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Abstract

Speech and other natural sounds show high
temporal correlation and smooth spectral evolu-
tion punctuated by a few, irregular and abrupt
changes. In a conventional Hidden Markov
Model (HMM), such structure is represented
weakly and indirectly through transitions be-
tween explicit states representing ‘steps’ along
such smooth changes. It would be more effi-
cient and informative to model successive spec-
tra astransformationsof their immediate prede-
cessors, and we present a model which focuses
on local deformations of adjacent bins in a time-
frequency surface to explain an observed sound,
using explicit representation only for those bins
that cannot be predicted from their context. We
further decompose the log-spectrum into two ad-
ditive layers, which are able to separately explain
and model the evolution of the harmonic exci-
tation, and formant filtering of speech and sim-
ilar sounds. Smooth deformations are modeled
with hidden transformation variables in both lay-
ers, using Markov Random fields (MRFs) with
overlapping subwindows as observations; infer-
ence is efficiently performed via loopy belief
propagation. The model can fill-in deleted time-
frequency cells without any signal model, and an
entire signal can be compactly represented with
a few specific states along with the deformation
maps for both layers. We discuss several possible
applications for this new model, including source
separation.

1 Introduction

Hidden Markov Models (HMMs) work best when only a
limited set of distinct states need to be modeled, as in the
case of speech recognition where the models need only be
able to discriminate between phone classes. When HMMs

are used with the express purpose of accurately modeling
the full detail of a rich signal such as speech, they require a
large number of states. In [1](Roweis 2000), HMMs with
8,000 states were required to accurately represent one per-
son’s speech for a source separation task. The large state
space is required because it attempts to capture every pos-
sible instance of the signal. If the state space is not large
enough, the HMM will not be a good generative model
since it will end up with a “blurry” set of states which repre-
sent an average of the features of different segments of the
signal, and cannot be used in turn to “generate” the signal.

In many audio signals including speech and musical instru-
ments, there is a high correlation between adjacent frames
of their spectral representation. Our approach consists
of exploiting this correlation so that explicit models are
required only for those frames that cannot be accurately
predicted from their context. In [2](Bilmes 1998), con-
text is used to increase the modelling power of HMMs,
while keeping a reasonable size parameters space, how-
ever the correlation between adjacent frames is not explic-
ity modeled. Our model captures the general properties of
such audio sources by modeling the evolution of their har-
monic components. Using the common source-filter model
for such signals, we devise a layered generative graphi-
cal model that describes these two components in separate
layers: one for the excitation harmonics, and another for
resonances such as vocal tract formants. This layered ap-
proach draws on successful applications in computer vision
that use layers to account for different sources of variability
[3, 4, 5](Jojic 2001,Levin 2002,Jojic 2003). Our approach
explicitly models the self-similarity and dynamics of each
layer by fitting the log-spectral representation of the signal
in framet with a set of transformations of the log-spectra
in framet−1. As a result, we do not require separate states
for every possible spectral configuration, but only a limited
set of “sharp” states that can still cover the full spectral va-
riety of a source via such transformations. This approach is
thus suitable for any time series data with high correlation
between adjacent observations.

We will first introduce a model that captures the spectral de-
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Figure 1: TheNC = 3 patch of time-frequency bins out-
lined in the spectrogram can be seen as an “upward” ver-
sion of the markedNP = 5 patch in the previous frame.
This relationship can be described using the matrix shown.
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Figure 2: a) Graphical model b) Graphical simplification.

formation field of the speech harmonics, and show how this
can be exploited to interpolate missing observations. Then,
we introduce the two-layer model that separately models
the deformation fields for harmonic and formant resonance
components, and show that such a separation is necessary
to accurately describe speech signals through examples of
the missing data scenario with one and two layers. Then we
will present the complete model including the two defor-
mation fields and the “sharp” states. This model, with only
a few states and both deformation fields, can accurately re-
construct the signal. This paper fully describes the oper-
ation and implementation of this complete model, which
was only described as future work in [6](Reyes-Gomez
2004).

Finally, we briefly describe a range of existing applications
including semi-supervised source separation, and discuss
the model’s possible application to unsupervised source
separation.

2 Spectral Deformation Model

Figure 1 shows a narrow band spectrogram representation
of a speech signal, where each column depicts the en-
ergy content across frequency in a short-time window, or
time-frame. The value in each cell is actually the log-
magnitude of the short-time Fourier transform; in decibels,
xkt = 20log(abs(

∑NF−1
τ=0 w[τ ]x[τ − t · H]e−j2πτk/NF )),

wheret is the time-frame index,k indexes the frequency
bands,NF is the size of the discrete Fourier transform,
H is the hop between successive time-frames,w[τ ] is the
NF -point short-time window, andx[τ ] is the original time-
domain signal. We use 32 ms windows with 16 ms hops.
Using the subscriptC to designate current andP to in-
dicate previous, the model predicts a patch ofNC time-
frequency bins centered at thekth frequency bin of framet
as a “transformation” of a patch ofNP bins around thekth

bin of framet− 1, i.e.

~X
[k−nC ,k+nC ]
t ≈ ~T kt · ~X

[k−nP ,k+nP ]
t−1 (1)

wherenC = (NC − 1)/2, nP = (NP − 1)/2, andT kt is
the particularNC×NP transformation matrix employed at
that point on the time-frequency plane. We use overlapping
patches to enforce transformation consistency, [5](Jojic
2003).

Figure 1 shows an example withNC = 3 andNP = 5 to
illustrate the intuition behind this approach. The selected
patch in framet can be seen as a close replica of an up-
ward shift of part of the patch highlighted in framet − 1.
This “upward” relationship can be captured by a transfor-
mation matrix such as the one shown in the figure. The
patch in framet − 1 is larger than the patch in framet
to permit both upward and downward motions. The gen-
erative graphical model for a single layer is depicted in
figure 2. NodesX = {X1

1 , X
2
1 , ..., X

k
t , ..., X

K
T } repre-

sent all the time-frequency bins in the spectrogram. For
now, we consider the continuous nodesX as observed, al-
though below we will allow some of them to be hidden
when analyzing the missing data scenario. Discrete nodes
T = {T 1

1 , T
2
1 , ..., T

k
t , ..., T

K
T } index the set of transfor-

mation matrices used to model the dynamics of the signal.
EachNC ×NP transformation matrix~T is of the form:

~w 0 0
0 ~w 0
0 0 ~w

 (2)

i.e. each of theNC cells at timet predicted by this matrix
is based on the same transformation of cells fromt − 1,
translated to retain the same relative relationship. Here,
NC = 3 and~w is a row vector with lengthNW = NP − 2;
using ~w = (0 0 1) yields the transformation matrix shown
in figure 1. To ensure symmetry along the frequency axis,
we constrainNC , NP andNW to be odd. The complete
set of~w vectors include upward/downward shifts by whole
bins as well as fractional shifts. An example set, containing



each~w vector as a row, is:



0 0 0 0 1
0 0 0 .25 .75
0 0 0 .75 .25
0 0 0 1 0
0 0 .25 .75 0
. . . . .
.75 .25 0 0 0
1 0 0 0 0


(3)

The lengthNW of the transformation vectors defines
the supporting coefficients from the previous frame
~X

[k−nW ,k+nW ]
t−1 (wherenW = (NW − 1)/2) that can “ex-

plain” Xk
t .

b) Transformation Mapa) Signal
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Identity transform
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Upward motion
(darker is steeper)
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Figure 4: Example transformation map showing corre-
sponding points on original signal.
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Figure 5: Graphical representation of the two-layer source-
filter transformation model.

For harmonic signals in particular, we have found that a
model using the above set of~w vectors with parameters
NW = 5, NP = 9 andNC = 5 (which corresponds to
a model with a transformation space of 13 different matri-
ces T) is very successful at capturing the self-similarity and
dynamics of the harmonic structure.

The transformations set could, of course, be learned, but in
view of the results we have obtained with this predefined
set, we defer the learning of the set to future work. The
results presented in this paper are obtained using thefixed
set of transformations described by matrix 3.

The clique “local-likelihood” potential between the time-
frequency binXk

t , its relevant neighbors in framet, its rel-
evant neighbors in framet− 1, and its transformation node

T kt has the following form:

ψ
(
~X

[k−nC ,k+nC ]
t , ~X

[k−nP ,k+nP ]
t−1 , T kt

)
=

N
(
~X

[k−nC ,k+nC ]
t ; ~T kt ~X

[k−nP ,k+nP ]
t−1 ,Σ[k−nC ,k+nC ]

)
(4)

The diagonal matrixΣ[k−nC ,k+nC ], which is learned, has
different values for each frequency band to account for
the variability of noise across frequency bands. For the
transformation cliques, the horizontal and vertical transi-
tion potentialsψhor(T kt , T

k
t−1) and ψver(T kt , T

k−1
t ), are

represented by transition matrices.

For observed nodesX , inference consists in finding
probabilities for each transformation index at each time-
frequency bin. Exact inference is intractable and is ap-
proximated using Loopy Belief Propagation [7, 8] (Yedidia
2001,Weiss 2001) Appendix A gives a quick review of
the loopy belief message passing rules, and Appendix B
presents the specific update rules for this case.

The transformation map, a graphical representation of the
expectedtransformation node across time-frequency, pro-
vides an appealing description of the harmonics’ dynamics
as can be observed in figure 4. In these panels, the links
between three specific time-frequency bins and their corre-
sponding transformations on the map are highlighted. Bin
1 is described by a steep downward transformation, while
bin 3 also has a downward motion but is described by a less
steep transformation, consistent with the dynamics visible
in the spectrogram. Bin 2, on other hand, is described by
a steep upwards transformation. These maps tend to be
robust to noise (see fig 7), making them a valuable repre-
sentation in their own right.

3 Inferring Missing Data

If a certain region of cells in the spectrogram are missing,
like in the case of corrupted data, the corresponding nodes
in the model become hidden. This is illustrated in figure 3,
where a rectangular region in the center has been removed
and tagged as missing. Inference of the missing values is
performed again using belief propagation, the update equa-
tions are more complex since there is the need to deal with
continuous messages, (Appendix C). The posteriors of the
hidden continuous nodes are represented using Gaussian
distributions, the missing sections on figure 3 part b), are
filled in with the means of their inferred posteriors, figure
3 part c), and d). The transformation node posteriors for
the missing region are also estimated, in the early stages on
the “fill-in” procedure the transformation belief from the
“missing” nodes are set to uniform so that the transforma-
tion posterior is driven only by the reliable observed neigh-
bors, once the missing values have been filled in with some
data, we enable the messages coming from those nodes.



a) b) c) d)

Figure 3: Missing data interpolation example a) Original, b) Incomplete, c) After 10 iterations, d) After 30.

a)Missing Sections b) Fill-in; one layer c) Fill-in; two layers

Figure 6: (a) Spectrogram with deleted (missing) regions. (b) Filling in using a single-layer transformation model. (c)
Results from the two-layer model.

4 Two Layer Source-Filter Transformations

Many sound sources, including voiced speech, can be
successfully regarded as the convolution of a broad-band
source excitation, such as the pseudo-periodic glottal flow,
and a time-varying resonantfilter, such as the vocal tract,
that ‘colors’ the excitation to produce speech sounds or
other distinctions. When the excitation has a spectrum con-
sisting of well-defined harmonics, the overall spectrum is in
essence the resonant frequency response sampled at the fre-
quencies of the harmonics, since convolution of the source
with the filter in the time domain corresponds to multiply-
ing their spectra in the Fourier domain, or adding in the log-
spectral domain. Hence, we model the log-spectraX as the
sum of variablesF andH, which explicitly model the for-
mants and the harmonics of the speech signal. The source-
filter transformation model is based on two additive layers
of the deformation model described above, as illustrated in
figure 5. VariablesF andH in the model are hidden, while,
as before,X can be observed or hidden. The symmetry be-
tween the two layers is broken by using different parame-
ters in each, chosen to suit the particular dynamics of each
component. We use transformations with a larger support
in the formant layer (NW = 9) compared to the harmon-
ics layer (NW = 5). Since all harmonics tend to move
in the same direction, we enforce smoother transformation
maps on the harmonics layer by using potential transition
matrices with higher self-loop probabilities. An example
of the transformation map for the formant layer is shown
in figure 7, which also illustrates how these maps can re-

main relatively invariant to high levels of signal corruption;
belief propagation searches for a consistent dynamic struc-
ture within the signal, and since noise is less likely to have a
well-organized structure, it is properties of the speech com-
ponent that are extracted. Inference in this model is more
complex, but the actual form of the continuous messages
is essentially the same as in the one layer case (Appendix
C), with the addition of the potential function relating the
signalXk

t with its transformation componentsHk
t andF kt

at each time-frequency bin:

ψ(Xk
t ,H

k
t , F

k
t ) = N (Xk

t ;Hk
t + F kt , σ

k) (5)

The first row of figure 10 shows the decomposition of a
speech signal into harmonics and formants components,
illustrated as the means of the posteriors of the continu-
ous hidden variables in each layer. The decomposition is
not perfect, since we separate the components in terms of
differences in dynamics; this criteria becomes insufficient
when both layers have similar motion. However, separa-
tion improves modeling precisely when each component
has a different motion, and when the motions coincide, it
is not really important in which layer the source is actu-
ally captured. Figure 6 a) shows the first spectrogram from
figure 10 with deleted regions; notice that the two layers
have distinctly different motions. In b) the regions have
been filled via inference in a single-layer model; Notice
that since the formant motion does not follow the harmon-
ics, the formants are not captured in the reconstruction. In
c) the two layers are first decomposed and then each layer
is filled in; the figure shows the addition of the filled-in
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Figure 7: Formant tracking map for clean speech (left panels) and speech in noise (right panels).
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Figure 8: Left: Graphic model of the matching-tracking model; Right: Entropy Map and Entropy Edges

version in each layer.

5 Matching-Tracking Model

Prediction of frames from their context is not always possi-
ble such as when there are transitions between silence and
speech or transitions between voiced and unvoiced speech,
so we need a set of states to represent these unpredictable
frames explicitly. We will also need a second “switch” vari-
able that will decide when to “track” (transform) and when
to “match” the observation with a state. The first row of
figure 8 shows a graphical representation of this model. At
each time frame, discrete variablesSt andCt are connected
to all frequency bins in that frame.St is a uniformly-
weighted Gaussian Mixture Model containing the means
and the variances of the states to model. VariableCt takes
two values: When it is equal to 0, the model is in “tracking
mode”; a value of 1 designates “matching mode”. The po-
tentials between observationsxkt , harmonics and formants
hidden nodeshkt andfkt respectively, and variablesSt and
Ct is given by:

ψ
(
xkt , h

k
t , f

k
t , St, Ct = 0

)
= N

(
xkt ;h

k
t + fkt , σ

k
)

(6)

ψ
(
xkt , h

k
t , f

k
t , St = j, Ct = 1

)
= N

(
xkt ;µ

k
j , φ

k
j

)
(7)

Inference is done again using loopy belief propagation.
Definingφ as a diagonal matrix, the M-Step is given by:

µj =
∑
t(Q(St = j)Q(Ct = 0)Xt)∑
t(Q(St = j)Q(Ct = 0))

σk =
∑
t(Q(Ct = 1)(xkt − (fkt + hkt )))

2∑
t(Q(Ct = 1))

φj =
∑
t(Q(St = j)Q(Ct = 0)(Xt − µj))2∑

t(Q(St = j)Q(Ct = 0))

(8)

Q(St) andQ(Ct) are obtained using the belief propagation
rules.Q(Ct = 0) is large if eqn. 6 is larger than eqn. 7. In
early iterations when the means are still quite random, eqn.
6 is quite large, makingQ(Ct = 0) large with the result
that the explicit states are never used.

To prevent this we start the model with large variancesφ
andσ, which will result in non-zero values forQ(Ct = 1),
and hence the explicit states will be learned.

As we progress, we start to learn the variances by anneal-
ing the thresholds i.e. reducing them at each iteration. We
start with a relatively large number of means, but this be-
comes much smaller once the variances are reduced; the
lower-thresholds then control the number of states used in
the model. The resulting states typically consist of single
frames at discontinuities as intended. Figure 9 a) shows
the frames chosen for a short speech segment, (the spectro-
gram on figure 3.), the signal can be regenerated from the
model using the states and both estimated motion fields.
The reconstruction is simply another instance of inferring
missing values, except the motion fields are not reestimated
since we have the true ones. Figure 9 shows several stages
of the reconstruction.

6 Applications

We have built an interactive model that implements for-
mant and harmonics tracking, missing data interpolation,
formant/harmonics decomposition, and semi-supervised
source separation of two speakers. Videos illustrating the
use of this demo are available at:http://www.ee.
columbia.edu/˜mjr59/def_spec.html .



a) States b) Reconstruction; Iter. 1 c) Reconstruction; Iter. 3 d) Reconstruction; Iter. 5 e) Reconstruction; Iter. 8

Figure 9: Reconstruction from the matching-tracking representation, starting with just the explicitly-modeled states, then
progressively filling in the transformed intermediate states.
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Selected Bin Harmonic Tracking Formant Tracking

FormantsHarmonicsSignal

a). c).b).

Figure 10: First row: Harmonics/Formants decomposition (posterior distribution means). Row 2: Harmonics/Formants
tracking example. The transformation maps on both layers are used to track a given time-frequency bin. Row 3: Semi-
supervised Two Speakers Separation. a) The user selects bins on the spectrogram that she believes correspond to one
speaker. b) The system finds the corresponding bin on the transformation map. c) The system selects all bins whose
transformations match the ones chosen; the remaining bins correspond to the other speaker.

Formants and Harmonics Tracking: Analyzing a signal
with the two-layer model permits separate tracking of the
harmonic and formant ‘ancestors’ of any given point. The
user clicks on the spectrogram to select a bin, and the sys-
tem reveals the harmonics and formant “history” of that
bin, as illustrated in the second row of figure 10.

Semi-Supervised Source Separation:After modeling the
input signal, the user clicks on time-frequency bins that ap-
pear to belong to a certain speaker. The demo then masks
all neighboring bins with the same value in the transfor-
mation map; the remaining unmasked bins should belong
to the other speaker. The third row of figure 10 depicts an
example with the resultant mask and the “clicks” that gen-
erated it. Although far from perfect, the separation is good
enough to perceive each speaker in relative isolation.

Missing Data Interpolation and Harmonics/Formants

Separation: Examples of these have been shown above.

Features for Speech Recognition:The phonetic distinc-
tions at the basis of speech recognition reflect vocal tract
filtering of glottal excitation. In particular, the dynamics of
formants (vocal tract resonances) are known to be power-
ful “information-bearing elements” in speech. We believe
the formant transformation maps may be a robust discrimi-
native feature to be use in conjunction with traditional fea-
tures in speech recognition systems, particularly in noisy
conditions; this is future work.

7 Potential Unsupervised Source Separation
Applications

The right hand of figure 8 illustrates theentropy of the
distributions inferred by the system for each transforma-



Figure 11: First pane shows the composed spectrogram,
second and third spectrograms correspond to the individ-
ual sources, vertical lines correspond to the frames learned
as states. Notice how the model captures the switches of
dominant speaker.

tion variable on a composed signal. The third pane shows
‘entropy edges’, boundaries of high transformation uncer-
tainty. With some exceptions, these boundaries correspond
to transitions between silence and speech, or when oc-
clusion between speakers starts or ends. Similar edges
are also found at the transitions between voiced and un-
voiced speech. High entropy at these points indicates that
the model does not know what to track, and cannot find a
good transformation to predict the following frames. These
“transition” points are captured by the state variables when
the Matching-Tracking model is applied to a composed sig-
nal, figure 11, the state nodes normally capture the first
frame of the “new dominant” speaker. The source sepa-
ration problem can be addressed as follows: When multi-
ple speakers are present, each speaker will be modeled in
its own layer, further divided into harmonics and formants
layers. The idea is to reduce the transformation uncertainty
at the onset of occlusions by continuing the tracking of the
“old” speaker in one layer at the same time as estimating
the initial state of the “new” speaker in another layer – a
realization of the “old-plus-new” heuristic from psychoa-
coustics. This is part of our current research.
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Figure 12: Factor Graph

8 Conclusions

We have presented a harmonic/formant separation and
tracking model that effectively identifies the different fac-
tors underlying speech signals. We show that this model
has a number of useful applications, several of which have
already been implemented in a working real-time demo.
The model we have proposed in this paper captures the de-
tails of a speech signal with only a few parameters, and is
a promising candidate for sound separation systems that do
not rely on extensive isolated-source training data.

9 Appendices

A: Loopy Belief Propagation

The sum-product algorithm [9](Kschischang 2001) can be
used to approximate inference on graphical models with
loops. The algorithm update rules applied to the factor
graph representation of the model are:
Variable to local function:

mx→f (x) =
∏

h∈n(x)\f

mf→x(x) (9)

Local function to variable:

mf→x(x) =
∑
∼x

f(X)
∏

y∈n(f)\x

my→f (y) (10)

whereX = n(f) is the set of arguments of the functionf .

B: Update Rules for the Spectral Deformation Model

Figure 12 depicts a section of the factor graph represen-
tation of our model. Function nodeshkt and vkt repre-
sent respectively the potential cliques (transition matrices)
ψhor(T kt , T

k
t−1) andψver(T kt , T

k−1
t ). Function nodeψkt ,

which represents the local likelihood potential defined in
eq. 4, is connected toNC “observation” variables in frame



t ([xk−nC
t ..xk+nC

t ], nC = (NC - 1)/2 ) and toNP “obser-
vation” variables in framet− 1.

When variablesxkt are actually observed, only discrete
messages between function nodeshkt , vkt and variable
nodesT kt are required by the algorithm. Applying recur-
sively the above update rules, we obtain the following for-
ward recursion for the horizontal nodes on the grid:

mTk
t →hk

t
(T kt ) = (

∑
Tk

t−1

hkt (T
k
t , T

k
t−1)mTk

t−1→hk
t−1

(T kt−1))

ψ( ~X [k−nC :k+nC ]
t , ~X

[k−nP :k+nP ]
t−1 , T kt )g(T kt )

(11)

whereg(T kt ) = mvk
t→Tk

t
(T kt )mvk+1

t →Tk
t
(T kt ). A similar

backward recursion can also be found. The messages for
the vertical chains can be updated through analogous up-
ward/downward recursions.

C: Loopy Belief with Continuous-Valued Messages

The message from function nodeψkt to variablexij has the
form.

mψk
t→xi

j
(xij) =∫

~y,~z

1
C
exp

1
2 (αxi

j−Γ~y+~z)
′
Σ−1

[r−nC :r+nC ](αx
i
j−Γ~y+~z)

N (~y;µy,Σy)N (~z;µz,Σz)d~yd~z (12)

Wherej is eithert − 1 or t and i ∈ [k − nP , k + nP ]
if j = t − 1 or i ∈ [k − nC , k + nC ] if j = t. Vector~y
is formed by the values onX [r−nP :r+nP ]

t−1 other thanxij if
j = t − 1 or the whole vector ifj = t. Vectors~z and
~X

[r−NC :r+NC ]
t have an analogous relationship. Vectorα

and matrixΓ come from the most likely (or weighted mean)
of the transformation matrix used atT kt .

Vectors~y and~z are obtained by concatenating individual
variablesxsr. ThereforeN (~y;µy,Σy) andN (~z;µz,Σz)
should be obtained by completing the square of the
multiplication of the gaussian messages from the rele-
vant individual variablesxsr to the function nodeψkt .
For simplicity and to speed up the process we approx-
imate them instead by delta functionsδ(~y − µy) and
δ(~z − µz), whereµy andµz are obtained as explain be-
low. Then the messages reduce to:mψk

t→xi
j
(xij) =

1
C exp

1
2 (αxi

j−Γµy+µz)
′
Σ−1(αxi

j−Γµy+µz).

The posterior probability of nodexkt , q(xkt ), is equal to
the multiplication of all its incoming messages. We ap-
proximate this multiplication with a Gaussian distribution,
q
′
(xkt ) = N (xkt ;µxk

t
, φxk

t
). Minimizing their KL diver-

gence we find:

µxk
t

=
∑NC+NP

i=1 α
′

iΣ
−1
i (Γi~yi − ~zi)∑NC+NP

i=1 α
′
iΣ
−1
i α−1

i

(13)

The values displayed by the missing data application are
these mean values. The means of the variable to local func-
tion nodes messages,mxk

t→ψi
j
(xkt ), have the same form as

in equation 13, just subtracting the numerator and denom-
inator factor corresponding to the incoming message from
the corresponding function. Since we use diagonal vari-
ances, parametersµy andµz in 12 are found by concate-
nating the means of the relevant messagesmxk

t→ψi
j
(xkt ).

When using the two layer model, an extra message comes
from the other layer adding extra factors in the numerator
and denominator of equation 13.
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