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Abstract

In this paper we investigate the properties
of the covariance matrices associated with
variational Bayesian approximations, based
on data from mixture models, and com-
pare them with the true covariance matri-
ces, corresponding to Fisher information ma-
trices. It is shown that the covariance ma-
trices from the variational Bayes approxima-
tions are normally ‘too small’ compared with
those for the maximum likelihood estimator,
so that resulting interval estimates for the pa-
rameters will be unrealistically narrow, espe-
cially if the components of the mixture model
are not well separated.

1 INTRODUCTION

A standard paradigm for learning about the param-
eters of latent variable models from data is that of
maximum likelihood. However, maximum likelihood
is well known for its tendency to overfit the data. On
the other hand, the Bayesian framework averages over
all possible settings of the model parameters. As a re-
sult Bayesian inference does not suffer from overfitting,
and, moreover, prior knowledge can be incorporated
naturally. Unfortunately, for most models of interest
involving missing data a full Bayesian analysis requires
the computation of the posterior distribution for a col-
lection of unknown quantities, including parameters
and latent variables, which often leads to intractable
calculations because complicated multiple integrations
are involved. The use of Markov chain Monte Carlo
methods for numerical integration helps to side-step
this problem, but this is clearly quite expensive, in
terms of time and storage. Moreover MCMC algo-
rithms can still exhibit conceptual and technical dif-
ficulties, for example in the assessment of the conver-
gence of the chain to its stationary distribution.

Recently, a deterministic approximate approach to
the intractable Bayesian learning problem, the vari-
ational Bayesian approximation, has been introduced
in the machine learning community, and is widely
recognised to be effective and promising in a variety
of models, such as hidden Markov models (MacKay
(1997)), graphical models (Attias (1999, 2000)), mix-
ture models (Humphreys and Titterington (2000);
Penny and Roberts (2000)), mixtures of factor anal-
ysers (Ghahramani and Beal (2000)) and state space
models (Ghahramani and Beal (2001); Beal (2003)).
A general formulation of the variational approach is
described in Jordan (2004). The variational Bayes
approach facilitates analytical calculation of approxi-
mate posterior distributions over the hidden variables,
parameters and structures. They are computed via
an iterative algorithm that is closely related to the
Expectation-Maximisation (EM) algorithm and so its
convergence is guaranteed. Empirically, variational
Bayesian approximations have often been shown to
perform well in earlier contributions, but it has also
been noticed that this approach may underestimate
the spread of the posterior distributions for some par-
ticular examples (Humphreys and Titterington (2000);
Consonni and Marin (2004)), so its validity has still to
be assessed properly: exact theoretical analysis of the
quality of the method needs to be studied.

Some initial investigations have been implemented by
the authors in Wang and Titterington (2003) and
Wang and Titterington (2004b). It was shown the-
oretically that the iterative algorithm for obtaining
the variational Bayes approximation for the param-
eters of Gaussian mixture models converges locally
to the maximum likelihood estimator at the rate of
O(1/n) in the large sample limit. Later in Wang and
Titterington (2004a) we proved local convergence of
variational approximation algorithms for more general
models, namely exponential family models with miss-
ing values, and showed that the variational posterior
distribution for the parameters is asymptotically nor-
mal with the same mean but a different covariance ma-



trix compared with those for the maximum likelihood
estimator.

Since the maximum likelihood estimators and poste-
rior distributions are also asymptotically normal (see
for instance Walker (1969), Chen (1985) and Ghosal
et al. (1995)), an interesting problem is how these
two limiting normal distributions can be compared.
From the early results on local convergence of vari-
ational approximations, one can note that they have
the same mean (i.e. the true value). However, their
covariance matrices do not appear to be equal. In the
context of Gaussian mixture models, in this paper we
study the covariance matrices associated with varia-
tional Bayesian approximations, which dictate the per-
formance of variational Bayes approximations for in-
terval estimates, and compare them with the true co-
variance matrices, as given in terms of Fisher informa-
tion matrices. We show that the covariance matrices
from the variational Bayes approximation are normally
‘too small’ compared with those for the MLE, so that
resulting interval estimates for the parameters will be
too narrow, especially if the components of the mix-
ture model are not well separated. Some numerical
examples illustrate the theoretical analysis.

2 THE MIXTURE MODEL AND
THE VARIATIONAL
APPROXIMATION

We consider a model in which we have a mixture of
m multivariate Gaussian densities p1, p2, . . . , pm with
mean vectors µ1, . . . , µm and precision (inverse covari-
ance) matrices Γ1, . . . ,Γm, respectively. Thus the den-
sity of an observation is given by

p(yi|Θ) =
m∑
s=1

ps(yi|Θ)p(si = s|Θ), (1)

where yi ∈ IRd denotes the ith observed data vector,
and si indicates the hidden component that generated
it. The components are labelled by s = 1, 2, . . . ,m,
and component s has mixing coefficient πs = p(si =
s|Θ), for any i and s = 1, 2, . . . ,m− 1. Consequently
πm , p(si = m|Θ) = 1 −

∑m−1
s=1 πs. We write the

parameters collectively as

π =

 π1

...
πm−1

 , µ =

µ1

...
µm

 , Γ =

vec(Γ1)
...

vec(Γm)

 ,

and Θ = (π′,µ′,Γ′)′. Here vec(A) is defined as the
stacked columns of A.

We use conjugate priors on the parameters Θ. The
mixing coefficients π follow a symmetric Dirichlet dis-
tribution D(λ0). The precisions are independently

Wishart, with Γs ∼ W(ν0,Φ0). The means condi-
tioned on the precisions are independently Gaussian,
with µs|Γs ∼ N (ρ0, β0Γs), where β0Γs is the inverse
covariance matrix of the Gaussian distribution.

The joint density of Θ, S and Y is

p(Θ, S, Y ) = p(π)
m∏
s=1

p(µs|Γs)p(Γs)
n∏
i=1

πsipsi(yi).

In the variational Bayes approach, we use an approxi-
mating density q(S,Θ) for p(S,Θ|Y ), which factorises
as

q(S,Θ) = q(S)(S)q(Θ)(Θ), (2)

and such that the factors are chosen to maximise the
negative free energy∫ ∑

{S}

q(S,Θ) log
p(Θ, S, Y )
q(S,Θ)

dΘ. (3)

As a result of the form of p(Θ, S, Y ), it follows im-
mediately that the optimal q(S)(S) and q(Θ)(Θ) must
factorise as

q(S)(S) =
n∏
i=1

q
(S)
i (si),

q(Θ)(Θ) = q(π)
m∏
s=1

q(µs|Γs)q(Γs).

As in Attias (1999, 2000), Ghahramani and Beal
(2000), Humphreys and Titterington (2000) and
Penny and Roberts (2000), the remaining details of
the variational posteriors can be obtained by the fol-
lowing iterative procedure. In turn, we perform the
following two stages.

(i) Optimise q(Θ)(Θ) for fixed {q(S)
i (si), i = 1, . . . , n}.

Since conjugate priors are used, these variational
posteriors are functionally identical to the priors,
with different hyperparameter values: the mixing
coefficients π are jointly Dirichlet, with q(π) =
D(π : λ1, . . . , λm); the precisions are independently
Wishart, with q(Γs) = W(Γs : νs,Φs); and the means
conditioned on the precisions are independently Gaus-
sian, with q(µs|Γs) = N (µs : ρs, βsΓs). Here D(π :
λ1, . . . , λm), W(Γs : νs,Φs) and N (µs : ρs, βsΓs) de-
note the relevant density functions. The hyperparam-
eters are updated as follows:

λs =
n∑
i=1

ris + λ0, (4)

ρs =
( n∑
i=1

risyi + β0ρ0
)/( n∑

i=1

ris + β0

)
, (5)

βs =
n∑
i=1

ris + β0, νs =
n∑
i=1

ris + ν0, (6)



and

Φs = Φ0 +
n∑
i=1

ris(yi − µ̄s)(yi − µ̄s)′

+
[
(
n∑
i=1

ris)β0(µ̄s − ρ0)(µ̄s − ρ0)′
]/( n∑

i=1

ris + β0

)
,

(7)

where

ris = q
(S)
i (si = s), µ̄s =

( n∑
i=1

risyi

)/( n∑
i=1

ris

)
.

(ii) Optimise {q(S)
i (si), si = 1, . . . ,m, i = 1, . . . , n} for

fixed q(Θ)(Θ). For s = 1, . . . ,m, this results in

ris = q
(S)
i (si = s)

∝ π̃sΓ̃1/2
s e−(yi−ρs)′Γ̄s(yi−ρs)/2 · e−d/(2βs) , γis,

where

π̃s = exp{
∫
q(π) log πsdπ},

Γ̃s = exp{
∫
q(Γs) log |Γs|dΓs},

Γ̄s =νsΦ−1
s .

If we let γi =
∑m
s=1 γis, i = 1, . . . , n, then ris =

γis/γi.

This iterative procedure can be initialised by taking,
for each i and s,

ris ∝ λ0(ν0Φ0)1/2e−(yi−ρ0)′ν0Φ0(yi−ρ0)/2 · e−d/(2β
0).

3 THE CONVERGENCE OF
VARIATIONAL BAYES
APPROXIMATIONS AND
ASSOCIATED COVARIANCE
MATRICES

Suppose that the true value of the parameter Θ is Θ∗.
At the kth iteration of the iterative procedure (i) (ii),
we define the variational Bayesian estimates π(k), µ(k)

and Γ(k) of the parameters π, µ and Γ as their varia-
tional posterior means corresponding to the distribu-
tions q(π), q(µs|Γs) and q(Γs) at the current iteration,
thus the iterative procedure (i) (ii) suggests the follow-
ing algorithm: starting with some initial values π(0),
µ(0) and Γ(0), the variational Bayesian estimates are
computed recursively by

π(k+1)
s = M1(π(k),µ(k),Γ(k)), (8a)

µ(k+1)
s = M2(π(k),µ(k),Γ(k)), (8b)

Γ(k+1)
s = M3(π(k),µ(k),Γ(k)), (8c)

where the maps M1, M2 and M3 represent the itera-
tive procedure in (i) (ii).

In Wang and Titterington (2004b), the following con-
vergence property of the variational Bayes estimates
defined by (8) has been proved.
Lemma 1. With probability 1 as n approaches infin-
ity, π(k), µ(k) and Γ(k) converge locally to the true
values π∗, µ∗ and Γ∗; that is, they converge to the
true values whenever the starting values are sufficiently
near to π∗, µ∗ and Γ∗.
Remark 1. For general mixture models, because the
negative free energy (3) may be multi-modal, the vari-
ational Bayes algorithm may converge to different lim-
its if different starting values (or hyperparameters) are
chosen. Therefore only local convergence was proved.

Denote by ⊗ the Kronecker product. By (4)-(7) and
the convergence property given by Lemma 1, one can
easily obtain that, as n tends to infinity, nCov(π)→

π∗1(1− π∗1)
−π∗sπ∗k

. . .
−π∗sπ∗k

π∗m−1(1− π∗m−1)

 , Λ,

nCov(Γs) = 2nν(k)
s (Φ(k)

s )−1 ⊗ (Φ(k)
s )−1

= 2ν(k)
s (Φ(k)

s ⊗ Φ(k)
s )−1 → 2π∗−1

s (Γ∗s ⊗ Γ∗s),

IE(µs) =
∫
µsq

(k)(µs)dµs

=
∫
µsq

(k)(µs|Γs)q(k)(Γs)dΓsdµs = ρ(k)
s ,

and it follows that

nCov(µs) = n

∫
(µs − ρ(k)

s )(µs − ρ(k)
s )′q(k)(µs)dµs

= n

∫
(µs − ρ(k)

s )(µs − ρ(k)
s )′q(k)(µs|Γs)q(k)(Γs)dΓsdµs

= n

∫
(β(k)
s Γ(k)

s )−1q(k)(Γs)dΓs

= n(β(k)
s )−1(ν(k)

s −m− 1)−1Φ(k)
s → π∗−1

s Γ∗−1
s .

Moreover, letting µjs and Γtτs denote any elements of
µs and Γs, respectively, we have

nCov(µjs,Γ
tτ
s )

=n
∫

[µjs − IE(µjs)][Γ
tτ
s − IE(Γtτs )]

· q(k)(µs)q(k)(Γs)dµjsdΓtτs

=n
∫

[µjs − ρ(k),j
s ][Γtτs − IE(Γtτs )]

· q(k)(µs|Γs)(q(k)(Γs))2dµjsdΓtτs = 0,



and the other covariances between π, µ and Γ are zero,
by assumption (2).

Define

Ω = diag(π∗−1
s Γ∗−1

s ), Σ = diag(2π∗−1
s (Γ∗s ⊗ Γ∗s)).

Then the covariance matrix of Θ associated with the
variational posterior distributions is such that

nCov(Θ)→

Λ 0 0
0 Ω 0
0 0 Σ

 , Ψ. (9)

4 COMPARISON OF
VARIATIONAL COVARIANCE
MATRICES WITH FISHER
INFORMATION MATRICES

In this section we first give an explicit expression for
the Fisher information matrix associated with our mix-
ture model, and then compare it with the covariance
matrix associated with variational Bayes approxima-
tions, which is crucial for the performance of interval
estimates based on variational Bayes approximations.

In the sequel, we denote by y any random vector dis-
tributed according to the probability density of the
form (1). Thus the Fisher information matrix per ob-
servation is given by

I(Θ) =
∫
IRd

[∇ log p(y|Θ)][∇ log p(y|Θ)]′p(y|Θ)dy.

(10)

The Fisher information matrix plays an important role
in determining the asymptotic distribution of maxi-
mum likelihood estimators. Under quite mild condi-
tions, Redner and Walker (1984) stated the following
property of asymptotic normality for the maximum
likelihood estimator for mixture models.

Theorem 1. Let Θ̃n be the strongly consistent MLE
of the parameter Θ. Then

√
n(Θ̃n−Θ∗) is asymptoti-

cally normally distributed with mean zero and covari-
ance matrix I(Θ∗)−1.

Let L(Θ) = log p(y|Θ) and, for s = 1, . . . ,m, let

αs =
ps(y|Θ)
p(y|Θ)

, δs = y − µs,

σs = vec[Γ−1
s − (y − µs)(y − µs)′].

One should bear in mind the dependencies of αs, δs
and σs on Θ or its components, which are omitted for
the sake of clarity.

After a straightforward calculation we obtain

∂L

∂πs
= αs − αm, s = 1, . . . ,m− 1,

∂L

∂µs
= πsαsΓsδs, s = 1, . . . ,m,

∂L

∂vec(Γs)
=

1
2
πsαsσs, s = 1, . . . ,m.

Let

Q =



α1 − αm
...

αm−1 − αm
π1α1Γ1δ1

...
πmαmΓmδm

1
2π1α1σ1

...
1
2πmαmσm


.

Then the Fisher information matrix (10) can be rewrit-
ten as

I(Θ) =
∫
IRd

QQ′p(y|Θ)dy = IE[QQ′]. (11)

The following lemma is a corollary of Schwarz’s in-
equality, which has been used in Peters and Walker
(1978).

Lemma 2. If ηs ≥ 0 for s = 1, · · · ,m and
∑m
s=1 ηs =

1, then

|
m∑
s=1

ξsηs|2 ≤
m∑
s=1

ξ2
sηs

for any {ξs}s=1,··· ,m.

Moreover, after a tedious calculation the following
equalities can be verified.

Lemma 3. At the true value Θ∗, we have that, for
s = 1, . . . ,m,

IE(αs) = 1, IE(αsδs) = 0, (12a)
IE(αsσs) = 0, IE(αsδsσ′s) = 0, (12b)

IE(αsσsσ′s) = 2(Γ∗s ⊗ Γ∗s)
−1. (12c)

Now we state the main result of this section.

Theorem 2. If Ψ is defined as in (9), then the Fisher
information matrix satisfies

I(Θ∗)−1 ≥ Ψ, (13)

by which it is meant that I(Θ∗)−1 −Ψ is nonnegative
definite.



Proof. Obviously, Ψ is positive definite, and thus it is
sufficient to show that

Θ′I(Θ∗)Θ ≤ Θ′Ψ−1Θ = u′Λ−1u+v′Ω−1v+W ′Σ−1W

for any

Θ =

 u
v
W

 =



u1

...
um−1

v1

...
vm

vec(W1)
...

vec(Wm)


,

where us, vs and Ws are elements of the vector spaces
IR, IRd and the set of all real, symmetric d×d matrices,
respectively, for each s.

In fact, by (11) one has that

Θ′I(Θ∗)Θ = Θ′IE(QQ′)Θ

=IE
{m−1∑

s=1

(αs − αm)us +
m∑
s=1

π∗sαsδ
′
sΓ
∗
svs

+
m∑
s=1

1
2
π∗sαsσ

′
svec(Ws)

}2

=IE
{ m∑
s=1

π∗sαs

[
usπ

∗−1
s + δ′sΓ

∗
svs +

1
2
σ′svec(Ws)

]}2

,

where we have defined um = −
∑m−1
s=1 us.

Noting that
∑m
s=1 π

∗
sαs = 1 and applying Lemma 2,

we have

Θ′IE(QQ′)Θ

≤IE
{ m∑
s=1

π∗sαs

[
usπ

∗−1
s + δ′sΓ

∗
svs +

1
2
σ′svec(Ws)

]2}

=
m∑
s=1

IE
{
u2
sπ
∗−1
s αs + π∗sαs[δ

′
sΓ
∗
svs]

2

+
1
4
π∗sαs[σ

′
svec(Ws)]2 + 2usαsδ′sΓ

∗
svs

+ usαsσ
′
svec(Ws) + π∗sαsδ

′
sΓ
∗
svsσ

′
svec(Ws)

}
=

m∑
s=1

IE
{
u2
sπ
∗−1
s αs

}
+

m∑
s=1

IE
{
π∗sαs[δ

′
sΓ
∗
svs]

2

}

+
m∑
s=1

IE
{

1
4
π∗sαs[σ

′
svec(Ws)]2

}
,I1 + I2 + I3,

where the last equality holds since the cross terms av-
erage to zero, by (12).

Clearly, one has

I1 =
m∑
s=1

IE
{
αsu

2
sπ
∗−1
s

}
=

m∑
s=1

u2
sπ
∗−1
s .

Note that um = −
∑m−1
s=1 us and

Λ−1 =


π∗−1

1 + π∗−1
m

π∗−1
m

. . .

π∗−1
m

π∗−1
m−1 + π∗−1

m

 ,

from which it can be easily checked that u′Λ−1u = I1.

By (12),

I2 =
m∑
s=1

IE
{
π∗sαs[δ

′
sΓ
∗
svs]

2

}
=

m∑
s=1

v′sπ
∗
sΓ∗svs = v′Ω−1v.

Finally,

I3 =
m∑
s=1

IE
{

1
4
π∗sαs

[
σ′svec(Ws)

]2}

=
m∑
s=1

IE
{

1
4
π∗sαs

[
tr{[Γ∗−1

s − (y − µ∗s)(y − µ∗s)′]Ws}
]2}

=
m∑
s=1

1
4
π∗s

· IE
{
αs

[
(tr{Γ∗−1

s Ws})2 + (tr{(y − µ∗s)(y − µ∗s)′Ws})2

− 2tr{Γ∗−1
s Ws}tr{(y − µ∗s)(y − µ∗s)′Ws}

]}
=

m∑
s=1

1
4
π∗s

{
IE
[
αs(tr{(y − µ∗s)(y − µ∗s)′Ws})2

]
− (tr{Γ∗−1

s Ws})2

}
.

By expanding the matrices into expressions involving
their components and noting (12c), one can check that

IE
[
αs(tr{(y − µ∗s)(y − µ∗s)′Ws})2

]
=2tr

{
(WsΓ∗−1

s )2
}

+ (tr{Γ∗−1
s Ws})2.

Therefore,

I3 =
m∑
s=1

1
2
π∗s tr

{
WsΓ∗−2

s Ws

}
=

m∑
s=1

1
2
π∗s [vec(Ws)]′(Γ∗s ⊗ Γ∗s)

−1vec(Ws)

= W ′Σ−1W .

The proof is complete.



Table 1: The Fisher information (FI) matrices and the
inverse of the variational covariance (IVC) matrices
corresponding to Figure 1. Each cell contains a 2 × 2
matrix.

(1) (2) (3) (4)

FI
5.83 2.50 2.47 1.29 6.08 3.77 0.00 0.00

2.50 5.83 1.29 0.91 3.77 5.50 0.00 11.11

IVC
5.83 2.50 5.83 3.33 6.67 3.33 4.50 2.50

2.50 5.83 3.33 6.67 3.33 5.83 2.50 12.50

By Lemma 2 the equality in (13) holds if and only if the
mixture model (1) has only one component. In other
cases, there must exist overlapping. If the compo-
nents are well separated or have smaller overlaps, the
mixture distribution can be regarded approximately
as multinomial. In this case, for a given observation
yi, there exists one ps(yi) which is far larger than the
others, and therefore the inverse of Fisher information
matrix is close to the covariance matrix of the varia-
tional posterior distribution. Theorem 2 shows that if
overlapping exists between the components of a mix-
ture model then the covariance matrix from the vari-
ational Bayes approximation is ‘too small’ compared
with that for the MLE, so that resulting interval esti-
mates for the parameters will be too narrow.

5 NUMERICAL EXPERIMENTS

In this section we demonstrate our results with some
simple mixtures of normal densities.

First we consider mixtures of three known univariate
normal densities p1(·), p2(·) and p3(·) with means µ1,
µ2 and µ3; all have unit variance. The mixing coef-
ficients are π1, π2 and 1 − π1 − π2, respectively. For
different values of these parameters, we compute the
corresponding Fisher information matrices and the co-
variance matrices of the variational posteriors. The
mixture densities of some typical cases are plotted in
Figure 1, and the corresponding Fisher information
matrices and the inverses of variational covariance ma-
trices are described in Table 1. Obviously, if the com-
ponents in the mixture models are widely separated,
these two matrices are very similar, whereas, if the
components are nearly identical, they are very differ-
ent. The latter behaviour is reflected particularly by
the case (4) in Figure 1, where p1(·) and p1(·) are com-
pletely identical.

Next we consider a more general mixture model of two
unknown normal densities. Their means, precisions
and mixing coefficients are µ1, Γ1, π and µ2, Γ2, 1−π,
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Figure 1: Some typical mixture densities based on dif-
ferent values of the parameters.

respectively. We compute the Fisher information ma-
trices and the covariance matrices of the variational
posteriors by using two sets of values of the param-
eters, namely, (π, µ1,Γ1, µ2,Γ2) = (0.1, 1, 1, 0, 1) and
(0.5, 6, 1, 0, 1). There is large overlap between the two
components for the first set of the parameters while
they are well separated for the second. For the first
set, the Fisher information matrix, denoted by I∗, is

1.1542 0.1505 0.7456 −0.0363 −0.2612
0.1505 0.0259 0.0606 −0.0134 −0.0539
0.7456 0.0606 0.7723 0.0167 0.0774
−0.0363 −0.0134 0.0167 0.0152 0.0198
−0.2612 −0.0539 0.0774 0.0198 0.3646


and the inverse of the variational covariance matrix is

Ψ−1 = diag(11.1111, 0.1000, 0.9000, 0.0500, 0.4500).

Evaluated at a couple of arbitrary vectors Θ =
(0.8, 4, 3, 2, 1)′ and (1, 1, 1, 1, 1)′, for illustrative pur-
poses, Θ′I∗Θ (Θ′Ψ−1Θ) are equal to 14.0885 and
3.7435 (17.4611 and 12.6111), respectively. For the
second set, the Fisher information matrix I∗ is

3.9834 0.0125 0.0125 0.0170 −0.0170
0.0125 0.4905 −0.0091 −0.0133 0.0122
0.0125 −0.0091 0.4905 −0.0122 0.0133
0.0170 −0.0133 −0.0122 0.2308 0.0157
−0.0170 0.0122 0.0133 0.0157 0.2308


and the inverse of the variational covariance matrix is

Ψ−1 = diag(4.0000, 0.5000, 0.5000, 0.2500, 0.2500).

Evaluated at the same vectors Θ, Θ′I∗Θ (Θ′Ψ−1Θ)
are equal to 15.7931 and 5.4889 (16.3100 and 5.5000),
respectively.
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Figure 2: The inverses of the variances associated with
the variational Bayes approximation and Fisher infor-
mation for different mixing coefficients. The solid lines
denote Fisher information and the dashed horizontal
lines indicate the inverses of the variances for the vari-
ational Bayes approximation.

To clarify the dependence of the differences between
the inverses of the variational covariance and Fisher
information matrices on the overlaps between the com-
ponents, now we use a mixture model of two known
normal densities with means µ1 and µ2 with unit vari-
ance. The mixing coefficients are π and 1− π, respec-
tively. The parameter π is given a Beta prior distri-
bution Beta(1, 1); i.e. π ∼ Un(0, 1). To compare the
variance associated with the variational Bayes approx-
imate with Fisher information, we fix one component
to have mean zero and compute the inverse of the vari-
ance and Fisher information with the other component
having varying mean µ1. The results are plotted in
Figure 2 for different mixing coefficients π. The in-
verses of the variances associated with the variational
Bayes approximation do not vary with the changes of
µ1, whereas the Fisher informations do. And the dif-
ferences between them become larger as µ1 is closer to
zero, the mean of the first component.

We investigate the performance of interval estimates
based on the variational approximation using two em-
pirical experiments. We fix the mixing coefficient at
π∗ = 0.65 and one component to have mean zero and
unit variance within a mixture model of two normal
densities. Independent random samples, each of size
n = 50, are selected from the mixture model with the
mean of the other component equal to µ2 = 3.0 and
1.0, and with unit variance. For each sample we cal-
culate the variational Bayesian estimate π̂ as given by

(8), the variational variance Λ, the maximum likeli-
hood estimate π̃ and the Fisher information I(π∗), and
these are used to form approximate 95% confidence in-
tervals given by π̂±1.96

√
Λ/n and π̃±1.96/

√
nI(π∗).

For µ2 = 3.0, a total of 100 samples are generated and
the resulting 100 confidence intervals are computed.
It turns out that 91 out of these 100 intervals do in-
clude the true value if the variational approximation is
used, and 92 by the MLE method. Both proportions
are close to the nominal confidence coefficient of 0.95.
For µ2 = 1.0, the same number of confidence inter-
vals are generated. Among these 100 intervals, only
68 of those based on the variational approximation in-
clude the true value, while this number is 92 from the
MLE. In this case the resulting interval estimates are
obviously too narrow.

Since the variational approaches provide good approx-
imations for point estimates but poor approximations
for interval estimates, a question of interest is whether
or not the performance can be improved if we substi-
tute the variational covariance matrix by the inverse
of Fisher information for interval estimates. Theoreti-
cally, by this approach the resulting intervals would be
very close to those obtained by MLE when the sam-
ple size is large, since the variational Bayes estimator
converges to the maximum likelihood estimator. In or-
der to verify this point, we use the same independent
random samples as in the previous numerical exam-
ples to generate approximate 95% confidence interval
given by π̂ ± 1.96/

√
nI(π∗). For µ2 = 3.0, 93 out of

100 intervals include the true value, whereas 96 inter-
vals contain the true value if µ2 is 1.0. It turns out
that the approach of substituting the variational co-
variance matrix in the inverse of Fisher information
does refine the interval estimates.

6 CONCLUSION

Exact theoretical analysis of the quality of variational
Bayes approximations is an important issue. Hav-
ing proved the properties of local convergence and
asymptotic normality in Wang and Titterington (2003,
2004b,a), in this paper we examined the covariance
matrices associated with variational Bayesian approx-
imations and the resulting performance of variational
Bayes approximations for interval estimates, by com-
paring them with the true covariances, given in terms
of Fisher information matrices. It has been shown that
the covariance matrices corresponding to the varia-
tional Bayes approximation are normally ‘too small’
compared with those for the MLE, so that resulting
interval estimates for the parameters will be too nar-
row if the components of the mixture model are not
well separated. Finally the theoretical analysis was re-
inforced by some numerical examples, which also sug-



gested an idea leading to the refinement of variational
Bayes approximations for interval estimates by substi-
tuting the variational covariance by the ‘usual’ true
covariance - the inverse of Fisher information. The ar-
guments in the paper can be extended to non-Gaussian
mixture models, such as mixtures of exponential fam-
ily distributions, without any technical difficulty.
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