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Abstract

In this paper we introduce restricted concen-
tration models (RCMs) as a class of graphical
models for the multivariate Gaussian distri-
bution in which some elements of the concen-
tration matrix are restricted to being identi-
cal is introduced. An estimation algorithm
for RCMs, which is guaranteed to converge
to the maximum likelihood estimate, is pre-
sented. Model selection is briefly discussed
and a practical example is given.

1 Introduction

This paper introduces a class of graphical Gaus-
sian models, Lauritzen (1996), (hereafter abbreviated
GGMs) also known as covariance selection models,
Dempster (1972), in which elements of the concen-
tration matrix are restricted to being identical. Such
models are denoted restricted concentration models

and abbreviated RCMs. These models are linear in
the inverse covariance matrix and can therefore be seen
as instances of models discussed by Anderson (1970).
Besag (1974) also studies instances of such models.

RCMs can be of relevance in a variety of different prob-
lems. An example could be gene expression data where
the expression of many genes are measured. From a
biological point of view it may be of interest to embody
in the model that the conditional covariance between
genes i and j should be the same as the conditional
covariance between genes k and l. It may also be of
interest (and in some cases a necessity) to impose such
restrictions simply in order to reduce the dimensional-
ity of the problem.

Models with equal conditional correlations can be con-
structed within RCMs but this requires restrictions on
both the conditional covariances and the conditional
variances. An interesting extension of RCMs would

therefore be models with equal conditional correlations
and no other restraints.

Finally we mention that the restrictions in RCMs can
lead to some regression functions being constrained to
equality as illustrated in Section 3.

2 Background and notation

The setting in GGMs is i.i.d. samples of a random vec-
tor y = (y1, . . . , yd)

⊤ following a Nd(µ, Σ) distribution.
Let K = Σ−1 denote the inverse covariance matrix,
also known as the concentration matrix with elements
(kαβ). It is then well known, Lauritzen (1996), p. 130,
that the partial correlation between y1 and y2 given
all other variables is

ρ12|3...d = −k12/
√

k11k22 (1)

Thus k12 = 0 if and only if y1 and y2 are independent
given all other variables, and this is the traditional
focus of graphical Gaussian modeling.

A GGM is often represented by an undirected graph
G = (Γ, E) where Γ is the set of nodes representing the
d variables and E is the set of undirected edges rep-
resenting the concentration parameters kαβ which are
not restricted to being zero. For additional properties
of GGMs we refer to Lauritzen (1996), Chapter 5. In
the following we use Greek letters to refer to variables
and Latin letters to refer to sets of variables.

3 The problem to be solved

The issue addressed in this paper is to estimate K
when some entries kαβ are restricted to being equal.
Such restrictions can be imposed both on the diagonal
and the off–diagonal elements of K.

Example To illustrate possible implications of such
restrictions, consider the model in Figure 1. The as-
terisks indicate the restrictions that k13 = k14 = c1,



k23 = k24 = c2 and k33 = k44 = c3, i.e.

K =









k11 k12 c1 c1

k12 k22 c2 c2

c1 c2 c3 0
c1 c2 0 c3









If we let a = {1, 2} and b = {3, 4}, then the regres-
sion parameters when regressing b on a are given as
−(Kbb)−1Kba. Thus the slope parameters for y3 and
y4 become identical,

E(yi|y1, y2) = ai + (c1/c3)y1 + (c2/c3)y2 for i = 3, 4,

meaning that the regression lines are parallel.

Another property of this model is that some partial
correlations are restricted to being equal. For example
it follows directly from (1) that

ρ31|24 = ρ41|23 = −c3/
√

k11c1 and

ρ32|14 = ρ42|13 = −c3/
√

k11c2.
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Figure 1: Graphical Gaussian model with the ad-
ditional restrictions that (*) k13 = k14 = c1, (**)
k23 = k24 = c2 and (***) k33 = k44 = c3.

4 Restricted concentration models

To formalize the restrictions on the elements of K, let
the edge set E be partitioned into non–empty disjoint
subsets E1, . . . , ES each containing one or more edges.
Let E1, . . . , Es denote those subsets containing more
than one edge (those edges are said to be marked), and
Es+1, . . . , ES be those containing only one edge (those
edges are unmarked). Let Γ1, . . . , ΓT be a similar par-
titioning of Γ into sets of nodes, some of which are
marked and some unmarked. A natural way to rep-
resent this situation graphically is to colour the edges
(vertices) in the graph such that all edges (vertices) in
the same edge (vertex) set have the same colour.

Let R = {E1, . . . ES , Γ1, . . . , ΓT } be the collection
of such restrictions on K. The elements of R are
in 1–1 correspondence with the parameters θ =
(θ1, . . . , θS+T ) in K = K(θ). The edge sets E1, . . . ES

and vertex sets Γ1, . . . , ΓT define a RCM.

5 The NIPS (Newton+IPS) algorithm

The algorithm is a combination of the classical IPS
algorithm for graphical Gaussian models, Lauritzen
(1996), p. 134 and the modified Newton procedure
of Jensen, Johansen and Lauritzen (1991) (hereafter
JJL91), see also Lauritzen (1996), p. 269.

Let Σ̂ = K̂−1 denote the current estimate of Σ at any
time during the iteration, and let f = n−1 where n is
the number of observations, SSD =

∑n
s=1(ys−ȳ)(ys−

ȳ)⊤ and S = SSD/f .

5.1 Newton algorithm

The simplest version of the algorithm (which is just a
specific version of the modified Newton algorithm of
JJL91) is as follows:

Repeatedly loop through R until convergence doing
the following: For each s ∈ R define the d× d matrix
Ks as follows: 1) If s is an edge set, then Ks has entries
Ks

αβ = 1 if {α, β} ∈ s and 0 otherwise. Thus Ks is the
incidence matrix for the graph (Γ, s). 2) If s is a vertex
set then Ks is a diagonal matrix with entries Ks

αα = 1
if α ∈ s and 0 otherwise. For convenience we shall
identify a vertex α with a set {α, α} such that vertex
sets and edge sets can be treated simultaneously in the
following.

Define the discrepancy ∆ = tr(KsΣ̂) − tr(KsS). For
each element s do a sequence of Newton steps

θn+1
s ← θn

s +
∆

tr(KsΣ̂KsΣ̂) + f∆2/2
,

kαβ ← θn+1
s for all {α, β} ∈ s. (2)

The substitution (2) is repeated until convergence for
the set s before moving on to the next set in R. Thus
the algorithm consists of two nested loops: 1) An outer
loop running over the elements of R and 2) an inner
loop maximizing L with respect to θs while keeping
all other parameters fixed. Below it is shown that this
algorithm in some cases can be speeded up by replacing
the inner loop by a direct line search.

The likelihood equations are obtained as follows: With
the definition of the matrices Ks for all s ∈ R given
above, the concentration matrix can be written K =
∑

s θsK
s. Let SS denote the sums–of–squares ma-

trix. Then tr(KSS) =
∑

s θstr(K
sSS). Let ts =

∑

s tr(KsSS). Hence (−t1/2, . . . ,−tS+T /2, ȳ) is a set
of canonical statistics, and these are to be equated with
their expectation.

To do so, we exploit the following: The multivariate
normal distribution is a regular k–dimensional expo-
nential family. Therefore the maximum likelihood es-
timate (MLE) exists and is unique, provided that the



sufficient statistic is contained in its convex support.
By Theorem 2 in Jensen et al. (1991), the MLE can
be found by iteratively maximizing over each canonical
parameter, keeping the others fixed. Note that when
keeping all parameters but one at fixed values we get a
regular one–dimensional exponential family. By The-
orem 1 in JJL91, their modified Newton algorithm ap-
plied to a one–dimensional regular exponential family
converges to the MLE for any starting value.

Following Lauritzen (1996), p. 133, µ̂ = ȳ so what
remains is to maximize L(θ, µ̂) over Θ which is an S+T
dimensional space restricted only by the requirement
that K(θ) must be positive definite for all θ ∈ Θ. For
any θ∗ ∈ Θ and any s ∈ R, define

Θs(θ
∗) = {θ ∈ Θ|θr = θ∗r for r 6= s}.

Then L is maximized by cyclically maximizing L over
Θs(θ

∗), Lauritzen (1996), p. 270. For practical reasons
we have chosen to fit the model on S rather than on
SS. Following Lauritzen (1996) p. 259, τs = E(ts) =
− 1

2 tr(KsΣ) and vs = V ar(ts) = 1
2 tr(KsΣKsΣ). The

modified Newton algorithm of JJL91 consists in up-
dating θ as

θn+1 = θn +
ts − τs

vs + (ts − τs)2

which specializes to (2) in this context.

Convergence The parameter space Θ is restricted
by K(θ) having to be positive definite. We have not
shown that the Newton steps are guaranteed to keep
K positive definite and this should therefore strictly
speaking be checked at each Newton step, decreasing
the step length appropriately if the condition is no
longer satisfied, see JJL91. Empirical evidence sug-
gests however, that K indeed remains positive definite.

5.2 IPS algorithm

For a GGM (without restrictions of the kind discussed
in this paper) let a = {α, β} be an edge in the graph
and let b denote the complement to a. Then in the
IPS algorithm, see e.g. Lauritzen (1996) p. 134 ff, can
be used for updating the parameters kαα, kββ and kαβ

by updating the 2× 2 submatrix Kaa of K as

Kaa ← (Saa)−1 + Kab(Kbb)−1Kba. (3)

Note that in this step both the conditional variances
and conditional covariances are updated. This IPS
step maximizes the likelihood over the particular sec-
tion of the parameter space given by kαα, kββ and kαβ

and thus no iteration is needed. This operation can
also be performed on a single vertex α, which gives an
update of the 1× 1 submatrix Kαα.

5.3 NIPS algorithm

Considerable computational savings can be achieved
by combining the Newton sequence (2) with the
IPS step (3) and this combination constitutes the
NIPS (=Newton+IPS) algorithm. The combina-
tion is straight forward and most easily explained
by an example: The graph in Figure 2 has cliques
[12][23][34][45]. The asterisks indicate that the edges
[12] and [23] and the vertices 2 and 3 are marked, i.e.
the restrictions k12 = k23 and k22 = k33.

1 2 3 4 5

** **
* *

Figure 2: RCM with the additional restrictions that
(*) k12 = k23 and (**) k22 = k33.

The marked entries can be updated using the Newton
sequence while k11 is unrestricted and can be updated
using an IPS step on a 1 × 1 matrix. The edge [45]
(comprising the parameters k44, k45 and k55 can also
be updated in a single IPS step on a 2 × 2 matrix.
Left to consider is therefore only k34. Even though no
restriction is put onto this parameter it can not im-
mediately be updated using an IPS step (3) because
that would also update k33 (and k44) which is con-
strained. Therefore this parameter is updated using
a Newton sequence. This constitutes one full cycle of
the inner loop of the NIPS algorithm. Note that it is
easy to keep track of such restrictions: Whenever an
edge {α, β} contains a marked vertex, the edge must
itself be marked.

Computational Savings The following considera-
tions can lead to substantial computational savings:

1. Computational savings can be achieved when cal-
culating ∆ = tr(KsΣ̂) − tr(KsS). The incidence
matrix Ks serves to pick out (and sum the correct
way) the relevant entries of S and Σ̂. For a fixed
edge set s ∈ R, let a denote the set of vertices
in s and let b be the complement of a. Let Ãs

be the incidence matrix for the graph (a, s) and
let finally Σ̂aa and Saa denote the corresponding
submatrices of Σ̂ and S. It it then straight for-
ward to see that tr(KsS) = tr(ÃsSaa) and hence
∆ = tr(ÃsΣ̂aa) − tr(ÃsSaa). The modification
when s is a vertex set is straight forward.

2. After updating entries of K in a NR step, one need
not find Σ = K−1. The relevant part Σaa can be
found as (Kaa−Kab(Kbb)−1Kba)−1, and here it is
noted that 1) Kab(Kbb)−1Kba is fixed throughout
the whole Newton sequence and 2) the dimension
of Σaa is often much smaller than the dimension



of Σ. A similar construct can be used when cal-
culating the value of the likelihood function.

3. Convergence is sometimes speeded up when re-
placing the Newton steps in (2) by an alternative
line search algorithm of the form

θn+1
s ← θn

s + α · p,

kαβ ← θn+1
s for all {α, β} ∈ s (4)

where p = ∆
tr(AsΣ̂AsΣ̂)+f∆2/2

and α is chosen to

maximize L in the direction defined by θn
s + tp.

4. If a clique consists exclusively of unmarked
edges/vertices, then it is more computationally
efficient to update the entire clique using IPS at
one time rather than working the way through the
edges one at the time.

6 Implementation

The algorithm has been implemented in the gen-
eral statistical package R, R Development Core Team
(2004).

7 Model selection issues

The number of different models which can be formed
by colouring edges/vertices in a given graph is enor-
mous. To illustrate the complexity, consider graphs
with vertices, 1,2 and 3 (for which there are 8 dif-
ferent graphs). There are 5 possible vertex sets:
{123}, {12, 3}, {1, 23}, {13, 2} and {1, 2, 3}. A tedious
calculation shows that there are in total (over all 8
graphs) 15 possible vertex sets giving 5× 15 = 75 dif-
ferent models! Therefore, good model selection strate-
gies become important. Here we shall just outline some
ideas:

Often in model selection in graphical models one con-
sider the operations dropEdge and addEdge. For
RCMs there are four additional operations which are
natural to consider: joinEdgeSet and splitEdgeSet

(and similarly for vertices). In connection with a back-
ward model search where edges are successively deleted
it is tempting to supplement with the possibility of
joining two edge sets. If there are p edge sets then
there are p(p − 1)/2 pairwise comparisons of the cor-
responding parameters and this can be done by e.g.
calculating Wald statistics (which requires V ar(θ̂) to
be computed).

A more brute force approach is to search for a graph-
ical model and then apply a clustering algorithm to
the diagonal of K and to the non–zero off–diagonal
elements of K.

One motivation for considering RCMs is applications
where data is sparse, i.e. where n < d. In this case S
is singular and hence K = S−1 does not exist. One
option in this case is to start from the independence
model and do a forward selection possibly supplied
with joining operations as discussed above.

8 Example: measurements on pig
carcasses

To illustrate the developments in this paper we con-
sider a prediction problem: In slaughter pig produc-
tion, prediction of the lean meat content is important
1) to ensure fair payment to the producers and 2) to en-
sure an appropriate processing of the meat afterwards.
The task is to predict the lean meat percentage y on
the basis of a set of predictor variables denoted by x.
In modern carcass grading, the predictor variables are
often obtained e.g. by ultra sound measurements on
the carcass and hence the number of predictor vari-
ables can be very large – and much larger than the
sample size.

For simplicity, we here consider the carcass data set
contained in the mimR package in R, see Højsgaard
(2004). This data set contains measurements of the
thickness of the meat and fat layer at three locations on
the back of 340 carcasses. The data also contains the
lean meat percentage determined by dissection. The
response variable is the meat percentage, y = MP
while x denotes the measurements of thickness of meat
and fat layers. The regression coefficients for the pre-
diction are ΣyxΣ−1

xx = −(Kyy)−1Kyx. The problem in
such prediction problems is that either Σxx is singu-
lar or it is very ill–conditioned because the predictor
variables often are very correlated.

To accommodate for this, one often make a principal
component regression or a partial least squares regres-
sion to obtain the regression coefficients. Other al-
ternatives are ridge regression and the lasso, see e.g.
Hastie, Tibshirani and Friedman (2001), pp. 59 for a
description of these methods.

8.1 Selection of different models

The saturated model (which has Table 1 as concen-
tration matrix) is in the following denoted M1. Ta-
ble 1 shows that the fat–concentration parameters all
tend to be of the same size (conditional variances as
well as covariances) and so do the meat concentration
parameters. Similarly, the concentration parameters
between the fat measurements and the lean meat per-
centage appear identical and so do (to a lesser extent)
the concentration parameters between the meat mea-
surements and the lean meat percentage. The model



with these constraints is denoted M1r and the esti-
mated concentration matrix is shown in Table 2.

Table 1: Empirical concentration matrix for the car-
cass data (multiplied by 10).

F1 F2 F3 M1 M2 M3 MP
F1 4.36 -1.99 -1.58 0.28 -0.73 0.41 0.99
F2 -1.99 5.35 -2.09 -0.26 0.64 -0.53 0.88
F3 -1.58 -2.09 5.57 -0.56 -0.06 0.26 0.71
M1 0.28 -0.26 -0.56 1.58 -0.60 -0.56 -0.33
M2 -0.73 0.64 -0.06 -0.60 1.35 -0.88 -0.04
M3 0.41 -0.53 0.26 -0.56 -0.88 1.57 -0.14
MP 0.99 0.88 0.71 -0.33 -0.04 -0.14 2.63

Table 2: Estimated concentration matrix for the car-
cass data (multiplied by 10) under the model M1r
with parameters restricted to being equal.

F1 F2 F3 M1 M2 M3 MP
F1 4.83 -1.77 -1.77 0.30 -0.86 0.42 0.88
F2 -1.77 4.83 -1.77 -0.27 0.58 -0.37 0.88
F3 -1.77 -1.77 4.83 -0.30 -0.04 0.04 0.88
M1 0.30 -0.27 -0.30 1.40 -0.64 -0.64 -0.16
M2 -0.86 0.58 -0.04 -0.64 1.40 -0.64 -0.16
M3 0.42 -0.37 0.04 -0.64 -0.64 1.40 -0.16
MP 0.88 0.88 0.88 -0.16 -0.16 -0.16 2.64

Starting with the independence model and doing a for-
ward selection we get the model M2 with concentra-
tion matrix in Table 3. Then we applied a clustering
algorithm to the diagonal and to the off–diagonals to
identify possible edge sets and vertex sets. Inspired by
Table 1, we asked for 3 clusters on the diagonal and
5 clusters on the off–diagonal. The model with these
restrictions is M2r and the estimated concentrations
are presented in Table 4.

This scheme was repeated with a backward selec-
tion starting from the saturated model giving model
M3. Clustering the entries as described above gave
M3r. (The estimated concentration matrices have
been omitted).

Table 3: Estimated concentration matrix for the car-
cass data (multiplied by 10) forM2.

F1 F2 F3 M1 M2 M3 MP
F1 4.06 -1.68 -1.53 0.00 -0.18 0.00 1.08
F2 -1.68 5.04 -2.12 0.00 0.00 0.00 0.78
F3 -1.53 -2.12 5.54 -0.39 0.00 0.00 0.75
M1 0.00 0.00 -0.39 1.52 -0.56 -0.56 -0.27
M2 -0.18 0.00 0.00 -0.56 1.22 -0.79 0.00
M3 0.00 0.00 0.00 -0.56 -0.79 1.51 -0.26
MP 1.08 0.78 0.75 -0.27 0.00 -0.26 2.68

8.2 Model comparisons – predictive

performance

To evaluate the feasibility of the various models, we
took a cross validation approach as follows: Out of
the 340 carcasses we took a random sample of size

Table 4: Estimated concentration matrix for the car-
cass data (multiplied by 10) forM2r.

F1 F2 F3 M1 M2 M3 MP
F1 4.60 -2.00 -2.00 0.00 -0.20 0.00 0.77
F2 -2.00 4.60 -1.11 0.00 0.00 0.00 0.77
F3 -2.00 -1.11 4.60 -0.20 0.00 0.00 0.77
M1 0.00 0.00 -0.20 1.06 -0.47 -0.47 -0.20
M2 -0.20 0.00 0.00 -0.47 1.06 -0.47 0.00
M3 0.00 0.00 0.00 -0.47 -0.47 1.06 -0.20
MP 0.77 0.77 0.77 -0.20 0.00 -0.20 2.39

N = 8, 10, 15, 20, 30 and fitted the models to these
training data. Then we predicted MP for the valida-
tion data consisting of 340–N carcasses and calculated
the mean squared prediction error (MSPE) defined as

1
340−N

∑

i(yi− ŷi)
2 . This scheme was repeated M = 5

times and at the end average MSPE was calculated. To
provide a benchmark for comparison we also made a
principal component regression (PCR) and a partial
least squares regression (PLS). Højsgaard, Jørgensen,
Olsen and Busk (2004) have found that 3 components
were optimal in PLS and PCR for predictions of these
data, and therefore 3 components have been used here.
To ease the comparison the MSPEs were all calculated
relative to the MSPE for the PCR model.

8.3 Results

The relative MSPEs are presented in Table 5. Within
each sample size, we find the following: It is always
beneficial to reduce the saturated model M1 to the
restricted model M1r, and for small samples (N =
8, 10) the improvement is quite dramatic. (Note that
when N = 8 the saturated model is just identifiable as
there are 7 variables in the model).

A comparison of models Mi and Mir for i = 2, 3
yields no clear picture, but it suggests that there is a
place for refinement of the brute force clustering ap-
proach used in getting from Mi and Mir. For each
sample size, one of the RCMs always performs at least
as well or better than the traditional regression meth-
ods PLS and PCR. Finally it is noted that when sam-
ple size increases the models perform more and more
similarly, which was to be expected.

8.4 Computing time

Compared with the IPS algorithm used for GGMs
the NIPS algorithm presented here is somewhat more
time consuming. For example, fitting M3 (which is a
GGM) took 1.27 seconds while fitting the RCM M3r
took 4.87 seconds.



Table 5: Relative mean squared prediction error
(MSPE) (calculated relative to MSPE for principal
component regression) for different models and differ-
ent sizes of the training data sets.

Sample size
8 10 15 20 30

M1 4.53 1.08 1.10 1.06 1.01
M1r 0.99 0.92 0.99 0.99 0.99
M2 1.11 1.03 1.04 1.03 1.01
M2r 1.18 0.99 1.03 0.99 1.00
M3 1.20 1.04 1.04 1.07 1.00
M3r 1.20 0.95 1.01 1.00 1.01
PLS 1.16 1.01 1.03 1.04 1.01
PCR 1.00 1.00 1.00 1.00 1.00

9 Discussion and directions for future
work

This paper has presented an estimation algorithm for
restricted concentration models (RCMs), and it has
been proven empirically that important gains in terms
of prediction precisions can be achieved from such
models.

It is emphasized, that to use the result in JJL91 we
should strictly speaking check that the concentration
matrix stays positive definite in each step (2) and, if
not, only move half of the distance to the associated
boundary point of the parameter space. We have not
seen an example where the positive definiteness has
been violated, but we have not been able to prove
theoretically that this cannot happen. For practical
purposes we therefore suggest that this check is only
performed occasionally.

To make RCMs of practical importance, it is important
to investigate possible model selection strategies for
RCMs, and this is a subject of future work. In this
connection it will become important to make a fast
implementation of the NIPS algorithm.
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