzero w; corre-
spond to a sufficient set of codebook vectors y;. Due
to inherent symmetries in many tasks, this set can still
be unnecessarily large. We thus perform a simple fi-
nal ‘pruning’ step to remove some of the remaining
redundant vectors in the codebook, by sequentially re-
moving any codebook vector that does not exclusively
explain any data vector. Typically, this results in the
removal of a further 1%-5% of the codebook, and so
the majority of the sparsification still occurs within
the linear program.

3 Examples

3.1 Synthetic data in 2 dimensions

As a simple illustrative example, Figure 1 shows quan-
tizations obtained using the above linear programming
technique (LP-VQ) of two-dimensional data uniformly
distributed in the unit square, for values of maximum
distortion R = 0.1, 0.2, 0.3 and 0.4, and d being the
Euclidean ¢, distance.

3.2 Block image coding

A popular application of VQ methods is to com-
press/encode images. Although we would not propose
LP-VQ (or even VQ in general — fixed basis trans-
forms such as JPEG are generally superior) as the best
methodology for such a task, image coding provides
an easily visualized task on which to demonstrate the
method at work.

Figure 2 shows a 384 x 256 test image (actually of 24-
bit colour depth, although, of course, rendered here in
black and white). This image was decomposed into
non-overlapping 8 x 8 blocks, each of which was pro-
cessed to give a 192-dimensional vector of bytes (one
byte per RGB colour component per pixel). The lin-
ear programming V(Q procedure was then performed
in this high-dimensional space, and we show results

Figure 1: Results of performing guaranteed-distortion LP-VQ on two dimensional uniform data with varying
distortion levels R. The m quantizing vectors, found automatically, are shown circled and their number is given
at the head of each plot. Circles of d(z,y) = R are also shown for each codebook vector.

for two values of maximum distortion, R = 200 and
500, with d being the £, distance.!

For comparison, a reconstruction by the the popu-
lar Linde-Buzo-Gray (LBG) algorithm [3] algorithm
is also given in Figure 2. This is a conventional
fixed-codebook-size, but variable maximum distortion,
VQ method, which has spawned many derivatives.

!Other choices for d are possible, too. For instance,
the s distance would lead to a pixel-wise upper bound
on the distortion. One can generalize the approach fur-
ther by using kernels which are non-constant within their
support. If, for instance, a kernel decays with increasing
distance, then it is more expensive for the algorithm to
code a point which is far away from a given codebook vec-
tor. Effectively, this corresponds to different cost functions
for measuring the distortion error (cf. (3)). Provided the
support is bounded, we retain the guaranteed distortion
bound.

The codebook size used was identical to the LP-VQ
R = 500 case.

The corresponding sizes of the compressed images are
shown in the figure. These are computed as the sum
of the codebook size, which of course is automatically
determined by the algorithm in the LP-V(Q case, and
the number of bits required to code all the blocks with
respect to that codebook. Note that here we are as-
suming that the codebook is to be transmitted to the
decoder.? Statistics summarising the performance of
the compression algorithms are given in Table 1.

2 Alternatively, we might attempt to elucidate a good
(and no doubt much larger) general-purpose codebook
from a large number of images. Knowledge of the codebook
would then be shared a priori by both sender and receiver,
and a compression gain might be obtained through avoid-
ing the necessity to expensively code all the quantization
vectors with the image.

Original Image (288KB) LBG reconstruction, 33KB (12%)

LP-VQ reconstruction with R=200, 144KB (50%) LP-VQ reconstruction with R=500, 33KB (12%)

Figure 2: Two reconstructions using LP-VQ (bottom left & right), and one using LBG (top right), of a colour
image, original shown top left. The maximum distortion value R is given for the LP-VQ reconstructions, along
with the size of the images, in kilobytes, for all cases. In the LBG case, the codebook size used was the same as
that found automatically by the R = 500 LP-VQ case.

Image Size Ratio R m Erer FErms
Original 288KB 100% 0 1536 0 0

LP-VQ Reconstruction 144KB 50% 200 757 199.9 88.7
LP-VQ Reconstruction 33KB 12% 500 170 499.5 283.8
LBG Reconstruction 33KB 12% - 170 816.4 229.8

Table 1: Statistics for the image encodings of Figure 2. Along with the image sizes and value of R, the maximum
distortion guarantee, given in the original figure, values of m, the codebook size, and FE,,,, and E,ps, the
maximum and root-mean-square distortion are given. Note that E,,,, for LP-VQ is bounded by R, and is
considerably larger for LBG, where E,.,,s is lower.

LP-VQ (R=500) detail

LBG equivalent

Figure 3: Detail of the reconstruction of the number
plate in Figure 2 by the R = 500 LP-VQ model and
the equivalently sized LBG coder. In addition to the
poorer reconstruction in the latter case, the lower right
of the plate exhibits a shading effect due to mixing of a
block of yellow car body with part of the number plate
(not visible in the black-and-white rendition). This is
a consequence of the adaptation of codebook vectors
in that case.

We utilize a close-up detail of this image to illustrate
a contrastive feature of our approach when compared
with more conventional VQ methods. A clear advan-
tage of the LBG algorithm, in terms of overall distor-
tion minimization, is that codebook vectors need not
coincide with the data points but are free to adapt.
The result of this may be seen in Table 1 where, as
expected, the LBG algorithm gives both lower aver-
age distortion and greater maximum distortion for the
same codebook size.

Figure 3 shows a close-up of the reconstructed num-
ber plate from the car of Figure 2. Of interest is the
effect the maximum distortion guarantee in the LP-
VQ case has on the image characteristics. In ‘typical’
areas of image, most notably the car body and the

background, the LBG algorithm provides the better
rendering (indeed, overall it is arguably subjectively
superior). However, in atypical areas, such as the car
number plate in Figure 3, the LP-VQ approach offers
significantly greater fidelity. This is a consequence of
the fact that the LBG method (which is closely related
to K-means) seeks to represent, in some sense, the
density of the data vectors while the LP-VQ method
only seeks to model the support. Thus the LBG algo-
rithm can afford a large error on one vector, as this
may be offset by many lower errors for vectors in re-
gions of high density. The LP-VQ algorithm by con-
struction must code all vectors to within the set dis-
tortion level R. It should be noted that if the data
were contaminated by bad outliers, then the compres-
sion rate would suffer. Nevertheless, if the ‘outliers’
correspond to meaningful structure, then the present
approach may be advantageous.

4 Discussion

We have proposed a novel approach to vector quan-
tization which lets us specify an upper bound on the
distortion incurred for each coded vector. The algo-
rithm automatically determines the number of code-
book vectors required. It does not find the minimal
such number, which would amount to a combinatorial
problem, but it solves the problem via linear program-
ming, which can be performed efficiently with existing
optimization packages,® and which is provably of poly-
nomial time complexity.

That the codebook vectors must be a subset of the
data is clearly a limitation which will inevitably lead to
poorer overall distortion performance. However, this
does imply that LP-VQ reconstructed vectors are rep-
resentative of the data, which need not be the case in
an LBG-style approach where codebook vectors may
potentially be located in regions where the data has
no support. This was exemplified by part of the detail
of Figure 3. We thus expect the proposed linear pro-
gramming method to be effective in applications where
either this property or the facility to impose a bound
on the distortion may be advantageous (the potential
effects of which were again showed by Figure 3). An
additional further use that we have not explored in de-
tail is to use the LP-VQ codebook as an initialization
for one of the conventional methods (the importance
of making a good choice of initial codebook in VQ al-
gorithms is well-known).

Of course, one could propose heuristic algorithms with
similar distortion constraints: for example, an LBG-

3Results obtained within this paper were derived using
the linprog program from MATLAB’s optimization tool-
box.

style algorithm which incorporates additional cen-
troids until the maximum distortion was below a de-
sired value, similar to the method of [9]. However, it is
generally well appreciated that such greedy sequential
algorithms exhibit a considerable degree of subopti-
mality, while the LP approach presented here offers
an effective and principled way of finessing the combi-
natorial difficulty.

References

[1] C. Campbell and K. Bennett. A linear program-
ming approach to novelty detection. 2000. Sub-
mitted.

[2] S. Chen, D. Donoho, and M. Saunders. Atomic
decomposition by basis pursuit. Siam Journal of
Scientific Computing, 20(1):33—-61, 1999.

[3] A. Gersho and R. M. Gray. Vector Quantization
and Signal Compression. Kluwer, 1992.

[4] J.-H. Lin and J. S. Vitter. Nearly optimal vec-
tor quantization via linear programming. In J. A.
Storer and M. Cohn, editors, Data Compression
Conf., pages 22-31. IEEE Computer Society Press,
1992.

[5] P. Niyogi and N. Karmarkar. An approach to data
reduction and clustering with theoretical guaran-
tees. In P. Langley, editor, Proceedings of the
17th International Conference on Machine Learn-
ing, pages 679 — 686, San Francisco, 2000. Morgan
Kaufman.

[6] G. Rétsch, B. Scholkopf, S. Mika, and K.-R.
Miiller. SVM and boosting: One class. In Ad-
vances in Neural Information Processing Systems,
2000. Submitted.

[7] B. Schélkopf, S. Mika, C. Burges, P. Knirsch, K.-
R. Miiller, G. Rétsch, and A. Smola. Input space
vs. feature space in kernel-based methods. IEEE
Transactions on Neural Networks, 10(5):1000 —
1017, 1999.

[8] J. Weston, A. Gammerman, M. Stitson, V. Vapnik,
V. Vovk, and C. Watkins. Support vector density
estimation. In B. Scholkopf, C. J. C. Burges, and
A. J. Smola, editors, Advances in Kernel Methods
— Support Vector Learning, pages 293-306, Cam-
bridge, MA, 1999. MIT Press.

[9] A. Ypma and R. P. W. Duin. Support objects for
domain approximation. In L. Niklasson, M. Bo-
den, and T. Ziemke, editors, Proceedings of the 8th
International Conference on Artificial Neural Net-
works, 1998.

