
FastMap, MetricMap, and Landmark MDS
are all Nyström Algorithms

John C. Platt
Microsoft Research
1 Microsoft Way

jplatt@microsoft.com

Abstract

This paper unifies the mathematical foun-
dation of three multidimensional scaling al-
gorithms: FastMap, MetricMap, and Land-
mark MDS (LMDS). All three algorithms
are based on the Nyström approximation of
the eigenvectors and eigenvalues of a matrix.
LMDS is applies the basic Nyström approx-
imation, while FastMap and MetricMap use
generalizations of Nyström, including defla-
tion and using more points to establish an
embedding. Empirical experiments on the
Reuters and Corel Image Features data sets
show that the basic Nyström approximation
outperforms these generalizations: LMDS is
more accurate than FastMap and MetricMap
with roughly the same computation and can
become even more accurate if allowed to be
slower.

1 INTRODUCTION

Multidimensional Scaling (MDS) [4] is an impor-
tant method for visualizing and processing high-
dimensional or graphical data. MDS takes as input
a distance matrix between items. It produces a coor-
dinate vector for each item in a Euclidean space whose
dimension is user-specifiable. This process is known as
embedding.

MDS is applicable to two different tasks: 1) dimen-
sionality reduction, which measures a set of distances
between items, then applies MDS to the resulting (per-
haps sparse) distance matrix; and 2) converting graphs
to vectors, where a data set is expressed as a set of
similarity relationships between items that is then con-
verted into a simple table of vectors.

The original MDS algorithms from the 1960s [4] are
not appropriate for large scale applications because

they require an entire N × N distance matrix to be
stored in memory and may have O(N3) complexity.
However, in the last 10 years, several scalable MDS
algorithms have been proposed. For example, Falut-
sos and Lin [7] proposed FastMap, which is an MDS
method that determines one coordinate at a time by
examining a constant number of rows of the distance
matrix. Wang, et. al [12] proposed an improvement on
FastMap, called MetricMap, which attempts to do the
entire projection at once. de Silva and Tennenbaum [5]
proposed Landmark MDS (LMDS) as another attempt
at scalable MDS.

FastMap, MetricMap, and LMDS are all classical
MDS algorithms that start with a distance matrix as-
sumed to have been computed from points in a low-
dimensional space. They then (approximately) mini-
mize a quadratic cost function between the resulting
embedding coordinates and the original (hidden) coor-
dinates that created the distance matrix. Another set
of MDS algorithms are based on spring models [3, 14].
These spring models minimize a cost function that is
non-quadratic in the coordinates: the squared differ-
ence between embedded and observed distances be-
tween items. Recent work has also accelerated these
spring models, but they are prone to local minima [3].
Spring models are not considered in this paper.

The proliferation of MDS algorithms may lead to frus-
tration amongst practitioners because it is unclear how
the algorithms relate to one another or how they com-
pare against each other. This paper attempts to clarify
the situation in two ways. First, this paper shows that
FastMap, MetricMap, and LMDS are all algorithms
based on the Nyström approximation of the eigenvec-
tors of a large matrix [1, 13], based only on a rectangu-
lar sub-matrix of the large matrix. LMDS uses the ba-
sic Nyström approximation, FastMap uses Nyström to
find one eigenvector at a time, and MetricMap uses an
irregular sub-matrix to find the eigenvectors. The pa-
per presents empirical comparisons between FastMap,
MetricMap, and LMDS, to determine which variation

of Nyström is optimal.

2 MATHEMATICAL
BACKGROUND

This section presents a step-by-step introduction to
Classical MDS and the Nyström eigenvector approxi-
mation. The LMDS algorithm is then derived based
on the combination of the two, as first described in [2].

2.1 REVIEW OF CLASSICAL MDS

FastMap, MetricMap, and LMDS are all multi-
dimensional scaling (MDS) algorithms [4] that map
a matrix of dissimilarities D between N items to a
k-dimensional coordinate vector for each item (~xi).
This paper’s derivation for all three of these algorithms
starts with metric MDS, which assumes that the en-
tries in the dissimilarities matrix are Euclidean dis-
tances. These three algorithms then utilize classical
MDS, which chooses the k-dimensional coordinates to
minimize the squared difference between the distances
in the embedded and the original spaces.

Classical MDS proceeds in two steps. First, the dis-
tance matrix D undergoes “double-centering” to con-
vert it from a distance matrix to a new matrix K:

Kij = −1
2

(
D2

ij − ej

∑
i

ciD
2
ij

−ei

∑
j

cjD
2
ij +

∑
i,j

cicjD
2
ij

 , (1)

where
∑

i ci = 1 and ei is the vector of all ones. If
the original distance matrix D is a Euclidean distance
matrix in d-dimensional space, then K is a matrix of
dot products between coordinate vectors in that same
space [11]. This is also known as a Gram or kernel
matrix. If the original distance matrix is Euclidean,
then K is symmetric and positive semi-definite. The
parameters ci in (1) determine the origin of the coordi-
nate vectors (which is not constrained by the distance
matrix D).

The second step of classical MDS is to extract the
coordinate vectors from the kernel matrix K through
eigenvector decomposition. If the matrix D is sym-
metric, then K is symmetric and can be decomposed
into

K = QΛQT (2)

where Q is a matrix whose columns are orthonormal
eigenvectors and Λ is a diagonal matrix of eigenval-
ues. The k-dimensional coordinate vectors that would
give rise to the kernel matrix K are the scaled rows
of Q. In order to minimize the difference between the

embedded and original distances with a fixed number
of dimensions k, the eigenvectors with the top k eigen-
values are retained. Assuming that the eigenvalues are
ordered by decreasing eigenvalue, the jth component
of point i’s coordinate vector is:

xij =
√

λjQij , (3)

where λj is the jth eigenvalue and here the index j
runs only from 1 to k, rather than to N (the size of
K).

2.2 THE NYSTRÖM APPROXIMATION

There are numerous ways of performing the decompo-
sition (2). If only the top k eigenvectors are needed,
then orthogonal iteration or Lanczos iteration can be
applied [8].

However, the three MDS algorithms that are the sub-
ject of this paper use an approximation method from
physics, called the Nyström approximation [1, 13]. To
use Nyström, first choose m items in the distance and
kernel matrix at random. Without loss of generality,
permute the m items to be the first rows and columns
of these matrices. The K and D can then be parti-
tioned into submatrices:

K =

A B

BT C
, D =

E F

FT G
, (4)

where A and E have dimension m×m; B and F have
dimension m× (N−m); and C and G have dimension
(N −m)× (N −m).

The Nyström approximation permits the computation
of the coordinates ~xi using only the information in
matrices A and B. Nyström assumes that K is posi-
tive semi-definite, and hence a Gram matrix. Thus, K
should be expressible in terms of dot products between
columns of matrices X and Y [1]:

K =
[

XT X XT Y
YT X YT Y

]
. (5)

Identifying the submatrices in (5) with those in K in
(4) yields

A = XT X,

B = XT Y. (6)

The first equation in (6) is standard in classical MDS:
the solution for X is to eigendecompose A:

A = UΓUT , (7)

and then assign the coordinates

X = Γ1/2
[k] UT

[k], (8)

where the subscript [k] indicates the submatrices cor-
responding to the eigenvectors with the k largest pos-
itive eigenvalues. The coordinates corresponding to B
can be derived by solving the linear system:

Y = X−T B = Γ−1/2
[k] UT

[k]B. (9)

Combining equations (8) and (9) together and writing
the coordinate as rows in a matrix results in

xij =
{ √

γjUij if i ≤ m;∑
p BpiUpj/

√
γj otherwise, (10)

where Uij is the ith component of the jth eigenvector
of A and γj is the jth eigenvalue of A. As in (3)
the j index only runs from 1 to k, in order to make a
k-dimensional embedding.

The Nyström approximation can be understood by
plugging (8) and (9) back into (6). Nyström approxi-
mates the full matrix K by

K̃ =
[

A B
BT BT A−1B

]
. (11)

This approximation is exact when K is of rank m or
less. The quality of the approximation is proportional
to ||C−BT A−1B||.

To turn Nyström into an MDS method, matrices A
and B must be derived only from submatrices E and F
(from D). This can be done by choosing the centering
coefficients in equation (1) to be

ci =
{

1/m if i ≤ m;
0 otherwise, (12)

which yields the centering formulas

Aij = −1
2

(
E2

ij − ei
1
m

∑
p

E2
pj

−ej
1
m

∑
q

E2
iq +

1
m2

∑
p,q

E2
pq

)
(13)

Bij = −1
2

(
F 2

ij − ei
1
m

∑
p

F 2
qj − ej

1
m

∑
p

E2
ip

)
,

(14)
where the constant centering term in (14) is dropped,
because it introduces an irrelevant shift of origin.

Note that Nyström can also be used to approximately
solve spectral clustering problems [1], by using a nor-
malized graph Laplacian, instead of a centering ma-
trix, to transform a data matrix into a kernel matrix.

2.3 LMDS

The combination of equations (13) and (14), followed
by (7), then (10) is almost the LMDS algorithm [5].
LMDS is so named because Classical MDS is first ap-
plied to a subset of the points (in A), called “land-
marks.”

The only difference between the algorithm derived here
and LMDS is the centering formula (14). In [5], the
centering formula

Bij = −1
2

(
F 2

ij − ei
1
m

∑
p

E2
ip

)
(15)

is used. This simplification does not affect the results,
because it adds a vector proportional to ei to every
column of B. Equation (9) shows that the columns of
B are only involved in dot products with the eigenvec-
tors of A. It is easy to show that ei is an eigenvector
of A with eigenvalue zero. Therefore, all other eigen-
vectors must be orthogonal to ei. Therefore, adding a
vector proportional to ei to the columns of B does not
change the embedding results.

The computational complexity of LMDS is O(Nmk +
m3). For large N , the computation time is dominated
by computing the input distances from raw input data
and projecting the distances in (10).

3 UNIFICATION OF THE THREE
ALGORITHMS

While LMDS, FastMap, and MetricMap were all pro-
posed independently and appear to be distinct algo-
rithms, we will see in the following section that they
are all, in fact, applications of the Nyström approxi-
mation.

3.1 FASTMAP

Consider LMDS for k = 1 and m = 2. In this case, we
are trying to find a one-dimensional embedding using
two landmark points. If the distance between the two
landmarks is d12 and the distance from each landmark
to all other points is d1i or d2i, then LMDS produces:

A =
1
4

[
d2
12 −d2

12

−d2
12 d2

12

]
. (16)

The largest eigenvalue for A is d2
12/2, and its corre-

sponding eigenvector is [1− 1]T /
√

2. After centering,

B =
1
2

[
d2
1i − d2

12/2
d2
2i − d2

12/2

]
. (17)

Using this in equation (10) yields a coordinate

xi =
−1
2
√

2

(
d2
1i − d2

2i

)
d12/

√
2

=
d2
2i − d2

1i

2d12
, (18)

which is exactly one iteration of FastMap [7], except
for an unimportant shift in the origin.

The k = 1,m = 2 case assumes that the principal
eigenvector of the data lies on the line connecting
points 1 and 2. This can be a poor estimate of this
eigenvector. So, FastMap proposes a heuristic that
scans a number of rows of the distance matrix D, look-
ing for two points that are far away from one another,
assuming that the principal eigenvector is more likely
to lie along the line connecting two points that are dis-
tant. Notice that if FastMap is going to generate m
rows of a distance matrix per iteration, those rows can
easily be added to the Nyström approximation to in-
crease the accuracy of the eigenvalue and eigenvector
estimate, instead of being used in a heuristic.

One iteration of FastMap generates only one embed-
ding dimension at a time. Because FastMap is esti-
mating the leading eigenvectors of a kernel matrix, it
is legitimate to perform deflation. That is, each sub-
sequent call to FastMap operates in a subspace that
is orthogonal to previous dimensions, with previous
eigenvectors projected away. Typically, deflation is
performed by deducting a rank-one matrix from the
kernel matrix. However, we cannot manipulate the
entire kernel matrix. Therefore, FastMap computes
the distances in the deflated space by deducting the
squared distance between embedded coordinates from
the original squared distance:

D2
ij = D2

i,j,original −
∑

n

(xin − xjn)2. (19)

This is legitimate, because the deflated space is or-
thogonal to any embedded dimensions. Notice that
this deflation can result in negative squared distances
when the original distance matrix is not Euclidean.
LMDS has a similar problem with negative eigenval-
ues of A. FastMap produced negative distances for the
Corel Features dataset in Section 4, while on the same
data set, LMDS did not produce negative eigenval-
ues. These negative eigenvalues can be compensated
by adding a small amount to the diagonal of A.

The computational complexity of FastMap is O(Nk2),
because the computation is dominated by k deflation
iterations, each operating on N data samples, each of
which takes O(k) operations, due to (19).

3.2 METRICMAP

MetricMap [12] can be understood as a Nyström ap-
proximation by revisiting Landmark MDS. In LMDS,
m rows of the distance matrix D are used to com-
pute coordinates for every item. This rectangular slice
is used both to find the coordinates of the landmarks
(the m items corresponding to the m rows) at equation

(8) and the remainder of the rows (equation (9)).

MetricMap uses a generalization of the Nyström ap-
proximation with different sized submatrices A and B
in (8) and (9). MetricMap prescribes that A have di-
mension 2k × 2k, while B have dimension k × k [12].
Because the dimensions of A and B no longer match,
the solution to the linear system in (9) is no longer
correct. Instead, MetricMap derives embedding coor-
dinates X from the 2k × 2k matrix A, using classical
MDS from the k largest (in absolute value) eigenvalues
of A. Only k landmarks from the 2k embedded points
are used:

X̂ = Γ1/2
[k,k]U[k,k], (20)

where the subscript [k, k] indicates the sub-matrices
indexed by the k largest eigenvalues and the k selected
landmarks.

The k landmark rows of A that are selected by this
procedure are also the rows used to generate B. Thus,
equation (9) becomes

Y = X̂−T B = Γ−1/2
[k,k] U

−T
[k,k]B. (21)

The submatrix U[k,k] must be inverted because it is
no longer an orthogonal matrix. For speed, U[k,k] un-
dergoes LU decomposition, and each column of B is
backsubstituted.

Note also that, as described in [12], MetricMap uses
centering coefficients ci = δi1 (the first is one, the rest
zero). This causes an unimportant shift in the origin
of the coordinate system.

The computational complexity of MetricMap is
O(Nk2 + k3). In Landmark MDS, if m scales as k,
then the computational complexity of MetricMap is
the same as LMDS. LMDS may have an advantage in
only requiring O(k2) work for every point in B, rather
than O(km). However, because MetricMap uses dif-
ferent dimensions for A and B, it is not known when
MetricMap will yield an exact answer.

The unification of LMDS with MetricMap illustrates
that the Nyström approximation can be generalized by
allowing rows(A)≥rows(B). Unlike the basic Nyström
approximation, there are three free parameters: the
final embedding dimension k, the number of rows in
B and the number of rows in A. The only required
relationship between these is that rows(A)≥rows(B)≥
d. Thus, the restriction in [12] of rows(A)= 2 rows(B)
is not required.

4 ACCURACY AND SPEED
COMPARISONS

The main point of Section 3 is that FastMap, Metric-
Map, and LMDS are all applications of the Nyström

approximation. One important difference is that Fast-
Map performs deflation, while MetricMap and LMDS
require solving an eigensystem. Empirical testing can
determine whether deflation is better than solving an
eigensystem: does the eigensystem cause noticeable
slowing? Does it yield extra accuracy?

Another difference is that MetricMap uses a matrix
A that has more rows than B, unlike FastMap and
LMDS. Does using a larger matrix help the quality of
the embedding?

To answer these questions, FastMap, MetricMap, and
LMDS are compared on two medium-to-large data
sets: the Reuters collection (a UCI KDD dataset [9])
and the Corel Image Features data set (also from UCI
KDD).

4.1 REUTERS

The Reuters data set is a collection of Reuters news
articles, stored in SGML. The algorithms are tested
on the ModApte training set of Reuters, consisting of
9603 labeled documents, categorized with 115 labels,
with multiple labels per document allowed.

The documents are converted into features vectors in a
standard way. If the news article has an identified title
and body, words in those are used. Otherwise, words
in the text of the news article are used. All words
are folded to lower case and then stemmed. Com-
mon words are removed from the list, and the remain-
ing unique stemmed words in the corpus became fea-
tures. The feature dimensionality is 22226, which is
extremely high: larger than the number of examples
in the set.

Each document i is represented by the standard tf-idf
vector representation, denoted by tik, which is nor-
malized to unit length. The distance squared matrix
is then computed via

D2
ij = 1−

∑
k

tiktjk (22)

where the ith document is the ith row in tik.

FastMap, LMDS, and MetricMap are applied to the
resulting distance matrix. The quality of the algo-
rithms is measured in three ways: how much RMS rel-
ative distance error is introduced by the embedding,
the F1 retrieval quality score of the nearest neighbor
in the embedded space, and CPU time. Two different
settings of m are chosen for the LMDS experiments.
First, m = 3k is run. FastMap uses a heuristic to find
the two farthest points that requires 3k distance rows
to be computed. In order to match the computation
of FastMap, LMDS is run with the same number of
rows. The second experiment uses LMDS run with

m = 600, which measures LMDS in a regime of high
quality. MetricMap is run with rows(A) = 2 rows(B),
as suggested by [12].

4.1.1 Relative Distance Error

The RMS relative distance error is measured by taking
100 documents at random from the set and measuring
the 100 × 100 distance matrix, both in the original
unembedded space, and in the embedded space, while
varying the dimension k of the embedding. The RMS
relative distance error is defined to be

Error =

√
1

10000

∑
i

(sEi/ti − 1)2 (23)

where ti is the true (unembedded) distance, Ei is the
estimated distance (in the embedded space), and s is
a scaling factor. The lower this quantity, the better
the embedding.

All three algorithms tend to underestimate the true
distance between objects. However, in most applica-
tions, absolute distance is not needed: mean relative
distance between items is the important quantity. A
linear rescaling of the distance is thus harmless. Such
a rescaling is reflected in s, which is the optimal scal-
ing that maps Ei into ti. This scaling is chosen to
minimize the cost function in (23):

s =
∑

i Ei/ti∑
i E2

i /t2i
. (24)

Number of LMDS LMDS Fast- Metric-
Dimensions m = 600 m = 3k Map Map

5 0.659 0.611 0.694 0.841
10 0.536 0.577 0.659 0.652
20 0.458 0.466 0.564 0.863
50 0.386 0.418 0.441 0.725

100 0.338 0.339 0.413 0.573
200 0.298 0.298 0.348 0.587

Table 1: RMS relative distance error on Reuters (lower
is better).

The RMS error for Reuters is shown in Table 1. Three
conclusions can be reached from this table.

First, when LMDS is only allowed to access m = 3k
distance rows (the same as FastMap), it still outper-
forms FastMap and MetricMap. This is because the
heuristic in FastMap does not work well on text feature
vectors: there are many documents that have very lit-
tle overlap with each other, because their words do not
overlap. The heuristic picks two examples that have
little overlap as pivot points. The FastMap algorithm

then assigns most documents to the center of the co-
ordinate, because most documents have little overlap
with either of the two pivot points. Thus, it requires
roughly twice as many dimensions to reach the same
RMS error.

Second, further accuracy gains for LMDS can usually
be had by increasing m above 3k, although those gains
are slight. These gains are shown in more detail, be-
low.

Third, the extra information in the 2k×2k matrix A in
MetricMap does not help the quality of the embedding:
in fact, it actively harms it.

4.1.2 F1 Retrieval Metric

Another metric for the algorithms is how the dimen-
sionality reduction affects text retrieval and catego-
rization. This is tested by finding, for each document,
the nearest other document in the mapped space.
Then, for all nearest neighbor pairs and for all labels,
a standard microaveraged F1 retrieval score is com-
puted. Let A = the number of labels that are shared
by any nearest pair. Let B = the number of labels
that appear on one of the pair, but not the other. The
F1 score is then F1 = A/(A + B/2). The higher this
quantity, the better the mapping is for text retrieval.

Number of LMDS LMDS Fast- Metric-
Dimensions m = 600 m = 3k Map Map

5 0.520 0.458 0.467 0.396
10 0.625 0.581 0.521 0.412
20 0.714 0.653 0.629 0.489
50 0.754 0.717 0.709 0.430

100 0.768 0.757 0.724 0.434
200 0.768 0.768 0.753 0.346

Table 2: F1 retrieval metric on Reuters (higher is bet-
ter).

The F1 metric for Reuters is shown in Table 2. There
are several interesting results in this table. First, the
F1 retrieval metric when applied to the original un-
mapped distances is 0.719. Thus, above 100 dimen-
sions, the F1 score for the mapped distances can be
better than the unmapped. These algorithms are im-
plementing a form of Latent Semantic Analysis [6],
which is known to improve retrieval. Second, the
F1 scores roughly track distance error: LMDS with
m = 600 beats LMDS with m = 3k beats FastMap
beats MetricMap. Finally, for dimensions above 100,
gains in F1 performance start to asymptote.

Number of LMDS LMDS Fast- Metric-
Dimensions m = 600 m = 3k Map Map

5 51.6 0.2 0.2 0.1
10 51.7 0.4 0.4 0.1
20 51.9 0.8 0.7 0.3
50 52.3 2.5 2.3 0.9

100 53.0 8.4 6.6 2.9
200 55.7 55.7 20.0 14.9

Table 3: CPU time (in seconds) on Reuters (lower is
better).

4.1.3 CPU Time versus Accuracy

The CPU time for the three algorithms is shown in
Table 3. The experiments are run on an unloaded 2.4
GHz Xeon PC running Windows Server 2003 with 1.5
GB of RAM. The datasets are small enough to fit into
memory. Profiling the code shows that the time is
dominated by the computation of the distance matrix
elements: the eigendecomposition and projection take
very little extra time.

Comparing FastMap and LMDS with m = 3k is illus-
trative. For dimensions less than 200, the timings are
very comparable. With m = 3k, LMDS does not in-
cur a significant time penalty, but provides increased
performance over FastMap. MetricMap is fastest, but
the poor accuracy results in Table 2 indicate that the
algorithm should be avoided.

Algorithm m RMS F1 CPU time
dist error

FastMap (150) 0.441 0.709 2.3
LMDS 60 0.424 0.687 0.9
LMDS 100 0.428 0.704 1.5
LMDS 150 0.417 0.717 2.5
LMDS 200 0.403 0.730 4.0
LMDS 300 0.380 0.742 8.1
LMDS 600 0.386 0.753 52.2

Table 4: Comparing performance of LMDS and Fast-
Map on Reuters for different m (k = 50).

To better understand the behavior of LMDS, the tests
are run for a fixed dimensionality k = 50 and for dif-
ferent values of m. The accuracy and CPU results are
shown in Table 4. This table illustrates that LMDS
permits a time/accuracy trade-off by varying m. In-
creasing m above 3k will increase the accuracy, at the
cost of increased CPU. For this problem, the analy-
sis time is not burdensome, so the increase accuracy
is worthwhile. Eventually, the eigenvectors and eigen-
values of K are accurately estimated, so increasing m
further does not help the accuracy.

4.2 COREL IMAGE FEATURES

The Corel Image Features is a UCI KDD data set con-
sisting of features extracted from 68,040 images. Four
sets of features are extracted: 32 color histograms, 32
color layout histograms, 9 color moments, and 16 tex-
ture features. Each of these features is continuous. No
labels are provided in the data set. Images with miss-
ing features are ignored, leaving 66,615 images. The
Corel Image Features dataset probes the algorithms in
a different way. The data set size is larger and more
realistic.

We computed an overall distance between two image
feature vectors by first computing the distance be-
tween each set of features. For the color histograms
and color layout histograms, we used the chi-squared
distance [10]:

Dchi
ij =

∑
n

2(hin − hjn)2

hin + hjn
(25)

where hin is the nth histogram bin for ith image. For
color moments and texture features, we used Euclidean
distance (not squared).

At this point, there are four distances for each pair
of images. These distances are combined into a sin-
gle distance by a weighted sum, where the weights are
computed so that the average of each of the four dis-
tances is unity across the database:

Dtotal
ij =

DcolorHist
ij

2.457
+

Dlayout
ij

2.006
+

Dmoments
ij

4.295
+

Dtexture
ij

7.212
.

(26)
Again, the Corel Features dataset stresses the algo-
rithms more than Reuters: the distance is not a Eu-
clidean distance, but a sum of heterogeneous distances,
which can provoke negative eigenvalues.

4.2.1 Relative Distance Error

Number of LMDS LMDS Fast- Metric-
Dimensions m = 150 m = 3k Map Map

1 0.516 0.529 0.545 0.540
2 0.326 0.377 0.384 0.482
5 0.142 0.174 0.254 0.373

10 0.075 0.086 0.147 0.390
20 0.069 0.082 0.124 0.546
50 0.108 0.108 N/A 0.530

Table 5: RMS relative distance error on Corel Image
Features (lower is better).

Because there are no image labels provided, we test
the effectiveness of each algorithm with RMS relative
distance error, as computed in (23). These accuracy

results are shown in Table 5. There are severable no-
table features of the data in this table. First, Fast-
Map yielded negative pivot distances for k = 50. That
is, even the two farthest points in the database have
negative squared distance after 50 rounds of deflation:
no result for k = 50 could be produced by FastMap.
Second, LMDS provides a noticeable improvement in
accuracy for k > 1, even when m = 3k. LMDS with
m = 150 is even more accurate. Third, as in Reuters,
MetricMap has far worse accuracy than either of the
other algorithms. Finally, the innate dimensionality of
this data set may be less than 50, because the results
for k = 50 are worse than for k = 20. This can happen,
because the original distance matrix is non-Euclidean.

4.2.2 CPU Time versus Accuracy

Number of LMDS LMDS Fast- Metric-
Dimensions m = 150 m = 3k Map Map

1 13.3 0.2 0.2 0.1
2 13.3 0.5 0.5 0.2
5 13.4 1.3 1.4 0.5

10 13.5 2.6 2.7 0.9
20 13.7 5.3 5.6 1.9
50 14.4 14.4 N/A 5.5

Table 6: CPU time (in seconds) on Corel Image Fea-
tures (lower is better).

CPU times for the algorithms on this dataset are
shown in Table 6. None of the CPU times are onerous.
As in Reuters, LMDS for m = 150 is dominated by
the computation of the distance matrix. However, for
m = 3k, LMDS is competitive with FastMap. Metric-
Map is substantially faster (because it computes the
fewest distance matrix elements), but its poor accu-
racy is not worth the increased speed.

Algorithm m RMS dist error CPU time
FastMap (60) 0.124 5.6
LMDS 40 0.125 3.6
LMDS 60 0.082 5.4
LMDS 100 0.072 9.0
LMDS 150 0.069 13.7
LMDS 200 0.069 18.7
LMDS 300 0.067 30.5

Table 7: Comparing performance of LMDS and Fast-
Map on Corel Image Features for different m (k = 20).

Finally, the performance of LMDS is examined as a
function of m for fixed k = 30 in Table 7. As m in-
creases, LMDS surpasses the performance of FastMap
until m = 100, where the accuracy is reaches a plateau
and further increases in m do not help.

5 CONCLUSIONS

This paper has shown that FastMap, MetricMap, and
Landmark MDS (LMDS) all utilize the Nyström ap-
proximation to the eigenvectors of a large matrix. This
unification highlights how the algorithms are related
and can lead to future work.

These algorithms use different variations on the
Nyström approximation. LMDS uses the basic
Nyström approximation. FastMap uses deflation to
embed items one dimension at a time. MetricMap uses
an expanded matrix to fix the embedding of the land-
mark points. However, empirical evidence has shown
that the variations of the Nyström algorithm are not
beneficial for MDS.

The deflation in FastMap limits the time/accuracy
tradeoff that is inherent in the basic all-dimensions-
at-once Nyström approximation. By increasing m (the
number of rows computed in the original distance ma-
trix), LMDS becomes more accurate, but the computa-
tion of the distance matrix elements require more time.
FastMap freezes this tradeoff by choosing a constant
number of rows per dimension. Even with the same
number of rows of the distance matrix, LMDS is more
accurate. Thus, the all-dimensions-at-once LMDS al-
gorithm is preferred.

MetricMap uses a larger matrix than basic Nyström to
compute the embedding coordinates of the landmark
points. Empirically, this causes a substantial decrease
in accuracy. This decrease in accuracy is probably
because increasing the size of the A matrix does not
improve the fitting of the landmark points: the number
of landmark points grows as the dimension of A. Thus,
the extra data in A is not used to eliminate noise in
the position on the landmark points.

In conclusion, the basic Nystrom̈ approximation in
LMDS is faster and more accurate than the Nystrom̈
variations proposed in FastMap and MetricMap. This
superiority may carry over to other data sets and ap-
plications other than MDS.

Acknowledgements

I would like to thank Chris Burges and Dimitris
Achlioptas for discussions and help with the paper.

References

[1] S. Belongie, C. Fowlkes, F. Chung, and J. Malik.
Spectral partitioning with indefinite kernels using
the Nyström extension. In Proc. ECCV, 2002.

[2] Y. Bengio, J.-F. Paiement, and P. Vincent. Out-
of-sample extensions for LLE, Isomap, MDS,

Eigenmaps and spectral clustering. In S. Thrun,
L. Saul, and B. Schölkopf, editors, Proc. NIPS,
volume 16, 2004.

[3] M. Chalmers. A linear iteration time layout
algorithm for visualizing high-dimensional data.
In Proc. IEEE Information Visualization, pages
127–132, 1996.

[4] T. Cox and M. Cox. Multidimensional Scaling.
Number 59 in Monographs on Statistics and Ap-
plied Probability. Chapman & Hall, 1994.

[5] V. de Silva and J. B. Tenenbaum. Global versus
local methods in nonlinear dimensionality reduc-
tion. In S. Becker, S. Thrun, and K. Obermayer,
editors, Proc. NIPS, volume 15, pages 721–728,
2003.

[6] S. C. Deerwester, S. T. Dumais, T. K. Landauer,
G. W. Furnas, and R. A. Harshman. Indexing by
latent semantic analysis. Journal of the Amer-
ican Society of Information Science, 41(6):391–
407, 1990.

[7] C. Faloutsos and K. Lin. FastMap: a fast al-
gorithm for indexing, data-mining, and visualiza-
tion. In Proc. ACM SIGMOD, pages 163–174,
1995.

[8] G. Golub and C. V. Loan. Matrix Computations.
Johns Hopkins University Press, 1983.

[9] S. Hettich and S. Bay. The UCI KDD archive.
[http://kdd.ics.uci.edu] Irvine, CA: UCI, Dept.
Information and Computer Science.

[10] A. Papoulis. Probability, Random Variables, and
Stochastic Processes. McGraw Hill, 1991.

[11] B. Schölkopf. The kernel trick for distances. In
Proc. NIPS, pages 301–307, 2000.

[12] J. T.-L. Wang, X. Wang, K.-I. Lin, D. Shasha,
B. A. Shapiro, and K. Zhang. Evaluating a class
of distance-mapping algorithms for data mining
and clustering. In Proc. ACM KDD, pages 307–
311, 1999.

[13] C. Williams and M. Seeger. Using the Nyström
method to speed up kernel machines. In Advances
in Neural Information Processing Systems, vol-
ume 13, pages 682–688, 2001.

[14] M. Williams and T. Munzner. Steerable, progres-
sive multidimensional scaling. In Proc. IEEE In-
formation Visualization, pages 57–64, 2004.

