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Abstract

Probabilistic graphical models associate a prob-
ability to each configuration of the relevant vari-
ables. Energy-based models (EBM) associate an
energy to those configurations, eliminating the
need for proper normalization of probability dis-
tributions. Making a decision (an inference) with
an EBM consists in comparing the energies asso-
ciated with various configurations of the variable
to be predicted, and choosing the one with the
smallest energy. Such systems must be trained
discriminatively to associate low energies to the
desired configurations and higher energies to un-
desired configurations. A wide variety of loss
function can be used for this purpose. We give
sufficient conditions that a loss function should
satisfy so that its minimization will cause the sys-
tem to approach to desired behavior. We give
many specific examples of suitable loss func-
tions, and show an application to object recog-
nition in images.

1 Introduction

Graphical Models are overwhelmingly treated as proba-
bilistic generative models in which inference and learning
are viewed as probabilistic estimation problems. One ad-
vantage of the probabilistic approach is compositionality:
one can build and train component models separately be-
fore assembling them into a complete system. For example,
a Bayesian classifier can be built by assembling separately-
trained generative models for each class. But if a model
is trained discriminatively from end to end to make deci-
sions, mapping raw input to ultimate outputs, there is no
need for compositionality. Some applications require hard
decisions rather than estimates of conditional output dis-
tributions. One example is mobile robot navigation: once
trained, the robot must turn left or right when facing an ob-
stacle. Computing a distribution over steering angles would
be of little use in that context. The machine should be
trained from end-to-end to approach the best possible de-
cision in the largest range of situations.

Another implicit advantage of the probabilistic approach
is that it provides well-justified loss functions for learn-
ing, e.g. maximum likelihood for generative models, and
max conditional likelihood for discriminative models. Be-
cause of the normalization, maximizing the likelihood of
the training samples will automatically decrease the likeli-
hood of other points, thereby driving machine to approach
the desired behavior. The downside is that the negative log-
likelihood is the only well-justified loss functions. Yet, ap-
proximating a distribution over the entire space by max-
imizing likelihood may be an overkill when the ultimate
goal is merely to produce the right decision.

We will argue that using proper probabilistic models, be-
cause they must be normalized, considerably restricts our
choice of model architecture. Some desirable architectures
may be difficult to normalize (the normalization may in-
volve the computation of intractable partition functions),
or may even be non-normalizable (their partition function
may be an integral that does not converge).

This paper concerns a more general class of models called
Energy-Based Models (EBM). EBMs associate an (un-
normalized) energy to each configuration of the variables
to be modeled. Making an inference with an EBM con-
sists in searching for a configuration of the variables to be
predicted that minimizes the energy, or comparing the ener-
gies of a small number of configurations of those variables.
EBMs have considerable advantages over traditional prob-
abilistic models: (1) There is no need to compute partition
functions that may be intractable; (2) because there is no
requirement for normalizability, the repertoire of possible
model architectures that can be used is considerably richer.

Training an EBM consists in finding values of the trainable
parameter that associate low energies to “desired” config-
urations of variables (e.g. observed on a training set), and
high energies to “undesired” configurations. With prop-
erly normalized probabilistic models, increasing the like-
lihood of a “desired” configuration of variables will auto-
matically decrease the likelihoods of other configurations.
With EBMs, this is not the case: making the energy of de-
sired configurations low may not necessarily make the en-
ergies of other configurations high. Therefore, one must
be very careful when designing loss functions for EBMs 1.

1it is important to note that the energy is quantity minimized



We must make sure that the loss function we pick will ef-
fectively drive our machine to approach the desired behav-
ior. In particular, we must ensure that the loss function has
no trivial solution (e.g. where the best way to minimize
the loss is to make the energy constant for all input/output
pair). A particular manifestation of this is the so-called col-
lapse problem that was pointed out in some early works that
attempted to combined neural nets and HMMs [7, 2, 8].

This energy-based, end-to-end approach to learning has
been applied with great success to sentence-level handwrit-
ing recognition in the past [10]. But there has not been
a general characterization of “good” energy functions and
loss functions. The main point of this paper is to give suf-
ficient conditions that a discriminative loss function must
satisfy, so that its minimization will carve out the energy
landscape in input/output space in the right way, and cause
the machine to approach the desired behavior. We then pro-
pose a wide family of loss functions that satisfy these con-
ditions, independently of the architecture of the machine
being trained.

2 Energy-Based Models

Let us define our task as one of predicting the best configu-
ration of a set of variables denoted collectively by Y , given
a set of observed (input) variables collectively denoted by
X . Given an observed configuration for X , a probabilistic
model (e.g. a graphical model) will associate a (normal-
ized) probability P (Y |X) to each possible configuration
of Y . When a decision must be made, the configuration of
Y that maximizes P (Y |X) will be picked.

An Energy-Based Model (EBM) associates a scalar energy
E(W, Y, X) to each configuration of X, Y . The family of
possible energy functions is parameterized by a parameter
vector W , which is to be learned. One can view this en-
ergy function as a measure of “compatibility” between the
values of Y and X . Note that there is no requirement for
normalization.

The inference process consists in clamping X to the ob-
served configuration (e.g. an input image for image clas-
sification), and searching for the configuration of Y in a
set {Y } that minimizes the energy. This optimal configu-
ration is denoted Y̌ : Y̌ = argminY ∈{Y }E(W, Y, X). In
many situations, such as classification, {Y } will be a dis-
crete set, but in other situations {Y } may be a continu-
ous set (e.g. a compact set in a vector space). This paper
will not discuss how to perform this inference efficiently:
the reader may use her favorite and most appropriate opti-
mization method depending upon the form of E(W, Y, X),
including exhaustive search, gradient-based methods, vari-
ational methods, (loopy) belief propagation, dynamic pro-
gramming, etc.

Because of the absence of normalization, EBMs should
only be used for discrimination or decision tasks where
only the relative energies of the various configurations of

during inference, while the loss is the quantity minimized during
learning

Figure 1: Two energy surfaces in X, Y space obtained
by training two neural nets to compute the function Y =
X2 − 1/2. The blue dots represent a subset of the train-
ing samples. In the left diagram, the energy is quadratic
in Y , therefore its exponential is integrable over Y . This
model is equivalent to a probabilistic Gaussian model of
P (Y |X). The right diagram uses a non-quadratic saturated
energy whose exponential is not integrable over Y . This
model is not normalizable, and therefore has no probabilis-
tic counterpart.

Y for a given X matter. However, if exp(−E(W, Y, X)) is
integrable over Y , for all X and W , we can turn an EBM
into an equivalent probabilistic model by posing:

P (Y |X, W ) =
exp(−βE(W, Y, X)
∫

y
exp(−βE(W, y, X))

where β is an arbitrary positive constant. The normaliz-
ing term (the denominator) is called the partition function.
However, the EBM framework gives us more flexibility be-
cause it allows us to use energy functions whose exponen-
tial is not integrable over the domain of Y . Those models
have no probabilistic equivalents.

Furthermore, we will see that training EBMs with certain
loss functions circumvents the requirement for evaluating
the partition function and its derivatives, which may be in-
tractable. Solving this problem is a major issue with prob-
abilistic models, if one judges by the considerable amount
of recent publications on the subject.

Probabilistic models are generally trained with the maxi-
mum likelihood criterion (or equivalently, the negative log-
likelihood loss). This criterion causes the model to ap-
proach the conditional density P (Y |X) over the entire do-
main of Y for each X . With the EBM framework, we al-
low ourselves to devise loss functions that merely cause
the system to make the best decisions. These loss functions
are designed to place minY ∈{Y } E(W, Y, X) near the de-
sired Y for each X . This is a considerably less complex
and less constrained problem than that of estimating the
“correct” conditional density over Y for each X . To con-
vince ourselves of this, we can note that many different
energy functions may have minima at the same Y for a
given X , but only one of those (or a few) maximizes the
likelihood. For example, figure 1 shows two energy sur-
faces in X, Y space. They were obtained by training two
neural nets (denoted G(W, X)) to approximate the func-
tion Y = X2 − 1/2. In the left diagram, the energy
E(W, Y, X) = (Y − G(W, X))2 is quadratic in Y , there-



Figure 2: Examples of EBMs. (a) switch-based classifier; (b) a regressor; (c) constraint satisfaction architecture. Multidi-
mensional variables are in red, scalars in green, and discrete variables in green dotted lines.

fore its exponential is integrable over Y . This model is
equivalent to a probabilistic Gaussian model for P (Y |X).
The right diagram uses a non-quadratic saturated energy
E(W, Y, X) = tanh

(

(Y − G(W, X))2
)

whose exponen-
tial is not integrable over Y . This model is not normaliz-
able, and therefore has no probabilistic counterpart, yet it
fulfills our desire to produce the best Y for any given X .

2.1 Previous work

Several authors have previously pointed out the shortcom-
ings of normalized models for discriminative tasks. Bot-
tou [4] first noted that discriminatively trained HMMs are
unduly restricted in their expressive power because of the
normalization requirements, a problem recently named “la-
bel bias” in [9]. To alleviate this problem, late normal-
ization schemes for un-normalized discriminative HMMs
were proposed in [6] and [10]. Recent works have revived
the issue in the context of sequence labelling [5, 1, 14].

Some authors have touted the use of various non-
probabilistic loss functions, such as the Perceptron loss or
the maximum margin loss, for training decision-making
systems [7, 10, 5, 1, 14]. However, the loss functions in
these systems are intimately linked to the underlying archi-
tecture of the machine being trained. Some loss functions
are incompatible with some architectures and may possess
undesirable minima. The present paper gives conditions
that “well-behaved” loss functions should satisfy.

Teh et al. [15] have introduced the term “Energy-Based
Model” in a context similar to ours, but they only consid-
ered the log-likelihood loss function. We use the term EBM
in a slightly more general sense, which include the possibil-
ity of using other loss functions. Bengio et al. [3] describe
an energy-based language model, but they do not discuss
the issue of loss functions.

2.2 Examples of EBMs

EBM for Classification: Traditional multi-class classifiers
can be viewed as particular types of EBMs whose archi-
tecture is shown in figure 2(a). A parameterized discrimi-
nant function G(W, X) produces an output vector with one
component for each of the k categories (G0, G1..., Gk−1).
Component Gi is interpreted as the energy (or “penalty”)
for assigning X to the i-th category. A discrete switch
module selects which of the components is connected to the
output energy. The position of the switch is controlled by
the discrete variable Y , which is interpreted as the category.
The output energy is equal to E(W, Y, X) =

∑k−1
i=0 δ(Y −

i)G(W, X)i, where δ(Y − i) is equal to 1 for Y = i and 0
otherwise (Kronecker function), and G(W, X)i is the i-th
component of G(W, X). Running the machine consists in
finding the position of the switch (the value of Y ) that min-
imizes the energy, i.e. the position of the switch that selects
the smallest component of G(W, X).

EBM for Regression: A regression function G(W, X)
with the squared error loss (e.g. a traditional neural net-
work) is a trivial form of minimum energy machine (see
figure 2(b)). The energy function of this machine is de-
fined as E(W, Y, X) = 1

2 ||G(W, X) − Y ||2. The value of
Y that minimizes E is simply equal to G(W, X). There-
fore, running such a machine consists simply in computing
G(W, X) and copying the value into Y . The energy is then
zero. This architecture can be used for classification by
simply making {Y } a discrete set (with one element for
each category).

EBM for Constraint Satisfaction: sometimes, the depen-
dency between X and Y cannot be expressed as a function
that maps X’s to Y ’s (consider for example the constraint
X2 + Y 2 = 1). In this case, one can resort to modeling
“constraints” that X and Y must satisfy. The energy func-
tion measures the price for violating the constraints. An
example architecture is shown in figure 2(c). The energy
is E(W, Y, X) = C(Gx(Wx, X), Gy(Wy, Y )), where GX



and Gy are functions to be learned, and C(a, b) is a dissim-
ilarity measure (e.g. a distance).

2.3 Deterministic Latent Variables

Many tasks are more conveniently modeled by architec-
tures that use latent variables. Deterministic latent vari-
ables are extra variables (denoted by Z) that influence the
energy, and that are not observed. During an inference, the
energy is minimized over Y and Z:

(Y̌ , Ž) = argminY ∈{Y }, Z∈{Z}E(W, Y, Z, X)

By simply redefining our energy function as:

Ě(W, Y, X) = min
Z∈{Z}

E(W, Y, Z, X)

We can essentially ignore the issue of latent variables.

Latent variables are very useful in situations where a hid-
den characteristic of the process being modeled can be in-
ferred from observations, but cannot be predicted directly.
This occurs for example in speech recognition, handwrit-
ing recognition, natural language processing, and biolog-
ical sequence analysis, and other sequence labeling tasks
where a segmentation must be performed simultaneously
with the recognition. Alternative segmentations are of-
ten represented as paths in a weighted lattice. Each path
may be associated with a category [10, 5, 1, 14]. The
path being followed in the lattice can be viewed as a dis-
crete latent variable. Searching for the best path using
dynamic programming (Viterbi) or approximate methods
(e.g. beam search) can be seen as a minimization of
the energy function with respect to this discrete variable.
For example, in a speech recognition context, evaluating
minZ∈{Z} E(W, Y i, Z, X i) is akin to “constrained seg-
mentation”: finding the best path in the lattice that produces
a particular output label Y i.

An EBM framework with which to perform graph manipu-
lations and search, while preserving the ability to compute
partial derivatives for learning is the Graph Transformer
Network model described in [10]. However, that paper
only mentions two loss functions (generalized perceptron
and log-likelihood), without a general discussion of how to
construct appropriate loss functions.

Rather than give a detailed description of latent-variable
EBM for sequence processing, we will describe an applica-
tion to visual object detection and recognition. The archi-
tecture is shown in figure 3. The input image is first turned
into an appropriate representation (e.g. a feature vector)
by a trainable front-end module (e.g. a convolutional net-
work, as in [11]). This representation is then matched to
models of each category. Each model outputs an energy
that measures how well the representation matched the cat-
egory (a low energy indicates a good match, a high energy
a bad match). The switch selects the best-matching cate-
gory. The object models take in latent variables that may be
used to represent some instantiation parameters of the ob-
jects, such as the pose, illumination, or conformation. The
optimal value of those parameters for a particular input is

computed as part of the energy-minimizing inference pro-
cess. Section 4 reports experimental results obtained with
such a system.

3 Loss Functions for EBM Training.

In supervised learning, the training set S is a set of pairs
S = {(X i, Y i) , i = 1..P} where X i is an input, and Y i

is a desired output to be predicted. Practically every learn-
ing methods can be described as the process of finding the
parameter W ∈ {W} that minimizes a judiciously chosen
loss function L(W,S). The loss function should be a mea-
sure of the discrepancy between the machine’s behavior
and the desired behavior on the training set. Well-behaved
loss functions for EBMs should shape the energy landscape
so as to “dig holes” at (X, Y ) locations near training sam-
ples, while “building hills” at un-desired locations, partic-
ularly the ones that are erroneously picked by the inference
algorithm. For example, a good loss function for the regres-
sion problem depicted in figure 1 should dig holes around
the blue dots (which represent a subset of the training set,
while ensuring that the surrounding areas have higher en-
ergy.

In the following, we characterize the general form of loss
functions whose minimization will make the machine carve
out the energy landscape in the right way so as to approach
the desired behavior. We define the loss on the full training
set as:

L(W,S) = R

(

1

P

P
∑

i=1

L(W, Y i, X i)

)

(1)

where L(W, Y i, X i) is the per-sample loss function for
sample (X i, Y i), and R is a monotonically increasing
function. Loss functions that combine per-sample losses
through other symmetric n-ary operations than addition
(e.g. multiplication, as in the case of likelihood-like loss
functions) can be trivially obtained from the above through
judicious choices of R and L. With this definition, the loss
is invariant under permutations of the samples, and under
multiple repetitions of the same training set. In the follow-
ing we will set R to the identity function. We assume that
L(W, Y i, X i) has a lower bound over W for all Y i, X i.

At this point, we can note that if we minimize any such
loss on a training set over a set of functions with finite VC-
dimension, appropriate VC-type upper bounds for the ex-
pected loss will apply, ensuring the convergence of the em-
pirical loss to the expected loss as the training set size in-
creases. Therefore, we will only discuss the conditions un-
der which a loss function will make the machine approach
the desired behavior on the training set.

Sometimes, the task uniquely defines a “natural” loss func-
tion (e.g. the number of mis-classified examples), but more
often than not, minimizing that function is impractical.
Therefore one must resort to surrogate loss functions whose
choice is up to the designer of the system. One crucial, but
often neglected, question must be answered before choos-
ing a loss function: “will minimizing the loss cause the



Figure 3: Example of a switch-based Energy-Based Model architecture for object recognition in images, where the pose of
the object is treated as a latent variable.

learning machine to approach the desired behavior?” We
will give general conditions for that.

The inference process produces the Y that minimizes
Ě(W, Y, X i). Therefore, a well-designed loss function
must drive the energy of the desired output Ě(W, Y i, X i)
to be lower than the energies of all the other possible out-
puts. Minimizing the loss function should result in “holes”
at X, Y locations near the training samples, and “hills” at
un-desired locations.

3.1 Conditions on the Energy

The condition for the correct classification of sample X i is:

Condition 1 Ě(W, Y i, X i) < Ě(W, Y, X i) , ∀Y ∈
{Y }, Y 6= Y i

To ensure that the correct answer is robustly stable, we may
choose to impose that the energy of the desired output be
lower than the energies of the undesired outputs by a mar-
gin m:

Condition 2 Ě(W, Y i, X i) < Ě(W, Y, X i)−m , ∀Y ∈
{Y }, Y 6= Y i

We will now consider the case where Y is a discrete vari-
able. Let us denote by Ȳ the output that produces the small-
est energy while being different from the desired output Y i:
Ȳ = argminY ∈{Y },Y 6=Y iĚ(W, Y, X i). Condition 2 can
be rewritten as:

Condition 3 Ě(W, Y i, X i) < Ě(W, Ȳ , X i) − m , Ȳ =
argminY ∈{Y },Y 6=Y iĚ(W, Y, X i)

For the continuous Y case, we can simply de-
fine Ȳ as the lowest-energy output outside of a
ball of a given radius around the desired output:
argminY ∈{Y },||Y −Y i||>εĚ(W, Y, X i)

3.2 Sufficient conditions on the loss function

We will now make the key assumption that L de-
pends on X i only indirectly through the set of energies

{Ě(W, Y, X i) , Y ∈ {Y }} . For example, if {Y }is the
set of integers between 0 and k − 1, as would be the case
for the switch-based classifier with k categories shown in
figure 2(a), the per-sample loss for sample (X i, Y i) should
be of the form:

L(W, Y i, X i) = L(Y i, Ě(W, 0, X i), . . . , Ě(W, k−1, X i))
(2)

With this assumption, we separate the choice of the loss
function from the details of the internal structure of the ma-
chine, and limit the discussion to how minimizing the loss
function affects the energies.

We must now characterize the form that L can take such
that its minimization will eventually drive the machine to
satisfy condition 3.

We must design L in such a way that minimizing it will de-
crease the difference Ě(W, Y i, X i)−Ě(W, Ȳ , X i), when-
ever Ě(W, Ȳ , X i) < Ě(W, Y i, X i) + m. In other words,
whenever the difference between the energy of the incor-
rect answer with the lowest energy and the energy of the
desired answer is less than the margin, our learning proce-
dure should make that difference larger. We will now pro-
pose a set of sufficient conditions on the loss that guarantee
this.

Since we are only concerned with how the loss influences
the relative values of Ě(W, Y i, X i), and Ě(W, Ȳ , X i),
we will consider the shape of loss surface in the space of
Ě(W, Y i, X i) and Ě(W, Ȳ , X i), and view the other argu-
ments of the loss (the energies for all the other values of Y )
as parameters of that surface:

L(W, Y i, X i) = Q[Ey](Ě(W, Y i, X i), Ě(W, Ȳ , X i))

where the parameter [Ey ] contains the vector of energies
for all values of Y except Y i and Ȳ .

We can now state sufficient conditions that guarantee
that minimizing L will eventually satisfy condition 3.
In all the sufficient conditions stated below, we assume
that there exist a W such that condition 3 is satis-
fied for a single training example (X i, Y i), and that
Q[Ey](Ě(W, Y i, X i), Ě(W, Ȳ , X i)) is convex (convex in



its 2 arguments, but not necessarily convex in W ). The
conditions must old for all values of [Ey].

Condition 4 The minima of
Q[Ey](Ě(W, Y i, X i), Ě(W, Ȳ , X i)) are in the half-
plane Ě(W, Ȳ , X i) < Ě(W, Y i, X i) + m.

This condition on the loss function clearly ensures that min-
imizing it will drive the machine to find a solution that sat-
isfies condition 3, if such a solution exists.

Another sufficient condition can be stated to characterize
loss functions that do not have minima, or whose minimum
is at infinity:

Condition 5 the gradient of
Q[Ey](Ě(W, Y i, X i), Ě(W, Ȳ , X i)) on the margin
line Ě(W, Ȳ , X i) = Ě(W, Y i, X i) + m, has a positive
dot product with the direction [-1,1].

This condition guarantees that minimizing L will drive the
energies Ě(W, Ȳ , X i) and Ě(W, Y i, X i) toward the half-
plane Ě(W, Ȳ , X i) < Ě(W, Y i, X i) + m.

Yer another sufficient condition can be stated to character-
ize loss functions whose minima are not in the desired half-
plane, but where the possible values of Ě(W, Ȳ , X i) and
Ě(W, Y i, X i) are constrained by their dependency on W
in such a way that the minimum of the loss while satisfying
the constraint is in the desired half-plane:

Condition 6 On the margin line Ě(W, Ȳ , X i) =
Ě(W, Y i, X i) + m, the following must hold:
[

∂Ě(W,Y i,Xi)
∂W

− ∂Ě(W,Ȳ ,Xi)
∂W

]

.∂L(W,Y i,Xi)
∂W

> 0

This condition ensures that an update of the parame-
ters W to minimize the loss will drive the energies
Ě(W, Ȳ , X i) and Ě(W, Y i, X i) toward the desired half-
plane Ě(W, Ȳ , X i) < Ě(W, Y i, X i) + m.

We must emphasize that these are only sufficient condi-
tions. There may be legitimate loss functions (e.g. non-
convex functions) that do not satisfy them, yet have the
proper behavior.

3.3 Examples of Loss Functions

We can now give examples of loss functions that satisfy the
above criteria, and examine whether some of the popular
loss functions proposed in the literature satisfy it.

Energy Loss: The simplest and most widely used
loss is the energy loss, which is simply of the form
Lenergy(W, Y i, X i) = Ě(W, Y i, X i). This loss does not
satisfy condition 4 or 5 in general, but there are cer-
tain forms of Ě(W, Y i, X i) for which condition 6 is sat-
isfied. For example, let us consider an energy of the form
E(W, Y, X) =

∑K

k=1 δ(Y −k).||Uk −G(W, X)||2. Func-
tion G(W, X) could be a neural net, on top of which are
placed K radial basis functions whose centers are the vec-
tors Uk. If the Uk are fixed and all different, then the en-

ergy loss applied to this machine fulfills condition 6. Intu-
itively, that is because by pulling G(W, X) towards one of
the RBF centers, we push it away from the others. There-
fore when the energy of the desired output decreases, the
other ones increase. However, if we allow the RBF centers
to be learned, condition 6 is no longer fulfilled. In that case,
the loss has spurious minima where all the RBF centers are
equal, and the function G(W, X) is constant and equal to
that RBF center. The loss is zero, but the machine does
not produce the desired result. Picking any combination of
loss and energy that satisfy any of the conditions 4, 5, or 6
solves this collapse problem.

Generalized Perceptron Loss: We define the generalized
Perceptron loss for training sample (X i, Y i) as:

Lptron(W, Y i, X i) = Ě(W, Y i, X i)− min
Y ∈{Y }

Ě(W, Y, X i)

(3)
It is easy to see that with E(W, Y i, X i) = −Y i.W T X i,
and {Y } = {−1, 1}, the above loss reduces to the tradi-
tional linear Perceptron loss. The generalized perceptron
loss satisfies condition 4 with m = 0. This loss was used
by [10] for training a commercially deployed handwriting
recognizer that combined a heuristic segmenter, a convolu-
tional net, and a language model (where the latent variables
represented paths in an interpretation lattice). A similar
loss was studied by [5] for training a text parser. Because
the margin is zero, this loss may not prevent collapses for
certain architecture.

Generalized Margin Loss: A more robust version of the
Perceptron loss is the Margin Loss, which directly uses the
energy of most offending non-desired output Ȳ in the con-
trastive term:

Lmargin(W, Y i, X i) = Qm[Ě(W, Y i, X i)−Ě(W, Ȳ , X i)]
(4)

where Qm(e) is any function that is monotonically increas-
ing for e > −m. The traditional “hinge loss” used with
kernel-based methods, and the loss used by the LVQ2 algo-
rithm are special cases with Qm(e) = e + m for e > −m,
and 0 otherwise. Special forms of that loss were used in [7]
for discriminative speech recognition, and in [1] and [14]
for text labeling. The exponential loss used in AdaBoost is
a special form of equation (4) with Qm(e) = exp(e). A
slightly more general form of the margin loss that satisfies
conditions 4 or 5 is given by:

Lgmargin(W, Y i, X i) = Qgm[Ě(W, Y i, X i), Ě(W, Ȳ , X i)]
(5)

with the condition that ∂Qgm(e1,e2)
∂e1 >

∂Qgm(e1,e2)
∂e2 when

e1 + m > e2. An example of such loss is:

L(W, Y i, X i) = Q+(Ě(W, Y i, X i))+Q−(Ě(W, Ȳ , X i))
(6)

where Q+(e) is a convex monotonically increasing func-
tion, and Q−(e) a convex monotonically decreasing func-

tion such that if dQ+

de
|e1 = 0 and dQ−

de
|e2 = 0 then

e1 + m < e2. When Ě(W, Y i, X i) is akin to a distance
(bounded below by 0), a judicious choice for Q+ and Q−



is:

L(W, Y i, X i) = Ě(W, Y i, X i)2+κ exp(−βĚ(W, Ȳ , X i))
(7)

where κ and β are positive constants. A similar loss func-
tion was recently used by our group to train a pose-invariant
face detection [12]. This system can simultaneously detect
faces and estimate their pose using latent variables to rep-
resent the head pose.

Contrastive Free Energy Loss: While the loss functions
proposed thus far involve only Ě(W, Ȳ , X i) in their con-
trastive part, loss functions can be devised to combine all
the energies for all values of Y in their contrastive term:

L(W, Y i, X i) = Ě(W, Y i, X i)− (8)

F (Ě(W, 0, X i), . . . , Ě(W, k − 1, X i))

F can be interpreted as a generalized free energy of the en-
semble of systems with energies Ě(W, Y, X i) ∀Y ∈ {Y }.
It appears difficult to characterize the general form of F
that ensures that L satisfies condition 5. An interesting spe-
cial case of this loss is the familiar negative log-likelihood
loss:

Lnll(W, Y i, X i) = Ě(W, Y i, X i) − Fβ(W, X i) (9)

with

Fβ(W, X i) = −
1

β
log

(

∫

Y ∈{Y }

exp[−βĚ(W, Y, X i)]

)

(10)
where β is a positive constant. The second term can
be interpreted as the Helmholtz free energy (log parti-
tion function) of the ensemble of systems with energies
Ě(W, Y, X i) ∀Y ∈ {Y }. This type of discriminative loss
with β = 1 is widely used for discriminative probabilis-
tic models in the speech, handwriting, and NLP commu-
nities [10, 2, 8]. This is also the loss function used in the
conditional random field model of Lafferty et al [9].

We can see that loss (9) reduces to the generalized Percep-
tron loss when β → ∞. Computing this loss and its deriva-
tive requires computing integrals (or sums) over {Y } that
may be intractable. It also assumes that the exponential of
the energy be integrable over {Y }, which puts restrictions
on the choice of E(W, Y, X) and/or {Y }.

4 Illustrative Experiments

To illustrate the use of contrastive loss functions with non-
probabilistic latent variables, we trained a system to recog-
nize generic objects in images independently of the pose
and the illumination. We used the NORB dataset [11]
which contains 50 different uniform-colored toy objects
under 18 azimuths, 9 elevations, and 6 lighting conditions.
The objects are 10 instance from 5 generic categories: four-
legged animals, human figures, airplanes, trucks, and cars.
Five instances of each category were used for training, and
the other five for testing (see figure 4). A 6-layer convolu-
tional network trained with the mean-square loss achieves

Figure 4: Invariant object recognition with NORB dataset.
The left portion shows sample views of the training in-
stances, and the right portion testing instances for the 5
categories.

6.8% test error on this set when fed with binocular 96×96-
pixel gray-scale images [11].

We used an architecture very much like the one in figure 3,
where the feature extraction module is identical to the first
5 layers of the 6-layer convolutional net used in the refer-
ence experiment. The object model functions were of the
form: Ei = ||Wi.V − F (Z)||, i = 1..5, where V is the
output of the 5-layer net (100 dimensions), Wi is a 9× 100
(trainable) weight matrix. The latent variable Z has two
dimensions that are meant to represent the azimuth and el-
evation of the object viewpoint. The set of possible values
{Z} contained 162 values (azimuths: 0-360 degrees every
20, elevations: 30-70 degrees every 5). The output of F (Z)
is a point on an azimuth/elevation half-sphere (2D surface)
embedded in the 9D hypercube [−1, +1]9. The minimiza-
tion of the energy over Z is performed through exhaustive
search (which is relatively cheap).

We used the loss function (7). This loss causes the con-
volutional net to produce a point as close as possible to
any point on the half-sphere of the desired class, and as far
as possible from the half-sphere of the best-scoring non-
desired class. The system is trained “from scratch” includ-
ing the convolutional net. We obtained 6.3% error on the
test set, which is a moderate, but significant improvement
over the 6.8% of the control experiment.

5 Discussion

Efficient End-to-End Gradient-Based Learning To per-
form gradient-based training of all the modules in the ar-
chitecture, we must compute the gradient of the loss with
respect to all the parameters. This is easily achieved with
the module-based generalization of back-propagation de-
scribed in [10]. A typical learning iteration would involve
the following steps: (1) one forward propagation through
the modules that only depend on X ; (2) a run of the energy-
minimizing inference algorithm on the modules that de-
pend on Z and Y ; (3) as many back-propagations through
the modules that depend on Y as there are energy terms
in the loss function; (4) one back-propagation through the
module that depends only on X ; (5) one update of the pa-
rameters.



Efficient Inference: Most loss functions described in this
paper involve multiple runs of the machine (in the worst
case, one run for each energy term that enters in the loss).
However, the parts of the machine that solely depend on
X , and not on Y or Z need not be recomputed for each run
(e.g. the feature extractor in figure 3), because X does not
change between runs.

If the energy function can be decomposed as a sum of func-
tions (called factors) E(W, Y, X) =

∑

j Ej(Wj , Y, Z, X),
each of which takes subsets of the variables in Z and Y as
input, we can use a form of belief propagation algorithm
for factor graphs to compute the lowest energy configura-
tion [13]. These algorithms are exact and tractable if Z
and Y are discrete and the factor graph has no loop. They
reduce to Viterbi-type algorithms when members of {Z}
can be represented by paths in a lattice (as is the case for
sequence segmentation/labeling tasks).

Approximate Inference: We do not really need to assume
that the energy-minimizing inference process always finds
the global minimum of E(W, Y, X i) with respect to Y .
We merely need to assume that this process finds approxi-
mate solutions (e.g. local minima) in a consistent, repeat-
able manner. Indeed, if there are minima of E(W, Y, X i)
with respect to Y that our minimization/inference algo-
rithm never finds, we do not need to find them and increase
their energy. Their existence is irrelevant to our problem.
However, it is important to note that those unreachable re-
gions of low energy will affect the loss function of proba-
bilistic models as well as that of EBMs if the negative log-
likelihood loss is used. This is a distinct advantage of the
un-normalized EBM approach: low-energy areas that are
never reached by the inference algorithm are not a concern.

6 Conclusion and Outlook

Most approaches to discriminative training of graphical
models in the literature use loss functions from a very small
set. We show that energy-based (un-normalized) graphical
models can be trained discriminatively using a very wide
family of loss functions. We give a sufficient condition that
the loss function must satisfy so that its minimization will
make the system approach the desired behavior. We give a
number of loss functions that satisfy this criterion and de-
scribe experiments in image recognition that illustrate the
use of such discriminative loss functions in the presence of
non-probabilistic latent variables.
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