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Abstract

In this paper we explore the topic of un-
supervised learning in the presence of non-
ignorable missing data with an unknown
missing data mechanism. We discuss sev-
eral classes of missing data mechanisms for
categorical data and develop learning and in-
ference methods for two specific models. We
present empirical results using synthetic data
which show that these algorithms can recover
both the unknown selection model parame-
ters and the underlying data model param-
eters to a high degree of accuracy. We also
apply the algorithms to real data from the
domain of collaborative filtering, and report
initial results.

1 Introduction

In large, real world data sets (such as those commonly
used for machine learning research), the presence of a
certain amount of missing data is inevitable. Proba-
bilistic methods offer a natural framework for dealing
with missing data, and there is a large body of work
devoted to statistical analysis in this setting.

There are two important classes of missing data: miss-
ing data that is ignorable, and missing data that is
non-ignorable. Ignorable missing data includes data
that is missing completely at random (MCAR), and
data that is missing at random (MAR). Intuitively,
missing data is ignorable if the probability of observ-
ing a data item is independent of the value of that data
item. Conversely, missing data is non-ignorable if the
probability of observing a data item is dependent on
the value of that data item.

The majority of statistical literature deals with the
case where missing data is missing at random. How-
ever, there are several important cases where the miss-

ing at random assumption fails to hold. Well studied
examples from statistics include non-response in sur-
veys, panel data studies, and longitudinal studies. In
surveys non-ignorable missing data often results from
asking questions about income where the probability
of non-response has been found to vary according to
the income of the respondent. In such cases comput-
ing statistics like average income without taking the
missing data mechanism into account will result in a
biased estimator.

A much more complex domain where missing data may
be non-ignorable is rating-based collaborative filtering
[5]. The data in this domain often comes from recom-
mender systems where users rate different items and
receive recommendations about new items they might
like. When a user is free to chose which items they
rate, we hypothesize that many users will exhibit a
bias toward rating items they like (and perhaps a few
they strongly dislike). Thus the probability of observ-
ing a rating for a given item will depend on the user’s
rating for that item, and the missing ratings will not be
missing at random. The best known methods for pre-
dicting user ratings are based on using unsupervised
learning techniques to estimate the parameters of a
probabilistic model over rating profiles. Just as in the
simple mean income estimation problem, the model
parameter estimates will be biased in the presence of
non-ignorable missing data.

In this paper we consider the general problem of learn-
ing latent variable models in the presence of non-
ignorable missing data with an unknown missing data
mechanism. We present learning methods based on the
Expectation Maximization (EM) algorithm for several
different models. We present empirical results on sev-
eral synthetic data sets showing that the learning pro-
cedure recovers the data and selection model param-
eters to a high degree of accuracy. We also present
interesting results on real data from the collaborative
filtering domain.



L(θ|Y obs) = log f(Y obs|θ) = log

∫
f(Y obs, Y mis|θ)dY mis (1)

L(θ, µ|Y obs, R) = log f(Y obs, R|θ, µ) = log

∫
f(R|Y obs, Y mis, µ)f(Y obs, Y mis|θ)dY mis (2)

LMAR(θ, µ|Y obs, R) = log f(R|Y obs, µ) + log

∫
f(Y obs, Y mis|θ)dY mis = L(θ|Y obs) + L(µ|Y obs, R) (3)

2 Non-Ignorable Missing Data Theory

We begin with technical definitions of ignorable and
non-ignorable missing data due to Little and Rubin,
and review the theory of maximum likelihood estima-
tion with non-ignorable data.

Let Y denote a complete data set and let Y obs and
Y mis be the observed and missing elements of Y . Let
R be a matrix of response indicators where Rij =
1 if Yij is observed and 0 otherwise. We define
f(Y,R|θ, µ) = f(Y |θ)f(R|Y, µ) to be the joint distri-
bution over the data and response indicators. We refer
to f(Y |θ) as the data model and f(R|Y, µ) as the se-
lection model.

In the presence of missing data the correct maximum
likelihood inference procedure is to maximize the full
data likelihood L(θ, µ|Y obs, R) = log f(Y obs, R|θ, µ)
shown in equation 2 as opposed to the observed data
log likelihood shown in equation 1. The only case
where it is acceptable to rely on the observed data
likelihood is when the missing at random (MAR) con-
dition holds. The MAR condition is satisfied when
f(R|Y obs, Y mis, µ) = f(R|Y obs, µ) for all µ, and µ and
θ are distinct parameters. If we suppose that the MAR
condition holds we find that the full data log likelihood
and the observed data log likelihood will give identical
inferences for θ, as shown in equation 3.

When missing data is missing not at random (MNAR)
this convenient result does not hold, and maximum
likelihood estimation of the data model parameters θ
based only on the observed likelihood will be biased.
To obtain correct maximum likelihood estimates of the
data model parameters a selection model is needed
along with the data model [3, p. 218]. In most cases
the parameters of the selection model will also be un-
known. Fortunately the parameters of the combined
data and selection model can be estimated simultane-
ously by maximizing the full data log likelihood using
the standard EM algorithm.

3 Non-Ignorable Missing Data Models

Suppose we are given a data set containing N data
vectors yn, each of length M . The value of each ele-
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Figure 1: Combined data and selection model.

ment ymn is categorical, and is drawn from the set of
possible values {1, ..., V }. We will assume that the yn

are independent, that any element ymn may be unob-
served, and that the selection process is unknown.

To specify a model for non-ignorable missing data
we must choose a data model and a selection model.
We choose a multinomial mixture model for the data
model. This is a simple model for categorical data that
has proved to be quite robust in the collaborative fil-
tering domain [5]. Several other models for categorical
data could also be used including the aspect model [2]
and the URP model [4].

The more interesting choice is the choice of a selec-
tion model. In general, the probability that a par-
ticular variable is observed can depend on any other
variable in the data model. Learning such an unstruc-
tured model would be intractable, so we must assume
additional independence structure. To begin with, we
assume that the probability of being observed is inde-
pendent for each component of the data vector; this
is formalized in equation 4. (Analogous simplifying
assumptions have been used previously in similar dis-
crete, non-ignorable contexts [6].)

P (r|y, z) =

M∏
m=1

µymmz
(rm)(1− µymmz)

(1−rm) (4)

If we represent the Bernoulli observation parameters
P (rm = 1|ym = v, Z = z) = µvmz using conditional



probability tables and combine this selection model
with the multinomial mixture data model, we obtain
a simple, tractable model for non-ignorable missing
data. We call this the CPT-vmz model since the µvmz

probabilities are represented by conditional probabil-
ity tables (CPTs), and the selection probability de-
pends on the settings of the variables v, m, and z.
This combined data and selection model is depicted
graphically in figure 1.

The variables in the model are the latent variable
Zn, the data variables Ymn, and the corresponding re-
sponse indicators Rmn. Recall that m indexes dimen-
sions of the data vectors, and n indexes data cases.
We suppress the data case index for simplicity when it
is clear that we are referring to a single, generic data
case. The parameters are the prior mixing proportions
θ, the component distributions β, and the selection
model parameters µ. To generate data from the com-
bined multinomial mixture data model and CPT-vmz
selection model we begin by sampling a state z of the
latent variable Z according to P (Z = z|θ) = θz. We
then sample a value v for each element ym according
to P (ym = v|Z = z, β) = βvmz. This is simply the
standard generative process for the multinomial mix-
ture model. Next, for each element ym, we sample a
response indicator variable according to the selection
probability P (rm = r|ym = v,M = m,Z = z, µ) =
µvmz. We then discard the values of ym for which
rm = 0.

Depending on the type of selection effect that is
present in the data, it may be desirable to further
constrain the selection model. Imposing independence
and factorization conditions on the Bernoulli proba-
bilities µvmz results in a range of selection models
with different properties. In this paper we concen-
trate on two models in particular: a model we call
CPT-v that makes the additional independence as-
sumption P (rm|ym,m, z) = P (rm|ym), and a model
we call LOGIT-v,mz which proposes a functional de-
composition of P (rm|ym,m, z) based on the logistic
function.

3.1 The CPT-v Model

While the CPT-vmz model is highly flexible and can
model a range of very different selection effects, this
flexibility may result in over fitting on many data sets.
By contrast the CPT-v model asserts that only the
value of a random variable affects its chance of being
observed or missing. The CPT-v model is highly con-
strained, but this makes it appealing when we have
limited observations and cannot robustly fit the full
CPT-vmz model. Examples of the type of effects this
model captures are “mostly high values are observed”,
or “only extreme values are observed”. However, it can

Algorithm 1 Expectation Maximization Algorithm
for the CPT-v model

E-Step:

λvmzn ← (δ(ymn, v)µvβvmz)
rmn((1−µv)βvmz)

1−rmn

γmzn ←
∑V

v=1 λvmzn

φzn ←
θzn

∏
M

m=1 γmzn∑
K

z=1 θ
z′

∏
M

m=1 γmzn

M-Step:

θz ←
∑

N

n=1 φzn∑
N

n=1

∑
K

z=1 φzn

βvmz ←
∑

N

n=1 φznλvmzn/γmzn∑
N

n=1 φzn

µv ←
∑

N

n=1

∑
K

z=1 φzn

∑
M

m=1 rmnλvmzn/γmzn∑
N

n=1

∑
K

z=1 φzn

∑
M

m=1 λvmzn/γmzn

not efficiently represent effect of the type “data item
m is observed almost always.” As we will see, the strict
assumptions of the CPT-v model can cause problems
during model fitting if the data contains strong item-
based effects.

Equation 5 gives the full data likelihood for the CPT-
v model. We define the intermediate variables λvmzn

and γmzn in equations 6 and 7.

L(θ, β, µ|[y]obs, [r]) =

N∑
n=1

log

K∑
z=1

θz

M∏
m=1

γmzn (5)

λvmzn = (δ(ymn, v)µv)rmn(1− µv)1−rmnβvmz (6)

γmzn =

V∑
v=1

λvmzn (7)

The posterior distribution over settings of the latent
variable Z is given in equation 8 using the intermediate
variables. Of course, the intractable, full posterior over
both ymis

n , and Zn is never needed during learning.

P (z|yobs
n , rn) = φzn =

θz

∏M
m=1 γmzn∑K

z=1 θz′

∏M
m=1 γmzn

(8)

Expectation maximization updates can now be found
by maximizing the expected complete log likelihood
with respect to the data model and selection model
parameters. We show the EM algorithm for the CPT-
v model in algorithm 1.

3.2 The LOGIT-v,mz Model

The CPT-v model makes the very strong assumption
that a single value-based selection effect is responsible
for generating all missing data. We would like to allow
different effects for different data items m, as well as
allowing the setting of the latent variable z to influ-
ence the missing data process. As a modeling choice of
intermediate complexity, we propose the LOGIT fam-
ily of selection models. The main feature of LOGIT



models is the assumption that the selection model pa-
rameters µvmz result from the interaction of multiple
lower dimensional factors. In particular, these mod-
els allow all of v,m, z to influence the probability of a
data element being missing, but constrain the effects
to a particular functional family.

In the case of LOGIT-v,mz two factors are proposed.
One factor σv models a value-based effect, while the
other factor ωmz models a joint element index/latent
variable effect. This latter effect can include factors
that are item-specific (a given data item m can have its
own probability of being missing), and latent variable-
specific (each mixture component z generates its own
pattern of missing data). The values of these factors
can be arbitrary real numbers and they are combined
to obtain the selection probabilities through the logis-
tic function as seen in equation 9. This parameteriza-
tion was selected because it is more flexible than simple
factorizations, such as a product of Bernoulli probabil-
ities. Suppose a data set contains strong value-based
selection effects for most data items, but the values for
one data items are always observed regardless of their
values. LOGIT-v,mz can account for this by setting
ωmz to a large value. The logistic combination rule
then allows ωmz to override σv and produce a selection
probability of 1 for just this data item. In a product
of distributions decomposition this simply is not pos-
sible. As we will later see, this flexibility is needed
for modeling “blockbuster” effects in the collaborative
filtering domain.

µvmz =
1

1 + exp−(σv+ωmz)
(9)

Given values for the selection model parameters σv

and ωmz, we can compute the complete set of selection
probability parameters µvmz according to equation 9.
If we then redefine the intermediate variable λvmzn

according to equation 10, the full likelihood and the
posterior over the latent variable have exactly the same
form for the LOGIT-v,mz model as they do for the
CPT-v model.

λvmzn = (δ(ymn, v)µvmz)
rmn(1− µvmz)

1−rmnβvmz

(10)
Unlike the CPT-v case, closed form selection model
parameter updates cannot be found for LOGIT-v,mz.
Instead, numerical optimization methods must be used
to adapt these parameters. We sketch a suitable EM
algorithm for the LOGIT-v,mz model in algorithm
2. Note that to ensure the full likelihood is non-
decreasing, line search must be used to determine ac-
ceptable step sizes α at each iteration.

Algorithm 2 Expectation Maximization Algorithm
for the LOGIT-v,mz model

E-Step:

µvmz ←
1

1+exp−(σv+ωmz)

λvmzn ← (δ(ymn, v)µvmz)
rmn(1− µvmz)

1−rmnβvmz

γmzn ←

∑
V

v=1
λvmzn

φzn ←

θzn

∏
M

m=1
γmzn∑

K

z=1
θz′

∏
M

m=1
γmzn

M-Step:

θz ←

∑
N

n=1
φzn∑

N

n=1

∑
K

z=1
φzn

βvmz ←

∑
N

n=1
φznλvmzn/γmzn∑

N

n=1
φzn

σ ← σ − ασ

N∑
n=1

K∑
z=1

φzn

M∑
m=1

δ(ymn, v)(rmn − µvmz)

ω ← ω − αω

N∑
n=1

φzn

V∑
v=1

(rmn − µvmz)

4 Synthetic Data Experiments

Our first goal is to examine whether, in situations
where the assumptions underlying them are satisfied,
the proposed models are able to recover both the un-
known selection mechanism and a correct model of the
data. To this end, we generated synthetic data sets
patterned after real data sets from the collaborative
filtering domain.

4.1 Generating Synthetic Data

We generate complete synthetic data sets according to
a hierarchical Bayesian procedure. In particular, we
choose a K = 6 component multinomial mixture data
model with M=100 data variables, and V = 5 values
per variable. The mixture model parameters are sam-
pled from an appropriate length Dirichlet prior (uni-
form, strength two). We sample n=5000 data cases
from the mixture model to form a single, complete
data set.

To generate data that conforms to the CPT-v selection
model, we created several sets of selection parameters
and used these to sample the complete data. For the
purpose of these experiments we use a CPT-v selection
model with a special functional form that allows the
strength of the missing data effect to be easily quanti-
fied. In particular we let µv(s) = s(v− 3)+0.5, where
s is the parameter that controls the strength of the
effect. Note that since the underlying data distribu-
tion is uniform across values, any choice of s in the
range 0 < s < 0.25 yields an overall observation rate
of 0.5. We create ten sets of observation probabilities
by evenly varying the parameter s from 0 to 0.225.
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Figure 2: Selection probabilities for the effect µv(s) = s(v − 3) + 0.5. The parameter s controls the strength of
the missing data effect. Here we show µv(s) at ten equally spaced values on the interval 0 ≤ s ≤ 0.225.
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Figure 3: MAEAll and MAETr versus strength of
the CPT-v missing data effect for the multinomial
mixture, CPT-v, and LOGIT-v,mz models.
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Figure 4: MAEAll and MAETr versus strength of
the LOGIT-v,mz missing data effect for the multi-
nomial mixture, and LOGIT-v,mz models.

The resulting parameters are shown in figure 2. These
ten sets of observation parameters were used to sample
ten different training sets from the complete data set.

To generate data that conforms to the LOGIT-v,mz
model we need to define the selection model param-
eters σv and ωmz. We create 10 different selection
models by setting:

σv(s) = log(µv(s)/(1− µv(s)))

ωmz = log(πmz/(1− πmz))

The πmz values are sampled from a Beta prior. Note
that we have chosen these values so that when the lo-
gistic function is applied to σv(s) the result is µv(s),
and when it is applied to ωmz the result is πmz. We
compute the corresponding set of selection probabil-
ities µvmz(s) and use these to sample ten different
training sets.

4.2 Experimental Procedure

The mixture of multinomials model, the CPT-v model,
and the LOGIT-v,mz model were trained until conver-
gence of their respective likelihood functions on all ten

of the CPT-v training sets, and all ten of the LOGIT-
v,mz training sets. After training, each model was
used to predict the complete data vector ŷn for each
data case n given the training set (observed) values for
that data case. We repeat this training and prediction
process three times with different initializations to ac-
count for local minima.

In order to judge the performance of each model under
increasing missing data effect strength, we use the true
and predicted ratings to measure a quantity called the
mean absolute error (MAE), which is commonly used
as an error measure in the collaborative filtering do-
main. We measure the MAE restricted to the training
data as defined in equation 11, as well as the MAE
computed over the complete data set as seen in equa-
tion 12. Note that on a real data set we have no choice
but to compute the MAE restricted to the observed
ratings, which corresponds to equation 11. If a given
model accurately learns both the data model and se-
lection model parameters for each setting of the effect
strength s, the computed MAEAll values should be
approximately constant indicating little degradation
in performance.



MAETr =
1

N

N∑
n=1

M∑
m=1

rmn|ymn − ŷmn|∑M
m=1 rmn

(11)

MAEAll =
1

NM

N∑
n=1

M∑
m=1

|ymn − ŷmn| (12)

It is very important to note that under a non-ignorable
selection model, the value of MAETr as defined by
equation 11 is a biased estimate of E[|y − ŷ|], were
we to sample items uniformly at random. Since the
selection model is non-ignorable and also unknown, it
is not possible to introduce a correction factor that
will allow for an unbiased estimate of E[|y − ŷ|] from
the training data alone. On the other hand, the value
of MAEAll as computed by equation 12 is unbiased
because it is computed from the complete set of true
ratings. However, such a complete set of ratings is not
currently available for real data sets.

4.3 Results

In figure 3 we show the results of the synthetic data
experiment with the CPT-v selection model effect. At
s = 0, corresponding to the first histogram in figure 2,
the selection effect is constant across values v and is
thus ignorable. In this case we would expect MAETr

to be approximately equal to MAEAll. In addition
we would expect all three models to achieve approxi-
mately the same prediction performance since all three
are based on an underlying multinomial mixture data
model. The experimental results we obtain at s = 0
are exactly in line with the theory.

As we increase s we would expect that the value
of MAEAll would increase for the multinomial mix-
ture model since its parameter estimates are based
only on the observed training data. Both the CPT-v
and LOGIT-v,mz models have the capacity to exactly
model this selection effect. If these models learn ac-
curate data and selection model parameters then the
measured value of MAEAll should be approximately
constant. A further note is that LOGIT-v,mz actu-
ally has excess capacity when applied to the CPT-v
selection effect data, so over fitting may be an issue.

As we see in figure 3 the MAEAll curves follow ex-
actly the trends we have predicted for each of the
models. However, the MAETr curves exhibit an in-
teresting downward trend indicating that error on the
training set actually decreases as the missing data ef-
fect strength is increased. This is not unexpected in
the mixture of multinomials model since it is able to
concentrate more of its capacity on fewer rating val-
ues and thus achieve lower error on the training data.
CPT-v and LOGIT-v,mz exhibit a slight decrease in

error on the training set as the selection strength is in-
creased, but it is not accompanied by a corresponding
increase on the complete data set.

In figure 4 we show the results of the synthetic data ex-
periment with the LOGIT-v,mz selection effect. The
most notable result of this experiment is the fact that
the learning procedure for the CPT-v model, algo-
rithm 1, converges to a “boundary solution” for the
µv parameters for all values of the effect strength s.
Specifically, at convergence the µ values have the form
µ1 = c, µj ≈ 1, where c reflects the global sparsity rate
and 2 ≤ j ≤ 5. This appears to indicate that the CPT-
v model lacks the capacity to model the LOGIT-v,mz
missing data effect. This failure of the CPT-v model
may result from the presence of strong item-based ef-
fects in the LOGIT-v,mz data. For example, suppose
an item is always observed regardless of its value. The
only way CPT-v can explain this is by increasing the
values of µ. Of course it cannot increase all the val-
ues of µ since it must still explain the fraction of data
that is missing. The most likely solution appears to be
exactly the boundary solution explained above. This
problem may also simply be a failure of the maximum
likelihood framework. We plan to explore a Bayesian
approach to prediction to determine if the problem
actually lies with the model, or the estimation and
prediction techniques.

The trends for the mixture of multinomials model are
quite similar to the previous case with similar explana-
tions applying. The trends for the LOGIT-v,mz model
are also similar to the previous case. One slight differ-
ence is that the MAEAll curve is more noisy and in-
creases somewhat with s. The most likely explanation
is an insufficient amount of training data to properly
estimate all the ωmz parameters. The previous case is
easier for the LOGIT-v,mz model in this respect since
the CPT-v data contains no item or latent variable-
based effects.

Perhaps the most important point illustrated by fig-
ures 3 and 4 is that estimating the prediction error on
the observed data only can be an arbitrarily poor esti-
mate of the error on the complete data set in the pres-
ence of a non-ignorable missing data effect. In both
graphs we see that the multinomial mixture model at-
tains the lowest error on the observed data, when in
fact its true error rate is the highest among the three
models.

5 Real Data Experiments

Unfortunately, the task of evaluating a method for un-
supervised learning in the presence of non-ignorable
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Figure 5: EachMovie marginal selection probabilities
P (r = 1|y = v). Computed under a learned LOGIT-
v,mz model from parameters σ, ω, β, θ.

Figure 6: EachMovie Full Data Log Likelihood
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LOGIT-v,mz −8.750368× 106

Multinomial Mixture −1.164895× 107

missing data on real data sets is problematic. Stan-
dard evaluation procedures involve measuring predic-
tion error on held out observed data. This hold-out
method entails an inherent bias in our case, as it is
only possible to evaluate predictions for items that are
not missing. That is, unlike the case for synthetic
data, evaluating MAEAll is impossible for real data. A
learning method based on the MAR assumption would
be expected to perform at least as well as one based
on MNAR on such a biased hold-out experiment: a
system can safely ignore any dependence of the item’s
response on missing values if it is never evaluated on
missing items.

We are currently considering a novel interactive data
gathering procedure designed to collect exactly the
type of data needed to validate the proposed models.
The main idea is to conduct an interactive, two stage
survey. In the first stage participants would be free
to select and rate any number of items they wished.
This data would then form the training set, and would
likely contain a strong non-ignorable missing data ef-
fect. In the second stage of the survey a different set of
items would be randomly selected for each participant
to rate. Ratings for these randomly sampled items
would then form the test set. While this might be dif-
ficult for items like movies, it is quite simple for items
like music where a clip can be played if the partici-
pant is not familiar with a particular randomly chosen
item. Since the test data is a randomly chosen set of
items, evaluating prediction error on the test set gives

an unbiased estimate of the error on the whole data
set.

It is still interesting to observe what the proposed mod-
els learn on currently available real data sets, even if
this results can not be considered conclusive. We note
that not all currently available ratings-based collab-
orative filtering data can be used with the proposed
models. The key assumption is that users are free
to rate items at will. Any source of data where the
users are constrained to rate a sequence of items de-
termined solely by a recommender system violates this
assumption. In this case the proposed models would
essentially be learning the selection bias caused by the
recommender system attempting to predict items it
thinks the user will like. While this may actually be
an interesting method to test the efficacy of a recom-
mender system, it is not what we intend here.

We chose to apply the CPT-v and LOGIT-v,mz mod-
els to a well known collaborative filtering data set:
EachMovie. EachMovie is a collaborative filtering data
set collected from a movie recommender system op-
erated by the Compaq Systems Research Center. It
contains about 1600 movies and 70000 users. Each-
Movie is well known to contain a “blockbuster” ef-
fect where several movies have been rated by almost
all users, while others are rated by just a few users.
EachMovie also contains a fairly strong user-based ef-
fect: the number of movies rated per user ranges from
one to several thousand. EachMovie is widely believed
to contain quite a substantial bias toward high rating
values. The underlying recommender system used to
collect the data also allowed for free user interaction,
which satisfies our main requirement.

EachMovie appears too complicated for the CPT-v
model using maximum likelihood learning. As in the
synthetic LOGIT-v,mz experiment, CPT-v converges
to uninformative boundary solutions on EachMovie.
On the other hand, LOGIT-v,mz appears to converge
to parameter estimates that are in very good align-
ment with the effects that are thought to occur in the
data set.

After convergence, we can examine the learned param-
eters σ, ω, β, θ and use them to compute the marginal
probability P (r = 1|y = v) as a summary of the
learned selection effect (averaged across all items and
settings of the latent variable). We show the computed
marginal selection probabilities for EachMovie in fig-
ure 5. This figure exhibits a definite skew toward high
ratings values, although the dip at the highest rating
value is somewhat suspect.

While we cannot compute an unbiased estimator of the
expected mean absolute error for the data set, we can
compute another quantity that will allow us to com-



pare the LOGIT-v,mz model with a MAR multinomial
mixture model: the full data likelihood. The mixture
of multinomials model has no explicit selection model
and optimizes only an observed data likelihood as seen
in equation 1. However, as we see in equation 3 we can
obtain the full data likelihood from the observed data
likelihood by accounting for the likelihood of the re-
sponse indicators. If we suppose a simple MAR scheme
with a global observability parameter µ, the log likeli-
hood of the complete set of response indicators is given
by log(µ)

∑
n

∑
m rmn + log(1− µ)

∑
n

∑
m(1− rmn).

In this case the maximum likelihood estimator for µ is
simply µ = 1

NM

∑
n

∑
m rmn.

We show the full data likelihood values for the LOGIT-
v,mz model and the multinomial mixture model com-
puted for the EachMovie data set in figure 6. We see
that LOGIT-v,mz obtains a significantly higher full
data log likelihood value than the simple MAR multi-
nomial mixture model.

6 Extensions and Future Work

In addition to the research directions mentioned in the
previous sections, we are also considering extensions of
the proposed framework that will allow us to model a
wider range of missing data problems. In the original
framework, the binary response value Rm for an item
m is determined by the presence of a rating Ym for that
item. We might also decouple these two variables, and
allow a response to exist for an item (Rm = 1) when
the rating is not known. This situation often arises
in Web-based systems where we may have information
about many items a user has viewed, but a relatively
small number of ratings. Only minor changes are re-
quired to reformulate the proposed models to handle
this type of data.

7 Conclusions

In this paper, we have proposed several probabilistic
selection models which treat missing data as a system-
atic (non-ignorable) rather than random (ignorable)
effect. Coupled with a basic discrete latent variable
model for user-item data, these selection mechanisms
allow us to model data sets in which known (or sus-
pected) response biases exist. We have derived efficient
learning and inference algorithms to jointly estimate
the data and selection model parameters in an unsu-
pervised way, and verified that these algorithms can
recover both the unknown selection model parameters
and the underlying data model parameters to a high
degree of accuracy under a wide variety of conditions.
We have also shown that when an unbiased estimate
of their performance is available, our models do sub-

stantially better than comparable models which do not
account for the missing data mechanism. Finally, we
have applied these models to a real world collaborative
filtering data set, EachMovie, obtaining initial results
that support several “folk beliefs” about the patterns
of missing data in this data set.
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