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Abstract

Spectral dimensionality reduction methods and
spectral clustering methods require computation
of the principal eigenvectors of an n × n ma-
trix where n is the number of examples. Fol-
lowing up on previously proposed techniques to
speed-up kernel methods by focusing on a sub-
set of m examples, we study a greedy selection
procedure for this subset, based on the feature-
space distance between a candidate example and
the span of the previously chosen ones. In the
case of kernel PCA or spectral clustering this
reduces computation to O(m2n). For the same
computational complexity, we can also compute
the feature space projection of the non-selected
examples on the subspace spanned by the se-
lected examples, to estimate the embedding func-
tion based on all the data, which yields consid-
erably better estimation of the embedding func-
tion. This algorithm can be formulated in an on-
line setting and we can bound the error on the
approximation of the Gram matrix.

1 Introduction

Many interesting algorithms have been proposed in re-
cent years to perform non-parametric unsupervised learn-
ing, either for clustering (spectral clustering) or for mani-
fold learning. Many of these methods can be seen as ker-
nel methods with an adaptive, data-dependent kernel (Ben-
gio et al., 2004). Like other kernel methods, methods such
as LLE (Roweis and Saul, 2000), Isomap (Tenenbaum, de
Silva and Langford, 2000), kernel Principal Components
Analysis (PCA) (Schölkopf, Smola and Müller, 1998),
Laplacian Eigenmaps (Belkin and Niyogi, 2003) and spec-
tral clustering (Weiss, 1999; Ng, Jordan and Weiss, 2002),
typically require computation of the principal eigenvectors
of an n × n matrix, where n is the number of examples.

In this paper we follow-up on previous work to speed-

up kernel methods, such as (Smola and Schölkopf, 2000;
Smola and Bartlett, 2001; Williams and Seeger, 2001;
Harmeling et al., 2002; Lawrence, Seeger and Herbrich,
2003; Engel, Mannor and Meir, 2003) but focus on spec-
tral methods for unsupervised learning. Like in these
methods, the main speed-up is obtained by focusing on a
subset of the examples, chosen using a greedy selection
algorithm. We call the set of selected examples the dic-
tionary. Assuming that the kernel is positive semi-definite
(which is not always exactly true, but is a good approxima-
tion), the above methods are equivalent to a special form
of kernel PCA. The criterion used for greedy selection is
the distance in feature space between a candidate exam-
ple and its projection on the subspace spanned by the se-
lected examples. This is a reasonable criterion because the
embedding of a new x will be expressed as a linear com-
bination of the KD(x, xi), with xi a dictionary example and
KD the data-dependent kernel associated with the particular
method. However, if only the selected examples are used
to derive the embedding (i.e. the principal eigenvectors of
the feature space covariance matrix), then the resulting em-
bedding will be biased, since the dictionary examples will
tend to be distributed more uniformly than the original data
(to better cover more directions in feature space). In addi-
tion, this projection of the non-dictionary examples can be
used to enrich the estimation of the feature space covari-
ance matrix. The resulting algorithm is O(m2n), where m is
the dictionary size, and requires O(m2) memory. We show
how using a generalized eigen-decomposition algorithm it
is possible to take advantage of the sparseness of the kernel.
Finally, we also show an efficient way to obtain the kernel
normalization required in kernel PCA (additive normaliza-
tion) and in spectral clustering (divisive normalization).

In section 3 we give more justification as well as the details
of this algorithm. We put it in perspective of previously
proposed methods in section 4. In section 5 we show with
several experiments that the greedy approximation works
well and works better than (a) the same algorithm with a
randomly selected dictionary (but all the data to estimate
the eigenvectors), and (b) using only m random points to
estimate the eigenvectors.



2 Spectral Embedding Algorithms and
Motivation

Let D = {x1, . . . , xn} represent a training set, with xi a train-
ing example. Spectral embedding algorithms (Schölkopf,
Smola and Müller, 1998; Weiss, 1999; Roweis and Saul,
2000; Tenenbaum, de Silva and Langford, 2000; Ng, Jor-
dan and Weiss, 2002; Belkin and Niyogi, 2003) provide a
vector-valued coordinate for each training example, which
would ideally correspond to its coordinate on a mani-
fold near which the data lie. As discussed in (Bengio
et al., 2004), spectral embedding methods can generalize
the training set embedding to a new example x through the
Nyström formula

fk(x) =

√
n
λk

n
∑

i=1

vikKD(x, xi) (1)

for the k-th embedding coordinate, where KD is a kernel
that is defined using D (hence called data-dependent), and
(vk, λk) is the k-th (eigenvector,eigenvalue) pair of the ma-
trix M with entries Mi j = KD(xi, x j). Note that this for-
mula reduces to fk(xi) =

√
nvik for training examples. De-

pending on the choice of algorithm, the embedding can be
further scaled separately in each dimension (e.g. by a fac-
tor
√
λk for kernel PCA, metric multidimensional scaling

(MDS), Isomap, and spectral clustering, and by a factor
√

n
for LLE). Note that KD is guaranteed to be positive semi-
definite for some of these methods (e.g. LLE, kernel PCA,
spectral clustering, Laplacian Eigenmaps) but not for oth-
ers (e.g. Isomap, MDS) but it is usually close to positive
semi-definite (e.g. for Isomap the kernel converges to a
positive semi-definite one as n→ ∞).

Assuming KD positive semi-definite, there exists a “fea-
ture space” φ(x) in which KD is a dot product KD(x, y) =
φ(x).φ(y). Eq. 1 therefore shows that the function of inter-
est (the embedding of x) can be written as a dot product
between φ(x) and a vector which is a linear combination of
the feature space vectors φ(xi) associated with the training
examples:

fk(x) = φ(x).(

√
n
λk

n
∑

i=1

vikφ(xi)). (2)

If we are going to work with a subset of the examples
(the dictionary) to define the embedding, we can reduce
the above linear combination to one over dictionary exam-
ples. There is a simple way to use a dictionary to reduce
computation. We first compute the Gram matrix of the dic-
tionary examples and its principal eigenvectors. Then we
use the Nyström formula as above to predict the embed-
ding of the other examples. This is essentially the basis
for the “Landmark Isomap” algorithm (de Silva and Tenen-
baum, 2003), as shown in (Bengio et al., 2004). This is one
of the methods that we will evaluate experimentally, and
compare to the proposed algorithm, on a Gaussian kernel
with additive normalization (corresponding to kernel PCA

or metric MDS) and one with divisive normalization (corre-
sponding to spectral clustering or to Laplacian Eigenmaps
with Gaussian kernel).

In the two cases that we study here, the data-dependence of
the kernel is due to this normalization. The data-dependent
kernel KD is obtained from a data-independent kernel K̃ as
follows. For additive normalization (kernel PCA, metric
MDS) we have

KD(x, y) =K̃(x, y) − Ev[K̃(v, y)]

− Ew[K̃(x,w)] + Ev,w[K̃(v,w)] (3)

and for divisive normalization (for a positive kernel) we
have

KD(x, y) =
K̃(x, y)

√

Ev[K̃(v, y)]Ew[K̃(x,w)]
. (4)

In both cases this normalization requires estimation of
Ex[K̃(x, y)] which is normally done with the training
set average of the kernel over one of its arguments:
Ex[K̃(xi, x)] = 1

n

∑n
j=1 K̃(xi, x j). We discuss below how to

avoid this computation which would make the whole algo-
rithm running time O(n2).

3 Proposed Algorithm

Let C denote the covariance matrix of the examples in fea-
ture space. One interpretation of the eigenvectors of the
Gram matrix is that they correspond to the eigenvectors of
C, which can be written as 1√

λk

∑n
i=1 vikφ(xi). Again, this

interpretation is only valid for positive semi-definite ker-
nels, or when working in the subspace associated with non-
negative eigenvalues (i.e. with the projection of the φ(x) on
that subspace).

Let P be the subspace spanned by the dictionary examples
in feature space (or the restriction to non-negative eigen-
values). If φ(xt) is not far from its projection on P, i.e. it is
well approximated by a linear combination of the examples
spanning P, than we can replace it by this projection with-
out making a big error. Proposition 1 below formalizes this
idea, and Figure 1 shows a geometric interpretation of the
projection of φ(xt) on the span of the dictionary examples in
feature space. Therefore, instead of using a random subset
of examples for the dictionary and only using the dictio-
nary to estimate the eigenvectors of C, we propose (1) to
select the dictionary examples according to their distance
to P, and (2) to use the dictionary examples as well as the
projection of the out-of-dictionary examples to estimate the
principal eigenvectors of C, thus giving rise to a more pre-
cise estimate, almost as good as using the whole data set,
according to our experiments. It turns out that (2) comes
for free (i.e. for the same cost) once we have accepted to
do the computations for (1). Another important consider-
ation is that the selected examples may have statistics that
are different from the original examples. For example, if
they are chosen as a good “cover” of the training examples,
the relative density of dictionary examples will be smaller
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Figure 1: Out-of-dictionary example φ(xt) is approximated in feature space by a linear combination of the dictionary
examples φ(xd(i)), i = 1 . . .m.

Algorithm 1 Greedy Spectral Embedding Algorithm.
Arguments: randomly ordered data set D, tolerance ε, em-
bedding dimension p.

1: n = |D|, initialize D = {x1}, M1 = (KD(x1, x1)),
M−1

1 =
(

KD(x1, x1)−1
)

.
2: for t = 2 to n do
3: for i = 1 to mt−1 do
4: compute (kt(xt))i = KD(xt, xd(i))
5: end for
6: compute matrix-vector product ât = M−1

t−1kt(xt)
7: compute α = 1 −

∑

i âti and β =
∑

i, j(M−1
t−1)i j.

8: compute projection weights
at = ât +

α
β

M−1
t−1[1, . . . , 1]′

9: compute projection error
δt = KD(xt, xt) − kt−1(xt)>ât +

α2

β
.

10: if δt > ε then
11: mt = mt−1 + 1,D ← D∪ {xt}
12: M−1

t is set according to eq. 9.
13: else
14: mt = mt−1, M−1

t = M−1
t−1

15: end if
16: end for
17: for i = 1 to mn do
18: for j = 1 to mn do
19: Bi j = AitA jt where Ait recovered from cache or

computed with eq. 10.
20: end for
21: end for
22: Find the p principal eigenvectors uk and eigenvalues
λk of the generalized eigen-problem with left matrix
B = A′A and right matrix M−1

n .
23: Embeddings of all examples are given by vk = Auk for

k-th coordinate.
24: The embedding of a test example x is given by fk(x)√

n
,

with fk(x) as in eq. 1.

than the true data density in areas of high density of the
original examples. You can observe that phenomenon in
the center image of figure 2: the region corresponding to
digit 1 is much more dense and contains only 4 dictionary
points. Since the directions with high variance are differ-
ent for the dictionary points, using only this selected subset
to form a Gram matrix without projecting the other points
would give a completely different embedding.

Computing the distance between φ(xt) and the span of the
dictionary examples in feature space can be reduced to
computations with the kernel, thanks to the kernel trick:

δt � min
at

||φ(xt) −
mt
∑

i=1

aitφ(xd(i))||2 (5)

where d(i) is the index of the i-th dictionary example, and
mt is the size of the dictionary after seeing t examples. We
found better results with the constraint

∑

i ait = 1. This
constraint has the effect of making the solution indepen-
dent to translations in feature space, since (φ(xt) − b) −
∑mt

i=1 ait(φ(xd(i)) − b) = φ(xt) −
∑mt

i=1 aitφ(xd(i)). In this paper
we consider an application of these ideas to an online set-
ting (or to reduce memory requirements, at most 2 passes
through the data). Let at = (a1t, . . . , amt t), let Mt−1 be the
Gram matrix of the dictionary examples after seeing t − 1
examples, and let kt−1(x) be the vector with mt elements
KD(x, xd(i)). The solution for at without constraint is

ât � M−1
t−1kt−1(xt). (6)

The solution with constraint can then be obtained as fol-
lows:

at = ât +
α

β
M−1

t−1[1, . . . , 1]′ (7)

where ′ denotes transposition, α = 1 −
∑

i âti and β =
∑

i, j(M−1
t−1)i j. The corresponding value of the projection dis-

tance is then obtained as follows:

δt = KD(xt, xt) − kt−1(xt)
>ât +

α2

β
. (8)



We introduce the parameter ε that controls the accuracy of
the approximation. xt is added to the dictionary if δt > ε,
which means that xt is far from its projection on P in fea-
ture space. When a point is added to the dictionary, M−1

t
needs to be computed. To do so efficiently (in O(m2

t ) com-
putations), we can take advantage of our knowledge of
M−1

t−1 and the matrix inversion lemma:

M−1
t =

1
δt

(

δt M−1
t−1 + âtâ′t −ât

−â′t 1

)

(9)

following the recursive update approach in (Engel, Mannor
and Meir, 2003) for kernel regression.

After we have selected the dictionary, we want to compute
the projection of all the examples on its span. This will
be different from the projection computed online in eq. 7
because it will use the final dictionary and M−1

n instead of
M−1

t−1:

Ât � M−1
n kn(xt)

At � Ât +
1 −

∑

i Âti
∑

i, j(M−1
n )i j

M−1
n [1, . . . , 1]′. (10)

Let A denote the matrix with rows At. It can be shown that
the complete Gram matrix is approximated by AMnA′. We
can bound the error on each entry of the Gram matrix by
the same parameter we used to select dictionary examples:

Proposition 1

For all xt, xu ∈ D, |KD(xt, xu) − (AMnA′)tu| ≤ ε.

Proof: Let rt = φ(xt)−
∑mn

i=1 aitφ(xd(i)). Notice that if xt ∈ D,
then ‖rt‖ = 0, otherwise, ‖rt‖ =

√
δt and rt is orthogonal

to the span of φ(xd(i)), i = 1, ...,mn. Then we have

KD(xt, xu) = φ(xt).φ(xu)

= (rt +
∑mn

i=1 aitφ(xd(i))).(ru +
∑mn

i=1 aiuφ(xd(i)))

= rt.ru + rt.
∑mn

i=1 aiuφ(xd(i)) + ru.
∑mn

i=1 aitφ(xd(i))

+(
∑mn

i=1 aitφ(xd(i))).(
∑mn

i=1 aiuφ(xd(i)))

= rt.ru + (
∑mn

i=1 aitφ(xd(i))).(
∑mn

i=1 aiuφ(xd(i)))

= rt.ru + (AMnA′)tu.

So we have

|KD(xt, xu) − (AMnA′)tu|

= |rt.ru| ≤
√

δt
√

δu ≤ ε.

The eigenvectors of AMnA′ would give us the embedding
of all the training examples, but this is an n × n matrix. We
want to take advantage of its factorization. Note that if uk is
an eigenvector of MnA′A then vk = Auk is an eigenvector of
AMnA′ with the same eigen values. Unfortunately, MnA′A
is not symmetric, But we can still compute the eigenvectors
efficiently in time O(m3), by solving the m×m generalized
eigen-system Lu = λRu with left matrix L = A′A and right
matrix R = M−1

n (which we already have from our recursive
updates). Finally this gives rise to algorithm 1.

3.1 Computational Cost and Memory Usage

The expensive steps of the algorithm 1 are step 6 (O(m2
t−1)

per step, O(nm2) overall), step 12 (O(m2
t−1) per step, O(nm2)

overall), step 19 (O(nm2)), step 22 (O(m3)), and step 23
(O(pnm)). The memory usage is O(m2) to store Mt (which
becomes Mn at the end), if the ait are recomputed in step
23, or O(nm) to store A if they are not recomputed (de-
pending on how large n is and how much memory is avail-
able). Hence time is O(nm2) and memory either O(m2) or
O(nm) (time-memory trade-off only in the constant factor
for time).

Algorithm 2 Constructs a dictionary of specified size mn

with an almost minimal level of error.
Arguments: randomly ordered data set D, wanted subset
size mn.

1: Initialize D = {x1}, Mt = (KD(x1, x1)),
M−1

t =
(

KD(x1, x1)−1
)

.
2: Set ε+ = 0 or something for m+n > mn

3: Set ε− = 1 or something for m−n < mn

4: Check that m−n < mn by running steps 2 to 16 of algo. 1
using ε−,D,Mt,M−1

t and data set D − D, stopping if
m−t > mn. Store the obtained dictionary and corre-
sponding matrices inD−,M−t ,M−t

−1
.

5: if m−t = mn then
6: returnD−,M−t ,M−t

−1

7: else if m−t > mn then
8: ε+ = ε−

9: ε− = 10ε−

10: goto step 4
11: else
12: SetD = D−,Mt = M−t ,M

−1
t = M−t

−1

13: end if
14: for i = 1 to 40 do
15: Set ε′ = ε+ + (ε− − ε+)/2
16: Run steps 2 to 16 of algo. 1 using ε ′,D,Mt,M−1

t
and data set D − D, stopping if m′t > mn. Store the
obtained dictionary and corresponding matrices in
D′,M′t ,M′t −1.

17: if m′t = mn then
18: returnD′,M′t ,M′t −1

19: else if m′t > mn then
20: Set ε+ = ε′

21: else
22: Set ε− = ε′,D = D′,Mt = M′t ,M

−1
t = M′t

−1

23: end if
24: end for
25: Run steps 2 to 16 of algo. 1 using ε+,D,Mt,M−1

t
and data set D − D, stopping when m+t = mn. Store
the obtained dictionary and corresponding matrices in
D+,M+t ,M+t

−1
.

26: returnD+,M+t ,M+t
−1

Although the goal was to get an online algorithm, it is also
possible to formulate the method in a setting more similar
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Figure 2: First two dimensions of the embeddings obtained with kernel PCA on classes 0 (+) and 1 (×) of the MNIST data
set (σ = 31.6, n = 1300). The dictionary points are noted by _. The image on the left is the embedding obtained with the
full Gram matrix. With 34 points in the dictionary, we obtain an almost identical embedding. Even with only 4 points, the
embedding is reasonable and similar.

to previously proposed methods where instead of specify-
ing the accuracy parameter ε, we specify the subset size
m. To do so, one needs to first search for a good value
of ε before applying algorithm 1. This can also be done
in O(nm2) operations and O(m2) in memory usage. Algo-
rithm 2 constructs a dictionary of the wanted size with an
almost minimal error level. Beginning with an ε that gives
a too small dictionary and one giving a too large dictionary,
it does a binary search for the right ε while always keeping
small dictionaries and only adding points to it. It first adds
to the dictionary the points that are the farthest from P and
gradually adds points that are closer and closer. This en-
sures that the error level will be near optimal. One gets the
desired embedding by running steps 17 to 24 of algorithm 1
with the obtained dictionary and corresponding matrices.

3.2 Additive and Divisive Normalizations

We have not discussed how to perform additive or divisive
normalization yet. If we compute the usual complete train-
ing set averages to estimate Ex[K̃(x, y)], then the whole al-
gorithm becomes O(n2) because we have to compute the
values of the data-independent kernel K̃(xi, x j) for all data
pairs. There are two solutions to this problem, which gave
similar results in our experiments. One is to use a random
subset of the examples (or the dictionary examples) to esti-
mate these averages. If we average over less than m2 exam-
ples the overall algorithm would remain O(nm2). The other
solution is to compute the exact normalization associated
with the implicit estimated Gram matrix AMnA′.

Proposition 2

Additive normalization of AMnA′ can be obtained by using
instead of AMnA′ the Gram matrix ÃMnÃ′ with Ã = A− B,
and B the matrix whose rows are all identical and equal to
the average row of A, Et[At]. Similarly, divisive normaliza-
tion can be obtained by using the Gram matrix ÃMnÃ′ with
Ãi· =

Ai·√
nAi·(MnEt[At])

.

The proof is straightforward comparing ÃiMnÃ j
′

to
KD(xi, x j) in eq. 3 and 4. Using this proposition, the al-

gorithm remains the same except that the matrix A is re-
placed by Ã in the last steps (22 and 23). Under constraint
∑

i ait = 1, additive normalization before or after the com-
putation of A made no empirical difference, since the ap-
proximation is invariant to a translation in feature space.
The only difference is the number of points over which the
averages are made. This is not the case for the divisive nor-
malization, where if we want to compute the approxima-
tion in the feature space induced by the normalized kernel,
the normalization should be applied before, using a sub-
set of the examples. For this normalization, the constraint
∑

i ait = 1 does not help and could be removed, but it did
not make a measurable difference in the experiments.

4 Related work

Other sparse greedy kernel methods in O(m2n) have been
proposed. (Smola and Bartlett, 2001) and (Lawrence,
Seeger and Herbrich, 2003) present algorithms for greedy
Gaussian processes. The main difference with our method
is that they do m passes on the whole data set (or a ran-
dom subset of it to reduce computation) and each time
they select the example that improves the most a global
criterion. They also use a recursive update for inverting
matrices. In (Smola and Schölkopf, 2000) the setting is
very general, aiming to approximate a matrix K by K̃, a
lower rank matrix, by minimizing the Frobenius norm of
the residual K − K̃. This is again done with m passes to
select the best basis function among a random subset of all
the n − mt function. Our algorithm is different from these
methods by requiring at most 2 passes on the data set. In-
stead, the approximation we use is close to the approach
presented in (Engel, Mannor and Meir, 2003) where it was
used in a sequential and supervised setting to perform Ker-
nel RLS. (Williams and Seeger, 2001) suggests to com-
pute the eigen-decomposition on a subset of m examples
and then use the Nyström formula to get an approxima-
tion of the eigen-decomposition for the n − m other points.
They argue that their method, although less precise than
(Smola and Schölkopf, 2000), is much faster. In our ex-
periments, we will compare our greedy technique to this
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Figure 3: Even for really small dictionary sizes, the generalization performance is comparable to the one obtained with
the Gram matrix of the whole training set. Curves corresponding to the dictionary methods are indexed with σ, the
standard deviation of the Gaussian kernel, ε, the accuracy parameter and m, the resulting maximum number of points in
the dictionary (obtained for the maximum n). The curves corresponding to non-dictionary methods are indexed with σ
only. There are 3 principal components for MNIST and 2 for the spiral. The individual experiments associated with the
symbols � and � have the same running time, but the generalization performance is far better for the dictionary method.
We observe the same phenomenon for symbols › and › corresponding to a longer running time. More details on the
relationship between running time and generalization error are given in table 1.

Nyström method showing that for the same computational
time we get better performance. Another related method is
(Harmeling et al., 2002) in which we search for the largest
random subset of examples for which the Gram matrix is
of full rank and project all the examples on this subset.
This technique is more computationally expensive than the
greedy selection since it requires to do several matrix de-
compositions to compute the rank. We will also see in the
experimental section that random subset selection leads to
larger subsets for the same error level.

5 Experimental Evaluation

The new algorithm was evaluated on two data sets: a 2-D
artificially generated spiral, and images of the digits 0 and
1 from the MNIST data set (scaled down from 28 × 28 to
14 × 14). Two embedding methods were compared and

evaluated out-of-sample using the Nyström formula: spec-
tral clustering and kernel PCA, both with the Gaussian ker-
nel, with different values of standard deviation (shown in
Figure 3). An example of the embeddings obtained with
the dictionary method on the MNIST data set is given in
figure 2.

The goals of the experiments were (1) to verify that the al-
gorithm worked (in the sense of giving an embedding close
to the one obtained when training with the whole data set)
and (2) to verify that it worked better than (a) the same
algorithm with randomly selected dictionary (Harmeling
et al., 2002) and (b) training on a small subset and gener-
alization with the Nyström formula (Williams and Seeger,
2001; Bengio et al., 2004). To compare the embeddings
given by these different methods, we will need a reference
embedding. We first divide our data set in three parts: D1,



Table 1: Comparison between generalization errors for the dictionary and non-dictionary methods at a fixed running time.
The errors and the n corresponds to the ones in Figure 3 for MNIST. Some of these results are plotted in Figure 3 with
square and circle symbols. Similar results are obtained for a fixed memory space.

WITHOUT DICTIONARY WITH DICTIONARY
TIME KPCA (s) MAX. SIZE GEN. ERROR ±95% C.I. MAX. SIZE GEN. ERROR ±95% C.I.

05.71 n = 250 1.48e−4 ± 8.9e−6 n = 1300, m = 34 6.64e−6 ± 2.3e−7

05.72 n = 250 1.48e−4 ± 8.9e−6 n = 1300, m = 55 6.40e−6 ± 2.1e−7

06.46 n = 550 8.27e−6 ± 4.0e−7 n = 1300, m = 126 3.99e−6 ± 1.5e−7

14.02 n = 1300 3.47e−6 ± 1.4e−7

TIME SC (s)

05.80 n = 325 2.41e−4 ± 1.2e−5 n = 1300, m = 41 5.16e−5 ± 2.3e−6

05.95 n = 400 2.37e−4 ± 1.2e−5 n = 1300, m = 65 5.61e−5 ± 2.5e−6

07.18 n = 700 1.58e−4 ± 7.3e−6 n = 1300, m = 138 8.74e−5 ± 3.8e−6

14.06 n = 1300 7.93e−5 ± 3.4e−6

D2, D3, where D2 and D3 are large. We compute a refer-
ence embedding by applying standard kernel PCA or spec-
tral clustering to D2 ∪ D3 and keeping the part correspond-
ing to D2. We then train the methods we want to compare
on D1. Using the obtained eigenvectors, we compute the
out-of-sample embedding for every element of the test set
D2 with the Nyström formula. We will compare this em-
bedding to the reference embedding of D2 by aligning them
with a simple linear regression (that maps each example’s
coordinate in one embedding with the same example’s co-
ordinate in the other embedding). In our experiments, the
reported generalization error is the average squared differ-
ence between the corresponding points of these aligned em-
beddings. We also show the 95% confidence intervals as-
sociated to the standard errors of these averages. For the
spiral data, we used sets of sizes |D1| ≤ 3333, |D2| = 3330
and |D3| = 3332. For the MNIST data, |D1| ≤ 3365,
|D2| = 3267 and |D3| = 3332.

In the experiments shown in Figure 3, we verify that the
greedy algorithm works about as well as when we use the
full Gram matrix. On the horizontal axis, we vary the size
of the training set D1 and on the vertical axis, we show
the out-of-sample errors obtained with the Nyström for-
mula. The dictionary method (curves indexed with ε,m, σ)
is trained with fixed values of ε, yielding different subset
sizes as the training set grows. The largest subset size ob-
tained is shown as “m ≤ ...”. To compare, we compute the
eigenvectors of the full Gram matrix corresponding to same
training set (ordinary kernel PCA and spectral clustering).
The corresponding generalization errors are reported by the
curves indexed with σ only (full black curves). The main
feature to note is that for a training set of size n, the re-
sults with the dictionary of size m � n are very close to the
results using ordinary training with all the examples, i.e.
the greedy algorithm generalizes about as well as full train-
ing. The other important conclusion from this figure is that
the dictionary method works much better than the simple
Nyström method with eigenvectors estimated on a random
dictionary (compare for example the error of the full Gram

matrix method trained with a dataset of size n = 125 with
the dictionary method for n = 1400 and m = 125 for ker-
nel PCA on MNIST). To be more fair, one can compare the
Nyström method to the dictionary method at equal running
time instead of equal subset size. Table 1 shows that for
the same running time, the dictionary method yields quite
smaller generalization error. In figure 3 and in table 1 you
can notice a slight increase in error as the dictionary grows
for spectral clustering on the MNIST data set, but as ex-
pected, the curve for the larger dictionary is closer to the
one for the whole dataset. This increase in error is proba-
bly due to overfitting; using a small dictionary is a way to
regularize. Finally, in Figure 4 we compare the proposed
selection algorithm vs a random selection procedure. In
both cases we project the other points on the span of the
subset in feature space. We also show the performance of
the Nyström technique with the eigen-decomposition made
on a random subset of points, ignoring the other points of
the training set. In these experiments we used a training set
of size 3365 and show the test set error for different values
of subset size m. The first thing we notice is that projecting
the other examples makes a huge difference. For this data
set, we need a subset of size about 900 for the Nyström
technique to achieve the performance we get with less than
100 points in the subset if we project the 3265 other points.
Although the greedy selection and the random selection be-
have the same for subsets of size 65 and more, this is not
the case for smaller sizes. The greedy selection strategy
reduces generalization error significantly, the more so for
smaller dictionaries, as expected. Note that for this prob-
lem a greedy dictionary of size 44 gave performances sim-
ilar to when the complete Gram matrix was used, as shown
in figure 3, but figure 4 suggests that a dictionary of size
about 22 would have been enough. For these dictionary
sizes, the performance of the random dictionary method is
not as good and consequently, an approach like (Harmeling
et al., 2002) will need to pick a subset of size at least 65 to
reach about the same error level.
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Figure 4: Comparison of the dictionary method vs the
Nyström method where the eigen-decomposition is made
only on a random subsets of the training set. We show two
subset selection strategies for the dictionary method: the
proposed greedy selection and a simple random selection.
These experiments were performed with a training set of
size 3365, with 3 principal components.

6 Conclusion

Spectral embedding methods are useful for manifold learn-
ing (non-linear dimensionality reduction) and clustering
(spectral clustering) but require an expensive O(n3) oper-
ation with O(n2) memory requirement, with n the number
of examples. In this paper we propose an efficient algo-
rithm that yields almost as good results and reduces com-
putation to O(nm2) and memory to O(m2) where m is the
size of a small subset of selected examples (the dictionary).
The algorithm selects examples greedily and sequentially
based on their distance to the span of the already selected
ones, in the kernel feature space. It then uses the projec-
tion of all n examples on that span to estimate the required
eigenvectors. We show how to formulate kernel PCA and
spectral clustering within this framework. In theory one
can also write a functional form for other data dependant
kernels like LLE and Isomap kernels, but the update of
the matrix becomes relatively ineffective in these cases and
should be the subject of future research. Experiments show
that for kernel PCA and spectral clustering, the selection
method is significantly better than random selection, and
better than simply using the Nyström method to generalize
(as in Isomap’s landmark variant (de Silva and Tenenbaum,
2003)). In fact it worked almost as well as training with all
the data.
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