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Abstract

We propose a Bayesian approach to learning
Bayesian network models from incomplete
data. The objective is to obtain the posterior
distribution of models, given the observed
part of the data. We describe a new algo-
rithm, called eMC4, to simulate draws from
this posterior distribution. One of the new
ideas in our algorithm is to use importance
sampling to approximate the posterior distri-
bution of models given the observed data and
the current imputation model. The impor-
tance sampler is constructed by defining an
approximate predictive distribution for the
unobserved part of the data. In this way
existing (heuristic) imputation methods can
be used that don’t require exact inference for
generating imputations.

We illustrate eMC4 by its application to mod-
eling the risk factors of coronary heart dis-
ease. In the experiments we consider different
missing data mechanisms and different frac-
tions of missing data.

1 Introduction

Bayesian networks are probabilistic models that can
represent complex interrelationships between random
variables. It is an intuitively appealing formalism
for reasoning with probabilities that can be employed
for diagnosis and prediction purposes. Furthermore,
learning Bayesian networks from data may provide
valuable insight into the (in)dependences between the
variables.

In the last decade, learning Bayesian networks from
data has received considerable attention in the re-
search community. Most learning algorithms work un-
der the assumption that complete data is available. In

practical learning problems one frequently has to deal
with missing values however. The presence of incom-
plete data leads to analytical intractability and high
computational complexity compared to the complete
data case. It is very tempting to “make the problem
go away” either by deleting observations with missing
values or using ad-hoc methods to fill in (impute) the
missing data. Such procedures may however lead to
biased results, and, in case of imputing a single value
for the missing data, to an overconfidence in the results
of the analysis.

We avoid such ad-hoc approaches and use a method
that takes all observed data into account, and cor-
rectly reflects the increased uncertainty due to miss-
ing data. We do assume however that the missing
data mechanism is ignorable as defined by Little and
Rubin (1987). Essentially this means that the proba-
bility that some component is missing may depend on
observed components, but not on unobserved compo-
nents.

Our approach is Bayesian in the sense that we are
not aiming for a single best model, but want to ob-
tain (draws from) a posterior distribution over possi-
ble models. We show how to perform model averaging
over Bayesian network models, or alternatively, how
to get a range of good models, when we have incom-
plete data. We develop a method that can handle a
broad range of imputation methods without violating
the validity of the models returned. Our approach is
not restricted to any imputation technique in particu-
lar, and therefore allows for imputation methods that
do not require expensive inference in a Bayesian net-
work.

This paper is organised as follows. In section 2 we
briefly review previous research in this area and show
how our work fits in. In section 3 we describe model
learning from complete data. In sections 4 and 5 we
introduce a new algorithm, called eMC4, for Bayesian
network model learning from incomplete data. We per-
formed a number of experiments to test eMC4 using



real life data. The results of those experiments are re-
ported in section 6. Finally, we summarize our work
and draw conclusions.

2 Previous research

Here we briefly review relevant literature on learning
Bayesian networks from incomplete data. Two pop-
ular iterative approaches for learning parameters are
Expectation-Maximization (EM) by Dempster et al.
(1977) and a simulation based Gibbs sampler (Geman
and Geman, 1984) called Data Augmentation (DA) in-
troduced by Tanner and Wong (1987). For Bayesian
networks EM was studied by Lauritzen (1995). The
Expectation step (E-step) involves the performance of
inference in order to obtain sufficient statistics. The
E-step is followed by a Maximization step (M-step) in
which the Maximum Likelihood (ML) estimates are
computed from the sufficient statistics. These two
steps are iterated until the parameter estimates con-
verge.

Data Augmentation (DA) is quite similar but is non-
deterministic. Instead of calculating expected statis-
tics, a value is drawn from a predictive distribution
and imputed. Similarly, instead of calculating the ML
estimates, one draws from the posterior distribution
on the parameter space (conditioned on the sufficient
statistics of the most recent imputed data set). Based
on Markov chain Monte Carlo theory this will eventu-
ally return realizations from the posterior parameter
distribution. There are also EM derivatives that in-
clude a stochastic element quite similar to DA (see
McLachlan and Krishnan, 1997).

Bound and Collapse (BC) introduced by Ramoni and
Sebastiani (2001) is a two-phase algorithm. The bound
phase considers possible completions of the data sam-
ple, and based on that computes an interval for each
parameter estimate of the Bayesian network. The col-
lapse phase computes a convex combination of the in-
terval bounds, where the weights in the convex com-
bination are computed from the available cases. The
collapse phase seems to work quite well for particu-
lar missing data mechanisms but unfortunately is not
guaranteed to give valid results for ignorable mecha-
nisms in general.

Learning models from incomplete data so to speak
adds a layer on top of the parameter learning methods
described above. For EM, Friedman (1998) showed
that doing a model selection search within EM will re-
sult in the best model in the limit accoring to some
model scoring criterion. The Structural EM (SEM)
algorithm is in essence similar to EM, but instead of
computing expected sufficient statistics from the same
Bayesian network model throughout the iterations, a

model selection step is employed. To select the next
model, a model search is performed, using the expected
sufficient statistics obtained from the current model
and current parameter values.

Ramoni and Sebastiani (1997) describe how BC can be
used in a model selection setting. As remarked before
however, BC is not guaranteed to give valid results
for ignorable mechanisms in general, and the risk of
obtaining invalid results unfortunately increases when
the model structure is not fixed.

In contrast to SEM, our aim is not to select a sin-
gle model, but to obtain a posterior probability distri-
bution over models that correctly reflects uncertainty,
including uncertainty due to missing data. Therefore
our approach is more related to the simulation based
DA described above.

3 Learning from complete data

In this section we discuss the Bayesian approach to
learning Bayesian networks from complete data. First
we introduce some notation. Capital letters denote
discrete random variables, and lower case denotes a
state. Boldface denote random vectors and vector
states. We use Pr(·) to denote probability distribu-
tions (or densities) and probabilities. D = (d1, . . . , dc)
denotes the multinomial data sample with c i.i.d. cases.
A Bayesian network (BN) for X = (X1, . . . , Xp)
represents a joint probability distribution. It con-
sists of a directed acyclic graph (DAG) m, called the
model, where every vertex corresponds to a variable
X i, and a vector of conditional probabilities θ, called
the parameter, corresponding to that model. The
joint distribution factors recursively according to m as
Pr(X|m, θ) =

∏p
i=1 Pr(X i|Π(X i), θ), where Π(X i) is

the parent set of X i in m.

Since we learn BNs from a Bayesian point of view,
model and parameter are treated as random variables
M and Θ. We define distributions on parameter space

PrΘ(·) and model space PrM (·). The superscript is
omitted and we simply write Pr(·) for both. The dis-
tribution on the parameter space is a product Dirich-
let distribution which is conjugate for the multinomial
sample D, i.e. Bayesian updating is easy because the
posterior once D has been taken into consideration is
again Dirichlet, but with updated hyper parameters.
The MAP model is found by maximizing with respect
to M

Pr(M |D) ∝ Pr(D|M) · Pr(M) (1)

where Pr(D|M) is the normalizing term in Bayes the-
orem when calculating the posterior Dirichlet

Pr(D|M) =

∫

Pr(D|M,Θ) Pr(Θ|M)dΘ (2)



where Pr(D|M,Θ) is the likelihood, and Pr(Θ|M) is
the product Dirichlet prior. In Cooper and Herskovits
(1992) a closed formula is derived for (2) as a function
of the sufficient statistics for D and prior hyper pa-
rameters of the Dirichlet. This score can be written as
a product of terms each of which is a function of a ver-
tex and its parents. This decomposability allows local
changes of the model to take place without having to
recompute the score for the parts that stay unaltered,
that is, only the score for vertices whose parents set
has changes needs to be recomputed.

Instead of the MAP model, we may be interested in
the expectation of some quantity ∆ of models using
Pr(M |D) as a measure of uncertainty over all models

E[∆] =
∑

M

∆M · Pr(M |D) ≈
1

q

q
∑

i=1

∆mi (3)

where the Monte Carlo approximation is obtained by
sampling {mi}q

i=1 from Pr(M |D).

It is infeasible to calculate the normalizing factor
Pr(D) required to obtain equality in equation (1).
Madigan and York (1995) and Giudici and Castelo
(2003) propose to use (enhanced) Markov chain Monte
Carlo Model Composition (eMC3) for drawing mod-
els from this distribution leaving the calculation of
the normalizing term implicit. It is a sampling tech-
nique based on Markov chain Monte Carlo Metropolis-
Hastings sampling summarized in the following iter-
ated steps. At entrance assume model mt:

1. Draw model mt+1 from a proposal distribution
Pr(M |mt) resulting in a slightly modified model
compared to mt (addition, reversal or removal of
an arc).

2. The proposed model mt+1 is accepted with prob-
ability

α(mt+1, mt) = min
{

1,
Pr(D|mt+1) Pr(mt+1)

Pr(D|mt) Pr(mt)

}

,

otherwise the proposed model is rejected and

mt+1 def
= mt.

For t →∞ the models can be considered samples from
the invariant distribution Pr(M |D). Note that in step
two the normalizing factor Pr(D) has been eliminated.
For enhanced MC3 a third step is required, Repeated

Covered Arc Reversals (RCAR) which simulates the
neighbourhood of equivalent DAG models. We refer
to Kocka and Castelo (2001) for details.

4 Learning from incomplete data

Running standard eMC3 can be quite slow, especially
for large models and data sets. In the presence of miss-

ing data, a prediction ‘engine’ (predicting missing com-
ponents) so to speak has to be wrapped around eMC3.
Obtaining a prediction engine which will always make
the correct predictions is infeasible to construct, and
when the engine itself has to adapt to the ever chang-
ing model this becomes even worse. An approximate
predictive engine is usually easier to construct, but will
obviously sometimes make slightly wrong predictions.
In this section we show how approximation can be used
together with eMC3 to obtain realizations from the
posterior model distribution such that prediction er-
rors are corrected for.

Our goal is to compute (3) when we have missing data.
To be more precise, if we write D = (O,U) to denote
the observed part O and the unobserved part U , our
goal is to get draws from Pr(M |O) such that we can
use the approximation in (3). Due to incompleteness
the integral in (2) no longer has a tractable solution.
Our approach is instead to rewrite the posterior model
distribution such that U can be “summed out” by way
of “filling in”. Note that the desired model posterior
can be written as

Pr(M |O) =
∑

U

Pr(M |O, U) Pr(U |O). (4)

The first term is the distribution given in (1) involv-
ing the prior and the marginal likelihood (2). The
second part is the predictive distribution which can be
considered the predictor of the missing data based on
the observed part. We explicitly model the predictive
distribution as a BN with model M ′, the imputation

model. We therefore write

Pr(M |O, M ′)=
∑

U

Pr(M |O, U, M ′) Pr(U |O, M ′) (5)

We assume that M is independent of M ′ given O and
U , i.e. once we are presented with complete data, the
imputation model has become irrelevant

Pr(M |O, U, M ′) = Pr(M |O, U).

The Monte Carlo approximation of (5) is calculated as

Pr(M |O, M ′) ≈
1

n

n∑

i=1

Pr(M |O,U i)

where U i ∼ Pr(U |O, M ′) for i = 1, . . . , n. So, if we
could compute realizations from this predictive distri-
bution we could approximate Pr(M |O, M ′). Unfor-
tunately we can not use simple sequential Bayesian
updating (Spiegelhalter and Lauritzen, 1990) for de-
termining Pr(U |O, M ′). Instead of sampling from the
true predictive distribution, we define an approximate

predictive distribution which can act as a proposal dis-
tribution for suggesting imputations. The predictive



distribution can be rewritten such that it can act as
a quality measure for a proposed imputation. This
is accomplished by using importance sampling. De-
note the approximate predictive distribution Pr∗(U)
and rewrite (5)

Pr(M |O, M ′) =
∑

U

Pr(M |O, U)
Pr(U |O, M ′)

Pr∗(U)
Pr∗(U)

Sample U i ∼ Pr∗(U) for i = 1, . . . , n and use that
sample in the importance sampling approximation

Pr(M |O, M ′)≈
1

W

n∑

i=1

Pr(U i|O, M ′)

Pr∗(U i)
︸ ︷︷ ︸

wi

Pr(M |O,U i) (6)

where W =
∑n

i=1 wi is the normalizing constant. Now
rewrite the predictive distribution

Pr(U i|O, M ′) = Pr(U i,O|M ′)
1

Pr(O|M ′)

where the term Pr(U i,O|M ′) is given by (2). Through
normalization the denominator Pr(O|M ′) disappears
as it is independent of U . It therefore suffices to cal-
culate the weights as

wi =
Pr(U i,O|M ′)

Pr∗(U i)
(7)

where the numerator can be computed efficiently and
the denominator is the probability of the proposal.
The marginal likelihood in the numerator is in this
context not used as a scoring criterion for models. In-
stead we use it as a scoring criterion for imputations.
The denominator compensates for the bias introduced
by drawing from Pr∗(U) rather than the correct pre-
dictive distribution.

Given a set {U i}n
i=1 that has been sampled from

Pr∗(U), sampling from the mixture approximation (6)
of Pr(M |O, M ′) is done as follows:

1. The probability of selecting sample U i augment-
ing O is proportional to the importance weight
wi.

2. The now complete sample (O,U i) is used for sam-
pling models from Pr(M |O,U i) using eMC3.

We can now draw from Pr(M |O, M ′), but our goal was
to obtain draws from Pr(M |O), i.e. we need samples
from the posterior model distribution given observed
data without conditioning on the imputation model
M ′. The desired distribution is obtained by Gibbs
sampling. Given an imputation model ml draw the
following

ml+1 ∼ Pr(M |O, ml)

...

Algorithm eMC4(n, q, k)

1 m0 ← G = (V = X, E = ∅)

2 r← 0

3 for l← 0 to k

4 W ← 0

5 U0 ← Ur

6 for i← 0 to n

7 wi ← Pr(O,U i|ml) / Pr∗(U i)

8 W ←W + wi

9 if i 6= n then draw U i+1 ∼ Pr∗(U)

10 draw r ∼ Pr(i) = wi/W

11 m0 ← ml

12 for t← 0 to q

13 mt ← RCAR(mt)

14 draw mt+1 ∼ Pr(M |mt)

15 B ← Pr(O,Ur |mt+1) / Pr(O,Ur|mt)

16 draw α ∼ Bernoulli(min{1, B})

17 if α 6= 1 then mt+1 ← mt

18 ml+1 ← mq+1

19 LogToFile(ml+1)

Figure 1: The eMC4 algorithm

which for l →∞ results in a chain of realizations from
Pr(M |O). This in effect allows us to calculate (3).

When n is large, the mixture approximation is close
to the real distribution Pr(M |O, M ′). However, the
invariant model distribution is reached for any value
assigned to n if we make sure that one of the imputa-
tion proposals is the current imputation, i.e. the aug-
mented data sample that was selected at the last mix-
ture draw before entering the eMC3 loop. By this
overlap, n is indirectly increased every time the mix-
ture is set up. From a practical point of view however,
n does have an impact on how well the model Markov
chain mixes. Small n implies slow mixing depending
on how far the approximate predictive distribution is
from the real predictive distribution.

We do not discuss parameter estimation in this paper,
but merely mention that using the importance sampler
presented above, it is also possible to approximate the
posterior parameter distribution. In (6) simply plug
in Pr(Θ|M ′,O,U i) instead of Pr(M |O,U i) to obtain
the required posterior.

To summarize, figure 1 contains the pseudo-code for
the algorithm called enhanced Markov Chain Monte

Carlo Model Composition with Missing Components,
or for short, eMC4. In line 1 an initial empty graph
is defined. In lines 6–9 the imputations take place
and the importance weights are calculated. Line 10
is the first step in drawing from the mixture. Lines



12–17 perform the eMC3 algorithm based on the aug-
mented sample selected. In the absence of relevant
prior knowledge, a uniform model prior is assumed in
line 15. Angelopoulos and Cussens (2001) discuss the
construction of informative model priors. The choice
of k (number of iterations of the Gibbs model sampler)
depends on when the Markov chain of models has con-
verged. Monitoring the average number of edges is one
method for doing so suggested by Giudici and Green
(1999). Once this average stabilizes the chain has con-
verged.

5 Proposal distribution Pr∗(U)

We can choose freely the approximate predictive dis-
tribution from which samples are drawn for (6), but
of course some choices are better than others. Ideally,
the appoximate predictive distribution should be close
to the real predictive distribution, because otherwise n

is required to be large to obtain enough samples from
the region where the mass of the real distribution is
located. Existing imputation techniques can be used,
as long as they can be cast in the form of a distribu-
tion from which imputations can be drawn. Naturally
it is also a requirement that Pr∗(U) has support when
Pr(U |O, M ′) has support. A uniform proposal distri-
bution is probably unwise unless a very small fraction
of data is missing. On the other hand, a distribution
based on M ′ with parameters estimated using EM is
not needed. Employing the BC algorithm for param-
eter estimation using M ′ could be interesting, since
it is fast and is reported to often give reasonable re-
sults. Alternatively, a simple available cases analysis

may prove to be good enough.

It is not a requirement to use the actual imputation
model M ′ as the basis for Pr∗(U). In fact Pr∗(U)
need not be modeled as a BN at all. However, an
imputation method that does not take the indepen-
dences portrayed by M ′ into account will have a hard
time proposing qualified imputations, because the de-
gree of freedom is simply too high (assuming that
nothing is known about the missing data mechanism).
Similarly, the parameter does not need to be derived
from the data; however, since the missing data mech-
anism is assumed to be ignorable, all information we
need to impute (predict) is contained (indirectly) in
O, and therefore predictions should at least depend

on observed values. We propose to model Pr∗(U)
def
=

Pr(U |O, M ′, θ) as a BN with model M ′ and parameter
θ = E[Θ|O,UM ′

], where expectation is with respect
to Pr(Θ|M ′), and (O,UM ′

) is the augmented sample
from which M ′ was learned. The latter makes sense
because (O,UM ′

) is the sample from which the model
was learned and therefore reflects the most appropriate

sample on which to base the parameter.

In order do draw multivariates we propose the fol-
lowing method based on Gibbs sampling, where re-
alizations are drawn on a univariate level. Denote
a case j in D by dj = (x1

j , . . . , x
p
j ) = (oj , uj) =

(oj , (u
1
j , . . . , u

r(j)
j )), where oj and uj refer to the ob-

served and unobserved part of the case. The j’th case
for U t is sampled as follows

u
1,t
j ∼ Pr(U1

j |u
2,t−1
j , . . . , u

r(j),t−1
j , oj , M

′, θ)

...

u
r(j),t
j ∼ Pr(U

r(j)
j |u1,t

j , . . . , u
r(j)−1,t
j , oj , M

′, θ).

Based on Markov chain Monte Carlo theory, corre-
lated multivariate realizations uj ∼ Pr(U j |oj , M

′, θ)
are obtained when t → ∞. Since each draw in the
Gibbs sampler is univariate, and the entire Markov
blanket of variable U i has evidence, inference does not
require any advanced techniques.

With the suggested Gibbs sampler we effectively col-
lect all realizations including samples in the burn-in
phase. The idea is to let the importance sampler de-
cide on the quality of the proposed imputations.

We can calculate the importance weights efficiently
without explicitely knowing the actual probabilities
Pr(U i|O, M ′, θ). This can be seen by rewriting the
importance weights from (7):

wi =
Pr(U i,O|M ′)

Pr(U i|O, M ′, θ)

=
Pr(U i,O|M ′) · Pr(O|M ′, θ)

Pr(U i,O|M ′, θ)
.

By normalization of these weights, Pr(O|M ′, θ) can-
cels out, and it suffices to calculate the weights as

wi =
Pr(U i,O|M ′)

Pr(U i,O|M ′, θ)
,

the ratio of the marginal likelihood over the likelihood
given θ. This ratio is easily obtained because both
probabilites can be computed efficiently in closed form.
In summary, we can propose imputations efficiently
and we can compute the “quality” of such a propsal
efficiently as well.

When the structural difference between the imputa-
tion model M ′ and the exit model M is kept relatively
small (dependent on q), we can make the following
observations when θ is assigned E[Θ|O,UM ′

]:

(1) Multivariate predictions based on the two models
are correlated. Hence n need not be large in order
to compensate for the predictive difference. However,
we may still need many realizations U i in order to
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Figure 2: Top four visited models. Note that all edges are reversible.

capture the entire distribution. Correlation between
multivariate predictions allows us to keep n relatively
small and only move slightly in a direction towards a
‘better’ prediction.

(2) Because models are correlated and as a conse-
quence also the predictions, the first predictions ob-
tained by running the Markov blanket Gibbs sampler
may be good. The Gibbs sampler so to speak picks up
from where it left the last time and continues imputa-
tion using the new model. This means that the there
is a fair chance that an initial imputation is actually
selected.

6 Experimental evaluation

In this section we perform a small experimental evalu-
ation of eMC4 and briefly discuss the results. Because
our approach is Bayesian, comparison of the results
with model selection methods for incomplete data such
as SEM is not very useful.

We used a data set from Edwards and Havránek (1985)
about probable risk factors of coronary heart disease.
The data set consists of 1841 records and 6 binary
variables, A: smoking, B: strenuous mental work, C:
strenuous physical work, D: blood pressure under 140,
E: ratio β to α proteins less than 3, F : family history
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Figure 3: Top: Generating model (left), Essential
graph (right). Bottom: Mechanism 1 (left), Mecha-
nism 2 (right).

of coronary heart disease. Because several DAGs en-
code the same set of assumptions about independence,
we depict results as essential graphs, a canonical repre-
sentation of an equivalence class (see Chickering, 1995;
Kocka and Castelo, 2001).

Based on an eMC3 run using the 1841 complete
records, the 1st model in figure 3 is a highly probable
model (although edge F−B is not strongly supported).
The 2nd model in the figure is the corresponding essen-
tial graph of the DAG. The parameter corresponding
to the DAG model was determined based on the afore-
mentioned data set, and 1800 new records were sam-
pled from the BN. Incomplete sets were generated by



applying missingness mechanism one in figure 3 on the
complete sample. This graph explicitly defines how re-
sponse Ri of variable i depends on observed variables.
Since for all i, Ri only depends on completely observed
variables, the missingness mechanism is clearly ignor-
able. Three incomplete sets were generated with 5–
10%, 10–15% and 15–20% missing components. The
probability of non-response of variable i conditional
on a parent configuration of Ri was selected from the
specified interval.

On the basis of the generating model and the missing-
ness mechanism, we would expect the following results.
Since response of C only depends on B and the asso-
ciation C − B is strong, a big fraction of components
can be deleted for C without destroying support for
the edge in the data. Association D−E is also strong
so discarding components for E will probably not have
a major impact on the edge either. Association E−A

is influenced by B and D because the response is de-
termined by those variables. Values for E and A may
be absent often and therefore information about the
association might have changed. This may also be the
case for the edges C −E and C −A.

We ran eMC4 using each incomplete data set. Param-
eter q (number of eMC3 iterations) was set to 150 and
n to 25 (number of imputations). It took about 15
minutes on a 2 GHz machine before the Markov chain
appeared to have converged.

In figure 2 the top four models are depicted along with
their sampling frequencies. Notice the presence of the
strong associations C − B and D − E everywhere, as
expected. When the fraction of missing components
for two associated variables increases it has a big im-
pact on the support of such an association. Indeed,
from the figure we see that the support for associations
between variables A, C and E has changed. The sam-
ple frequencies and the number of visited models also
suggest that the variance of the posterior distribution
becomes bigger when more components are deleted.
There is no longer a pronounced ‘best’ model.

The plot in figure 4 shows this more clearly. Here
the cumulative frequencies are plotted against models
(sorted on frequency in descending order). A steep
plot indicates a small variance. For complete data the
10 best models account for 90% of the distribution
whereas for 15–20% missing components only 50% of
the distribution is accounted for by the best 10 mod-
els. To investigate the similarity of the models between
the three incomplete sets, we used equation (3) to cal-
culate ∆, where ∆M is set to 1 when there is an edge
between two vertices of interest in M . This results
in the expected probability of the presence of edges
as seen in figure 4. We can see, as we would expect,
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Figure 4: Top: Cumulative frequencies. Bottom: Ex-
pected probability of edges.

that the distance between points of complete data and
incomplete data is dependent on the fraction of miss-
ing components. Diamonds (15–20%) have the biggest
distance to triangles (complete), and plusses (5–10%)
the smallest.

As we saw for mechanism one, discarding components
for two associated variables can have a big impact
on the presence of the corresponding edge in sampled
models. For strongly associated variables the impact
is less pronounced. We created another incomplete
data set using mechanism two in figure 3. For the
associated variables C, E and A the mechanism only
discards components that we think will not severely
impact these associations. For the strong association
E−D discarding components on both should not mat-
ter. We expect that we are able to remove a substan-
tial fraction of components and still obtain reasonable
models. We selected the fraction of missing compo-
nents in the interval 20–30%. In the last row in figure
2 we see that although a substantial fraction of compo-
nents were deleted, the models learned are quite simi-
lar to the models from the complete set.



To illustrate that it is not the fraction of missing
components that determines the variance but rather
the fraction of missing information (Little and Rubin,
1987), we plotted the cumulative frequency in figure 4.
The variance of the posterior distribution is similar to
the variance of the posterior for mechanism one with
5–10% missing components. This means that although
the fraction of missing components is much higher than
5–10%, the uncertainty due to missing data has not
changed substantially.

7 Conclusion

We have presented eMC4 for simulating draws from
the posterior distribution of BN models given in-
complete data. In contrast to existing methods for
BN model learning with incomplete data, we take
a Bayesian approach and approximate the posterior
model distribution given the observed data. Differ-
ent imputation methods may be used, and specifically
we describe a method that does not require exact in-
ference in a BN. By using importance sampling we
give all multivariate realizations of the Markov chain
a ‘chance’ of being selected rather than just returning
the last realization as in traditional Gibbs sampling.
Importance sampling makes it possible to exploit qual-
ified, yet not perfect imputation proposals. From a
computational point of view specifying an approximate
distribution is cheaper than a perfect one.

Valuable insight is gained when sampling models from
the posterior; an illustration of the kind of information
one can derive from posterior realizations is given in
section 6. A posterior distribution is more informative
than just a single model. This is especially true in
the case of incomplete data, since the increased uncer-
tainty due to missing data is reflected in the probabil-
ity distribution.
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