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Abstract

In this paper, we study a family of semisu-
pervised learning algorithms for “aligning”
different data sets that are characterized by
the same underlying manifold. The optimiza-
tions of these algorithms are based on graphs
that provide a discretized approximation to
the manifold. Partial alignments of the data
sets—obtained from prior knowledge of their
manifold structure or from pairwise corre-
spondences of subsets of labeled examples—
are completed by integrating supervised sig-
nals with unsupervised frameworks for man-
ifold learning. As an illustration of this
semisupervised setting, we show how to learn
mappings between different data sets of im-
ages that are parameterized by the same un-
derlying modes of variability (e.g., pose and
viewing angle). The curse of dimensionality
in these problems is overcome by exploiting
the low dimensional structure of image man-
ifolds.

1 Introduction

Examples of very high-dimensional data such as high-
resolution pixel images or large vector-space represen-
tations of text documents abound in multimodal data
sets. Learning problems involving these data sets are
difficult due to the curse of dimensionality and associ-
ated large computational demands. However, in many
cases, the statistical analysis of these data sets may be
tractable due to an underlying low-dimensional mani-
fold structure in the data. Recently, a series of learn-
ing algorithms that approximate data manifolds have
been developed, such as Isomap [15], locally linear em-
bedding [13], Laplacian eigenmaps [3], Hessian eigen-
maps [7], and charting [5]. While these algorithms ap-
proach the problem of learning manifolds from an un-

supervised perspective; in this paper, we address the
problem of establishing a regression between two or
more data sets by aligning their underlying manifolds.
We show how to align the low-dimensional representa-
tions of the data sets given some additional informa-
tion about the mapping between the data sets. Our al-
gorithm relies upon optimization over a graphical rep-
resentation of the data, where edges in the graphs are
computed to preserve local structure in the data. This
optimization yields a common low-dimensional embed-
ding which can then be used to map samples between
the disparate data sets.

Two main approaches for alignment of manifolds are
presented. In the first approach, additional knowledge
about the intrinsic embedding coordinates of some of
the samples are used to constrain the alignment. This
information about coordinates may be available given
knowledge about the data generating process, or when
some coordinates are manually assigned to correspond
to certain labeled samples. Our algorithm yields a
graph embedding where these known coordinates are
preserved. Given multiple data sets with such coordi-
nate labels, we show how the underlying data mani-
folds can be aligned to each other through a common
set of coordinates.

In the second approach, we assume that there is no
prior knowledge of explicit coordinates, but that we
know the pairwise correspondences of some of the sam-
ples [11, 16]. These correspondences may be apparent
from temporal conjunction, such as simultaneously ob-
tained images and sounds from cameras and micro-
phones. Correspondences may also be obtained from
hand-labeled matches among samples in different data
sets. We demonstrate how these correspondences al-
low implicit alignment of the different data manifolds.
This is achieved by joining the graph representations
of the different data sets and estimating a common
low-dimensional embedding over the joined graph.

In Section 2 we first review a graph-based framework
for manifold learning algorithms. Section 3 describes



our algorithms for manifold alignment using either
prior coordinate knowledge or paired correspondences.
Section 4 demonstrates the application of our approach
to aligning the pose manifolds of images of different ob-
jects. Finally, the utility and future direction of this
approach is discussed in Section 5.

2 Unsupervised manifold learning
with graphs

Let X and Y be two data sets in high dimensional
vector spaces

X = {x1, · · · ,xm} ⊂ RDX , Y = {y1, · · · ,yn} ⊂ RDY ,

with DX , DY � 1. When the data lie close to a low-
dimensional manifold embedded in a high dimensional
Euclidean space, manifold learning algorithms such as
[3] can successfully learn low-dimensional embeddings
by constructing a weighted graph that captures local
structure in the data. Let G(V, E) be the graph where
the vertices V correspond to samples in the data and
the undirected edges E denote neighborhood relation-
ships between the vertices. These neighborhood rela-
tions can be defined in terms of k-nearest neighbors or
an ε-ball distance criterion in the Euclidean space of
original data. The similarities between points are sum-
marized by a weight matrix W where Wij 6= 0 when
the ith and jth data points are neighbors (i ∼ j), oth-
erwise Wij = 0. The matrix W is typically symmetric,
and has nonnegative weights Wij = Wji ≥ 0. The
generalized graph Laplacian L is then defined as:

Lij :=

 di, if i = j,
−Wij , if i ∼ j,
0, otherwise

where di =
∑

j∼i Wij is the degree of the ith ver-
tex. If the graph is connected, L will have a sin-
gle zero eigenvalue associated with the uniform vector
e = [11 · · · 1]T .

A low-dimensional embedding of the data can be com-
puted from the graph Laplacian in the following man-
ner. A real valued function f : V 7→ R on the vertices
of the graph is associated with the cost:

fT Lf =
1
2

∑
i,j

(fi − fj)2Wij . (1)

An optimal embedding is given by functions f that
minimize (1), subject to scale and translation con-
straints fT f = 1 and fT e = 0. These solutions are
then the eigenvectors of L with the smallest non-zero
eigenvalues [8]. These solutions may also be inter-
preted as the kernel principal components of a Gram

Original data

Embeddings (affine)

Embeddings (convex)

Embeddings (Gaussian)

Figure 1: Two-dimensional embeddings of surfaces in
R3. The embeddings are computed from diagonalizing
the graph Laplacians. Different edge weightings yield
qualitative differences in the embeddings. Only 600
and 800 points were sampled from the two manifolds,
making it difficult for the algorithms to find a faithful
embedding of the data.

matrix given by the pseudoinverse of L [10]. This in-
terpretation defines a metric over the graph which is
related to the commute times of random walks on the
graph [1], and resistance distance in electrical networks
[6].

Choice of weights

Within this graph framework, different algorithms
may employ different choices for the weights W . For
example, W can be defined according to the Gaussian
process Wij = e−|xi−xj |2/2σ2

, and is related to a diffu-
sion process on the graph [3, 12]. The symmetric, non-
negative assumptions on the weights Wij = Wji ≥ 0
can be relaxed. For a directed graph structure, such as
when the neighborhoods are determined by k-nearest
neighbors, the matrix W is not symmetric. Nonneg-
ativity constraints may also be lifted. Consider the



least-squares approach to optimize weights Wij :

Wij = arg min
W

|xi −
∑
j∼i

Wijxj |2, (2)

that is, Wij are the coefficients of the neighbors of xi

that best approximates xi, and are in general asym-
metric. Locally linear embedding determines weights
from minimizing (2) subject to

∑
j Wij = 1, yielding

possibly negative coefficients that best approximates
xi from an affine combination of its neighbors [14].
This is in contrast to minimizing (2) over a set of con-
vex coefficients that are nonnegative: Wij ≥ 0. As
noted in [14], a possible disadvantage of convex ap-
proximation is that a point on the boundary may not
be reconstructed from the convex hull of its neighbors.
Consequently, the corners of the resultant embedding
with convex weights tend to be rounded.

Graph Laplacians with negative weights have been re-
cently studied [9, 10]. Although it is difficult to prop-
erly generalize spectral graph theory, we can define
a new cost function analogous to (1) for graphs with
asymmetric, negative weights as:

fT LT Lf =
∑

i

|fi −
∑
j∼i

Wijfj |2, (3)

where L = D−W . Since LT L is positive semidefinite
and satisfies LT Le = 0, the eigenvectors of LT L can
be used to construct a low-dimensional embedding of
the graph that minimizes the cost (3).

Figure 1 shows the unsupervised graph embedding of
two artificial data sets using three different weighting
schemes: a symmetric Gaussian, asymmetric convex
reconstruction, and asymmetric affine reconstruction
weights. 600 points were sampled from an S-shaped
two-dimensional manifold, and 800 points were sam-
pled from a wavy two-dimensional manifold. The data
was intentionally undersampled, and the unsupervised
learning algorithms have difficulty in faithfully recon-
structing the proper embedding. In the next sec-
tions, we will show how semisupervised approaches can
greatly improve on these embeddings with the same
data.

3 Semisupervised alignment of
manifolds

We now consider aligning disparate data manifolds,
given some additional information about the data sam-
ples. In the following approaches, we consider this
additional information to be given for only a partial
subset of the data. We denote the samples with this
additional “labeled” information by the ordinal index
l, and the samples without extra information by the

index u. We also use the same notation for the sets X
and Y ; for example, Xl and Yl refer to the “labeled”
parts of X and Y .

This additional information about the data samples
may be of two different types. In the first algorithm,
the labels refer to prior information about the intrinsic
real-valued coordinates within the manifold for par-
ticular data samples. In the second algorithm, the
labels indicate pairwise correspondences between sam-
ples xi ∈ X and yj ∈ Y . These two types of additional
information are quite different, but we show how each
can be used to align the different data manifolds.

3.1 Alignment with given coordinates

In this approach, we are given desired coordinates for
certain labeled samples. Similar to regression models,
we would like to find a map defined on the vertices of
the graph f : V 7→ R that matches known target values
for the labeled vertices. This can be solved by finding
arg minf |fi − si|2 (i ∈ l) where s is the vector of tar-
get values. With a small number of labeled examples,
it is crucial to exploit manifold structure in the data
when constructing the class of admissible functions f .
The symmetric graph Laplacian L = LT provides this
information. A regularized regression cost on a graph
is defined as:

C(f) =
∑

i

µ|fi − si|2 + fT Lf . (4)

The first term in (4) is the fitting error, and the sec-
ond term enforces smoothness along the manifold by
fT Lf ≈

∑
i |∇if |2 [2, 17]. The relative weighting of

these terms is given by the coefficient µ. The optimum
f is then obtained by the linear solution:

f =
(

µI + Lll Llu

Lul Luu

)−1 (
µI
0

)
s, (5)

where L consists of labeled and unlabeled partitions:

L =
[

Lll Llu

Lul Luu

]
.

In the limit µ →∞, i.e. there is no uncertainty in the
labels s, the solution becomes

fu = −(Luu)−1Luls = (Luu)−1Wul s. (6)

This result is directly related to harmonic functions
[18], which are smooth functions on the graph such
that fi is determined by the average of its neighbors:

fi =

∑
j Wijfj∑
j Wij

. (7)



s-curve

   Intrinsic 

coordinates

wave

Raw embedding Aligned embedding

Figure 2: Graph embeddings for the s-curve and wave surface are aligned with given coordinates, and compared to
the unaligned embeddings. The lines indicate samples whose known coordinates are used to estimate a common
embedding space.

The solution in (6) is a linear superposition of har-
monic functions which directly interpolate the labeled
data.

Given r-dimensional coordinate vectors S = [s1 · · · sr]
as desired embedding coordinates, solutions f i of (5)
or (6) can be used as estimated coordinates of un-
labeled data. This ”stretches” the embedding of the
graph so that the labeled vertices are at the desired co-
ordinates. Figure 3 shows the results of this algorithm
applied to an image manifold with two-dimensional
pose parameters as coordinates. Simultaneous align-
ment of two different data sets is performed by simply
mapping each of the data sets into a common space
with known coordinates. Given two data sets X and
Y , where subsets Xl and Yl are given coordinates s
and t respectively, we let f and g denote real-valued
functions, and Lx and Ly the graph Laplacians of X
and Y respectively. Since there is no explicit coupling
between X and Y , we use (6) to get the two solutions:

fu = −(Lx
uu)−1Lx

ul s, and gu = −(Ly
uu)−1Ly

ul t.

Figure 2 shows the semisupervised algorithm applied
to the synthetic data used in the previous section.
Among the 600 and 800 points, 50 labeled points are
randomly chosen from each, and the two-dimensional
coordinates are provided for s and t. The graph
weights are chosen by the best convex reconstruction
from 6 and 10 neighbors. As can be seen from the fig-
ure, the two curves are automatically aligned to each
other by sharing a common embedding space. From
this common embedding, a point on the s-curve can be
mapped to the corresponding point on the wave sur-
face using nearest neighbors, without inferring a direct
transformation between the two data spaces.

In [18, 17] the authors assumed symmetric and nonneg-
ative weights. With an asymmetric L, the quadratic

term in (4) is no longer valid, and the smoothness term
may be replaced with the squared error cost (3). How-
ever, there is a difference in the resulting aligned em-
beddings using a different choice of edge weights on
the graph. This is illustrated in the right side of Fig-
ure 3 where convex and affine weights are used. With
convex weights, the aligned embedding of unlabeled
points lies within the convex hull of labeled points. In
contrast, the affine weights can extrapolate to points
outside the convex hull of the labeled examples. If we
consider the matrix of coefficients M = −(Luu)−1Lul

in (6), it is not difficult to see
∑

j Mij = 1 for all i
because

∑
j∈u Lij +

∑
j∈l Lij =

∑
j Lij = 0 for all

i. Consequently, each row of M are affine coefficients.
With an additional constraint Wij ≥ 0, the M satisfies
Mij ≥ 0 as well, (refer to [4] for proofs) rendering each
row of M convex coefficients.

3.2 Alignment by pairwise correspondence

Given multiple data sets containing no additional in-
formation about intrinsic coordinates, it is still possi-
ble to discover common relationships between the data
sets using pairwise correspondences. In particular, two
data sets X and Y may have subsets Xl and Yl which
are in pairwise alignment. For example, given sets of
images of different persons, we may select pairs with
the same pose, facial expression, etc. With this ad-
ditional information, it is possible to then determine
how to match the unlabeled examples using an aligned
manifold embedding.

The pairwise correspondences are indicated by the in-
dices xi ↔ yi, (i ∈ l), and f and g denote real-valued
functions defined on the respective graphs of X and Y .
f and g represent embedding coordinates that are ex-
tracted separately for each data set, but they should
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Figure 3: Embedding a data manifold with given coor-
dinates. A set of 698 images of a statue was taken by a
camera with varying tilt and pan angles as pose param-
eters. These pose parameters are provided as labeled
coordinates for chosen imges (large dots). This in-
formation is used to infer the two-dimensional coordi-
nates corresponding to poses of the unlabeled images.
Different conditions for weights in the graph Laplacian
result in quite different embeddings.

take similar values for corresponding pairs. General-
izing the single graph embedding algorithm, the dual
embedding can be defined by optimizing:

C(f , g) = µ
∑
i∈l

|fi − gi|2 + fT Lxf + gT Lyg, (8)

where Lx and Ly are the graph Laplacian matrices.
The first term penalizes discrepancies between f and g
on the corresponding vertices, and the second term im-
poses smoothness of f and g on the respective graphs.

However, unlike the regression in (4), the optimiza-
tion in (8) is ill-defined because it is not invariant to
simultaneous scaling of f and g. We instead should
minimize the Rayleigh quotient:

C̃(f , g) :=
C(f , g)

fT f + gT g
(9)

This quotient can be written in terms of the aug-
mented vector: h = [fT gT ]T . Minimizing (9) is then

equivalent to

min
h

C̃(h) :=
hT Lzh

hT h
, s.t. hT e = 0, (10)

where Lz is defined as

Lz =
[

Lx + Ux −Uxy

−Uyx Ly + Uy

]
≥ 0, (11)

and Ux,Uy,Uxy, and Uyx are matrices having non-zero
elements only on the diagonal

Uij =
{

µ, i = j ∈ l
0, otherwise

The r-dimensional embedding is obtained by the r-
nonzero eigenvectors of Lz. A slightly different em-
bedding results from using the normalized cost func-
tion (9):

C̃(f , g) :=
C(f , g)

fT Dxf + gT Dyg
,

where Dx and Dy are diagonal matrices correspond-
ing to the vertex degrees Dx

ii =
∑

j W x
ij and Dy

ii =∑
j W y

ij . This optimization is solved by finding the
generalized eigenvectors of Lz and Dz = diag(Dx, Dy).

In (8) the coefficient µ weights the importance of the
correspondence term relative to the smoothness term.
In the limit µ →∞, the result is equivalent to impos-
ing hard constraints fi = gi for i ∈ l. In this limit, the
optimization is given by the eigenvalue problem:

˜C(h) :=
hT Lzh

hT h
, s.t. hT e = 0, (12)

where h and Lz are defined as

h =

 f l = gl

fu

gu

 , Lz =

 Lx
ll + Ly

ll Lx
lu Ly

lu

Lx
ul Lx

uu 0
Ly

ul 0 Ly
uu

 .

(13)
This formulation results in a smaller eigenvalue prob-
lem than (10), and the parameter µ need not be ex-
plictly determined.

The two methods in (11) and (13) of constructing a
new graph Laplacian Lz can be interpreted as joining
two disparate graphs. The former definition of Lz links
two graphs by adding edges between paired vertices
of the graphs with weights µ, whereas the latter Lz

“short-circuits” the paired vertices. In either case, the
embedding of the joint graph automatically aligns the
two constituent graphs.

Figure 4 shows the alignment of the embeddings of s-
curve and wave surfaces via the hard coupling of the
graphs. Joining the two graphs not only aligns each
other, but also highlights the underlying structure in
common, yielding slightly more uniform embeddings
than the unsupervised ones.
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Figure 4: The graph embeddings of the s-curve and wave surface are aligned by pairwise correspondence. 100
pairs of points in one-to-one correspondence are indicated by lines (only 50 shown).

4 Applications

The goal of aligning manifolds was to find an bi-
continuous map between the manifolds. A common
embedding space is first learned by incorporating ad-
ditional information about the data samples. We can
use this common low-dimensional embedding space to
address the following matching problems. What is the
most relevant sample yi ∈ Y that corresponds to a
xj ∈ X? or the most relevant sample xi ∈ X that
corresponds to a yj ∈ Y ?

The Euclidean distance of samples in the common
embedding space can provide a relevant measure for
matching. Let F = [f1f2 · · ·fr] and G = [g1g2 · · · gr]
be the r-dimensional representations of aligned mani-
folds of X and Y . If the coordinates in F and G are
aligned from known coordinates, the distance between
xi ∈ X and yj ∈ Y is defined by the usual distance:

d(xi,yj)
2 :=

∑
k

|Fik −Gjk|2.

If F and G are computed from normalized eigenvec-
tors of a graph Laplacian, the coordinates should be
properly scaled. We use the eigenvalues λ1, λ2, · · · , to
scale the distance between xi and yi [10]:

d(xi,yj)
2 :=

∑
k

|Fik −Gjk|2/λk.

Then the best match yi ∈ Y to x ∈ X is given by
finding arg mini d(x,yi).

We demonstrate matching image examples with three
sets of high-dimensional images. The three data sets
X, Y , and Z consist of 841 images of a person, 698
images of a statue, and 900 images of the earth,
available at http://www.seas.upenn.edu/∼jhham and
http://isomap.stanford.edu/datasets.html. Data set X

consists of 120 × 100 images obtained by varying the
pose of a person’s head with a fixed camera. Data
set Y are 64 × 64 computer generated images of a 3-
D model with varying light sources and pan and tilt
angles for the observer. Data set Z are 100× 100 ren-
dered images of the globe by rotating its azimuthal and
elevation angles. For Y and Z we know the intrinsic
parameters of the variations: Y varies through -75 to
75 degrees of pan and -10 to 10 degrees of tilt, and
-75 to 75 degrees of light source angles. Z contains of
-45 to 45 degrees of azimuth and -45 to 45 degrees for
elevation changes. We use the pan and tilt angles of
Y and Z as the known 2-D coordinates of the embed-
dings. Affine weights are determined with 12,12, and
6 nearest neighbors to construct the graphs of data X,
Y , and Z.

We describe how both known pose coordinates as well
as pairwise correspondences are used to align the im-
age manifolds from the three different data sets.

Matching two sets with correspondence and
known coordinates

The task is to align X and Y using both the correspon-
dences of X ↔ Y , and the known pose coordinates of
Y . First, 25 matching pairs of images in X and Y
are manually chosen. The joint graph of X and Y is
formed by fusing the corresponding vertices as in (13).
Then the joint graph is aligned to the 25 sample co-
ordinates of Y by (6). The best matching images in
X and Y that correspond to various pose parameters
are found by nearest image samples in the embedding
space. Figure 5 shows the result when 16 grid points
in the pose parameter embedding are given and the
best matching images in X and Y are displayed.
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Figure 5: Matching two data sets with correspondence and external coordinates. 25 images of a statue are
parameterized by its tilt/pan angles (gray dots on the left). Additionally, 25 corresponding pairs of images of
the statue and person are manually matched. Given 16 queries (dark dots on the left) in the embedding space,
the best matching images of statue (middle) and person (right) are found by aligning the two data sets and pose
parameters simultaneously.

Matching three sets with correspondence

We also demonstrate the simultaneous matching of
three data sets. Among the three data sets, we have
pairwise correspondence between example images in
X ↔ Y and examples images in Y ↔ Z separately.
25 pairs of corresponding images between X and Y
are used, and an additional 25 pairs of images in Y
and Z are chosen manually. The joint graph of X, Y ,
and Z is formed by the straightforward extension of
(12) to handle three sets. A joint graph Laplacian is
formed and the final aligned embeddings of the three
sets are computed by diagonalizing the graph Lapla-
cian. Given unlabeled sample images from Z as input,
the best matching data for Y and X are determined
and shown in Figure 6.

5 Discussion

The main computational cost of the graph algorithm
lies in finding the spectral decomposition of a large ma-
trix. We employ methods for calculating eigenvectors
of large sparse matrices to efficiently speed computa-
tion of the embeddings. The graph algorithm is able
to quite robustly align the underlying manifold struc-
ture in these data sets. Even with the small number
of training samples provided, the algorithm is able to
estimate a common low-dimensional embedding space
which can be used to map samples from one data set
to another. Even in situations where the unsupervised
manifold learning algorithm suffers from a lack of sam-
ples, additional knowledge from the known coordinates
and/or pairwise correspondences can be used to dis-
cover a faithful embedding. We are currently work-
ing on extending these results on additional real-world

data sets such as video streams and audio signals.
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