
Streaming Feature Selection using IIC

Lyle H. Ungar and Jing Zhou
Computer and Information Science

University of Pennsylvania, Philadelphia, PA 19104
ungar, jingzhou@seas.upenn.edu

Dean P. Foster and Bob A. Stine
Statistics Department

University of Pennsylvania, Philadelphia, PA 19104
foster, stine@wharton.upenn.edu

Abstract

In Streaming Feature Selection (SFS), new fea-
tures are sequentially considered for addition to
a predictive model. When the space of poten-
tial features is large, SFS offers many advantages
over methods in which all features are assumed to
be known in advance. Features can be generated
dynamically, focusing the search for new features
on promising subspaces, and overfitting can be
controlled by dynamically adjusting the thresh-
old for adding features to the model. We present
a new, adaptive complexity penalty, the Informa-
tion Investing Criterion (IIC), which uses an ef-
ficient coding of features added, and not added,
to the model to dynamically adjust the threshold
on the entropy reduction required for adding a
new feature. Streaming Feature Selection with
IIC gives strong guarantees against overfitting. In
contrast, standard penalty methods such as BIC
or RIC always drastically over- or under-fit in the
limit of infinite numbers of non-predictive fea-
tures. Empirical results show that SFS is compet-
itive with much more compute-intensive feature
selection methods.

1 Introduction

In many problems, one has a fixed set of observations from
which a vast, or even infinite stream of features can be
generated to build predictive models. The large number
of potentially predictive features may come from trans-
formations of, and interactions between, a smaller initial
set of features. For example, most commercial statistical
software offers the ability to do stepwise regression using
all feature interactions (e.g., products of pairs of features,
or all products containing three variables). Pairwise in-
teractions are important and, along with data transforma-
tions, can rapidly create large data sets. For example in
a bankruptcy prediction problem described below, consid-

ering interactions between the 365 original features led to
a set of over 67,000 potential features, of which about 40
proved significant.

The features may also come from more complex feature
generation algorithms. For example, Statistical Relational
Learning (SRL) methods often generate tens or hundreds
of thousands of potentially predictive features. SRL and
related methods “crawl” through a database or other rela-
tional structure and generate features by building increas-
ingly complex compound relations [1] . For example, when
building a model to predict the journal in which an article
will be published, potentially predictive features include
the words in the target article itself, the words in the articles
cited by the target article, the words in articles that cite arti-
cles written by the authors of the target article, and so forth.
Traversing such relational structures can easily generates
millions of features, since there are many words, authors,
and journals. Current modeling techniques, however, are
ill equipped to deal with problems of learning from, say, a
million potential features for each of a hundred thousand
observations. A hundred billion numbers do not fit easily
into memory on most contemporary computers. More im-
portantly, CPU is fast relative to memory, and being more
so.

When building models from potentially enormous sets of
features, it is desirable to interleave the process of feature
generation with that of feature testing in order to avoid even
generating features which are less likely to be useful. One
may want to only consider interaction terms in a regression
if at least one of the component terms has proven predic-
tive. One may want to only search farther in those branches
of a refinement graph in inductive logic programming (ILP)
which contain terms that have proven predictive – as is, in-
deed, done in ILP. Building predictive models from such
large, complex data sets requires careful control to avoid
over-fitting, particularly when there are many more fea-
tures than observations. Standard statistical and machine
learning methods such as SVMs, maximum entropy meth-
ods and neural networks generally assume that all features
(“predictors”) are known in advance. They then use regu-

larization or features selection to avoid overfitting.

This paper focuses on penalty-based feature selection
methods for problems in which a small number of predic-
tive features are to be selected from a large set of potential
features. We will compare, in the context of streaming fea-
ture selection, the widely used BIC penalty method with
RIC, a more recent penalty method, and with the new In-
formation Investing Criterion (IIC), which this paper intro-
duces.

BIC can be understood in an information theoretic sense
as consisting of a code (specifying the parameters in the
model) and the compressed data (describing the errors in
the predictions made by the model). Each zero parameter
(feature not included in the model) is coded with one bit,
and each non-zero parameter is coded with1 + 1

2 log(n)
bits, wheren is the number of observations used. (All logs
are base 2.) Recalling that the log likelihood of the data
given a model gives the number of bits to code the model
error, leads to the BIC criterion for feature selection: ac-
cept a new featurexi only if the change in log likelihood
from adding the feature is greater than1

2 log(n), i.e. if

log(P (Y |Ŷi))− log(P (Y |Ŷ−i)) > 1
2 log(n). BIC is equiv-

alent to a Minimum Description Length (MDL)[2] criterion
if the number of features considered,p is much less than the
number of observations,n. Howver, BIC is not a valid code
for p� n.

The Risk Inflation Criterion (RIC) [3, 4] gives another,
much more stringent criterion for feature selection, which
controls the minimax risk. RIC chooses a set of features
from the potential feature pool so that the loss of the re-
sulting model is within a factor oflog(p) of the loss of the
best such model. In essence, RIC behaves like a Bonferroni
rule, in which a threshold for feature inclusion is selected
so thatthe set of all features will only have a small chance
of containing a “false” feature. This is highly conservative,
and does often not produce optimal out of sample predic-
tion accuracies.

The Information Investing Criterion (IIC) introduced in this
paper is an alternative MDL-style coding which, unlike
BIC and RIC, is adaptive. Information investing does not
require knowing the number of potential predictors in ad-
vance, yet still has provable bounds on overfitting. IIC’s
performance is never much worse than BIC or RIC, and for
the types of problems we are interested in, where there are
far more potential features than observations, it often gives
vastly superior performance.

The assumptions behind penalty methods such as BIC and
RIC are not met when a fixed number of features are to be
selected from an arbitrarily large set of potentially predic-
tive features. Inclusion rules such as AIC and BIC, which
are not a function ofp, the number of possible features to
be considered for inclusion in the model, inevitably over-
fit asp becomes large. When presented with a continuous

sequence of features that are random noise, any selection
procedure that generates false positives at a fixed rate, such
as AIC or BIC, will select infinitely many of these random
features as predictors. Inclusion rules such as RIC (Bon-
ferroni) whichare a function ofp under-fit asp becomes
large. Any such method that reduces the chance of includ-
ing each feature based on the total number of features,p,
to be considered will end up not adding any features in the
limit asp→∞.

The solution to this dilemma is to sequentially consider a
stream of features for model inclusion and use a method
which incrementally adjusts the criterion for including new
features in the model depending on the history of addi-
tion (or non-addition) of features seen so far. We argue
for Streaming Feature Selection (SFS), where as each ad-
ditional feature is observed, it is tested for inclusion in the
model and then either included or discarded. Streaming
feature selection offers many advantages over the tradi-
tional approach of stepwise selection from a fixed set of
features. In stepwise regression, all features are considered
for addition to the model, the best one is selected, and then
all remaining features considered, etc. At every iteration,
almost all features are tested for addition to the model. This
requires having a finite set of features specified in advance,
and requires looking at each feature many times. Step-
wise feature selection is widely used with penalty methods
such as AIC and BIC, but we will show below that stream-
ing feature selection often gives competitive performance,
while allowing much greater flexibility in dynamically con-
trolling feature generation. Using streams of features has
other benefits. Since most features will not be included in
the models, they can be discarded soon after generation,
thus reducing data storage requirement and allowing the
solution of larger problems than can be tackled using stan-
dard machine learning algorithms such as support vector
machines (SVMs) or neural networks which assume that
all potentially predictive features are knowna priori.

2 Streaming feature selection

The goal of streaming feature selection is to pick useful
predictors from an offered sequence of features. For a fixed
set of observations, new features (predictors) are consid-
ered sequentially, and the decision to include or discard
each feature is made at the time it is provided. SFS can be
used with a variety of different machine learning methods;
all it requires from the machine learner is that it take fea-
tures sequentially and produce an estimate of the change
in entropy (log-likelihood) in the model. A wide range
of classical statistical methods can be used off-the-shelf,
such as linear or logistic regression, or extensions such as
generalized linear methods and estimating equations. SFS
works particularly well with modeling methods than can ef-
ficiently add additional features and with adaptive penalty
methods such as IIC.

Initialize
i = 1, wealth = w0 bits,model = {}

Do forever
x← get new feature()
ε← wealth/2i
bits saved← entropy reduction(x, ε, model)
if(bits saved > w∆)

wealth← wealth + w∆

add feature(x, model) // addx to the model
else

wealth← wealth− ε
i← i + 1

Figure 1: Information-investing algorithm

SFS dynamically adjusts the threshold,w∆, on the entropy
reduction needed for a new variable to enter the model.1

The threshold,w∆, is adjusted using the wealth,wi, which
represents the number of bits currently available for over-
fitting. Wealth starts at an initial valuew0 specifying the
number of bits by which one is willing to risk increasing
the description length. It is increased byw∆ each time a
variable (feature) is added to the model, since the variable
is guaranteed to save at leastw∆ bits, and decreased byε
each time a variable is not added to the model,reflecting (as
described below) the cost of coding the fact that the feature
was not added.

The algorithm is given in Figure 1.ε specifies how many
bits are available to code a variable. Thebits saved by
adding a feature to the model is the net entropy reduction
from addingx to the model: the reduction in the model er-
ror minus the cost of coding the coefficient,β, associated
with x and the cost of indicating that the variable is to be
added to the model. Different codings can be used for the
coefficients, for example12 log(n) bits (or, for a very ap-
proximate coding 3 bits) to code each nonzero coefficient,
and e.g. -log(ε) bits to code thatx is to be added to the
model. (Sinceε is the number of bits available to code a
spurious feature, the probability of the next feature being
“useful.” is 1 − e−ε = 1 − (1 − ε + O(ε2)) ≈ ε, and
the cost in bits of coding that that the feature is useful is
roughly -log(ε) bits.) If β, the coefficient ofx, has an as-
sociated t-statistic, then addingx to the model reduces the
entropy of the model by12 t2log(e). (The log(e) converts
thet2 to bits.)

If the featurex reduces entropy sufficiently to be worth
adding to the model, then the wealth is incremented by a
fixed amount,w∆. If the featurex is not added to the

1A very similar SFS algorithm, which we callα-investing,
can be written that dynamically adjusts the criterion for adding a
new feature to a model based on the p-value of the feature under
consideration.

model, the wealth is decreased by the cost of coding the
variable’s absence, which by an argument similar for that
used above is− log(1 − ε), which, for smallε, is approxi-
matelyε.

2.1 Guarantees against overfitting

One sense in which SFS is guaranteed not to over-fit, is
that on average, the sum of the total description length plus
the wealth will never increase. Since the wealth is strictly
positive, this guarantees that the total description length can
never increase by more than the current wealth. Since when
a feature is added to the model we increase the wealth less
than the description length decreases, the description length
plus wealth tends to decrease, providing on average better
models.

SFS also provides another, much more subtle, guarantee
against overfitting. For the case of “hard” problems, where
the coefficients to be estimated are just barely distinguish-
able above the noise, the cost of adding a “false” feature is
comparable to the benefit of adding a true features. This
is a property of using a so-calledtestimator. A testimator
tests for significance and then estimates by the usual esti-
mator if it is significant, and estimates by zero otherwise.
If a variable has a true coefficient of zero, then when it is
falsely included, it will be biased by abouttαSE, wheretα
is the critical value used for testing significance, andSE
is the standard error of the coefficient. On the other hand,
the hardest to detect coefficients will have a coefficient of
abouttαSE. Hence leaving them out will bias their esti-
mated value by about the same amount, namelytαSE. We
can thus get optimal test error by adding as many features
as possible while not exceeding a specified ratio of false to
true features added to the model.2

SFS using the IIC coding (described below) allows us, for
any valid coding, to bound in expectation the ratio of in-
correct features added to correct features added, and thus
to minimize the expected test error by adding as many fea-
tures as possible subject to controlling that ratio.

Theorem
Let Mi be the number of correct variables included in the
model, letNi be the number of spurious variables (those
with true coefficient zero) included andwi be the wealth,
all at iterationi, and letw∆ < 1/4 be a user selected value.
Then if the algorithm in Figure 1 is modified so that it never
bids more than1/2 it will have the property that:

E(Ni) < 4w∆E(Mi) + 4w0.

2This is very similar to controlling the False Discovery Rate
(FDR) [5], the number of features incorrectly included in the
model divided by the total number of features included in the
model, which has become popular in recent years. In the regime
that we are working, correctly adding a feature always reduces
both the FDR and the out-of-sample error, and incorrectly adding
a feature always increases both FDR and error.

Proof Sketch
The proof relies on the fact thatSi ≡ Ni − 4w∆Mi +
4wi is a super-martingale, namely at each time period the
conditional expectation ofSi − Si−1 is negative. We will
show thatSi is a super-martingale by considering the cases
when the variable is or is not in the true model and is or is
not added to the estimated model.

βi = 0 βi 6= 0
use zero ∆Mi = 0, ∆Ni = 0 ∆Mi = 0, ∆Ni = 0

add variable ∆Mi = 0, ∆Ni = 1 ∆Mi = 1, ∆Ni = 0

We can write the change inSi as:

∆Si ≡ Si − Si−1

= ∆Ni − 4w∆∆Mi + 4∆wi

If βi 6= 0, then∆Ni = 0. Thus,

∆Si = −εi(1−∆Mi) ≤ 0,

whereεi is the amount bid at timei. On the other hand, if
βi = 0, then∆Mi = 0. So,

∆Si = ∆Ni + 4∆wi

= ∆Ni + 4w∆∆Ni − 4εi(1−∆Ni)

= ∆Ni(1 + 4w∆ + εi)− 4εi.

By bounds from information theory, we see that
E(∆Ni) ≤ εi. Also by assumption,4w∆ ≤ 1 and
εi ≤ 1/2. HenceE(∆Si) ≤ 4εi − 4εi = 0. Thus,Si

is a super-martingale.

Using the weaker fact that for super-martingales:E(Si) ≤
E(Si−1), we see thatE(Si) ≤ S0. But since we start out
with Ni = 0, andMi = 0, S0 = 4w0. Sincewi > 0 by
construction, we see thatE(Ni − 4w∆Mi) < 4w0.

Whenw∆ = 1
4 , this reduces toE(Ni) < E(Mi) + 4w0.

The expected number of spurious variables added is thus no
more than4w0 greater than the expected number of correct
variables added.

As described above, if we add as many features as possible
subject to meeting such a constraint on spurious to true fea-
tures added, we will minimize the expected test error. The
selection ofεi aswi/2i gives the slowest possible decrease
in wealth such that all wealth is used; i.e., so that as many
features as possible are included in the model without sys-
tematically over-fitting. More formally:

Theorem
Computingεi aswi/2i gives the slowest possible decrease
in wealth such thatlimi→∞ wi = 0.

Proof Sketch
Define δi = εi/wi to be the fraction of wealth invested
at time i. If no features are added to the model, wealth
at time i is wi = Πi(1 − δi). If we pass to the limit to

generatew∞, we havew∞ = Πi(1− δi) = e
P

log(1−δi) =

e−
P

δi+O(δ2

i
). Thus,w∞ = 0 iff

∑

δi is infinite.

Thus if we letδi go to zero faster than1/i, sayi−1−γ where
γ > 0 thenw∞ > 0 and we have wealth that we never use.

2.2 IIC and its coding scheme

A key question is what coding scheme to use in determin-
ing the entropy reduction. We describe here an “optimal”
coding scheme which leads to the information investing al-
gorithm described in Figure 1. Our goal is to find a (legit-
imate) coding scheme which, given a “bid,”ε, specifying
how many bits are available to code a variable, will guar-
antee the highest probability of adding the variable to the
model. The key idea is that log(probability) and bits are
equivalent. This equivalence allows us to think in terms
of distributions and thus to compute codes which handle
fractions of a bit. We show in this section that given any
actual distributionf̃β of the coefficients, we can produce a
coding corresponding to a modified distributionfβ which
uniformly dominates the coding implied bỹfβ .

Assume, for simplicity, that we increase the wealth by one
bit when a variablexi with coefficientβi is added. Thus,
whenxi is addedlog(p(xi is a “true” variable) /p(xi is a
“false” variable)) > 1 bit; i.e. the log-likelihood decreases
by more than one bit. Letfβi

be the distribution implied by
the coding scheme fortβi

if we addxi andf0(tβi
) be the

normal distribution (the null model in whichxi should not
be added). The coding saves enough bits to justify adding
a variable wheneverfβi

(tβi
) ≥ 2 ∗ f0(tβi

). This happens
with probabilityαi ≡ p0({tβi

: fβi
(tβi

) ≥ 2 ∗ f0(tβi
)})

under the null (αi is thus the area under the tails of the null
distribution.)

There is no reason to havefβi
(tβi

) � 2 ∗ f0(tβi
) in the

tails, since this would “waste” probability or bits. Hence
the optimal coding corresponds tofβ(tβi

) = 2 ∗ f0(tβi
)

for all the variables that are likely to be added. Using all of
the remaining probability mass (or equivalently, making the
coding “Kraft tight”) dictates the coding for the case when
the variable is not likely to be added. The most efficient
coding to use is thus:

{

fβ(tβi
) = 2f0(tβi

) if |tβi
| > tαi

fβ(tβi
) = 1−2∗αi

1−αi

f0(tβi
) otherwise

and the corresponding cost in bits is:

log(fβ(tβi
)/f0(tβi

)) = log(2) = 1 bit if |tβi
| > tαi

log(fβ(tβi
)/f0(tβi

) =
log(1−2αi

1−αi

) ≈ −αi bits otherwise

Figure 2 shows the distributionfβ(t(βi)), with the proba-
bility mass transfered away from the center, where features
are not added, out to the tails, where features are added.

Figure 2: Optimal distributionfβ

BIC RIC SFS
streaming features 39.3 7.1 5.4

error 3.21 2.88 3.16
stepwise features 199 11.1 –

error 3.89 2.40 –

Table 1. BIC overfits for p � n. Average number of
features selected and out-of-sample error.n = 200 observa-
tions,p = 1,000 features,q = 10 true features in model Syn-
thetic data:x ∼ N(0, 1) y: linear inx with noiseσ2 = 5. A
perfect model would give test error of 2.236, the error of the
null model is 3.873. The results are an average over 20 runs,
and reported errors have an uncertainty of around 0.02.

The above equations been derived assuming that 1 bit is
added to the wealth. It can be generalized to addw∆ bits to
the wealth each time a variable is added to the model. Then,
when a variable is added to the model the probability of it
being “true” should be2w∆ times that of it being “false”,
and all of the 2’s in the above equations are replaced with
2w∆ .

3 Experimental Results

To further illustrate the method, we evaluate SFS on a syn-
thetic data set for which the correct answers are known and
on a larger, real data set of bankruptcy prediction. The base
synthetic data set contains 200 observations each of 1,000
features, of which 10 are predictive. We generate the fea-
tures independently from a normal distribution,N(0, 1),
with the true model being the sum of the ten predictors plus
noise,N(0, 5). The artificially simple structure of the data
allows us to easily see which feature selection methods are
adding spurious variables or failing to find variables that
should be in the model.

The results are presented in Table 1. As expected, BIC
overfits, although less badly when streaming is used rather

than the stepwise selection procedure. RIC gives perfor-
mance superior to SFS in this particular case (q = 10) but
it fails badly when its assumptions (q small) are violated, as
shown in Table 2. Stepwise regression using RIC does bet-
ter here than the streaming version. However, using stan-
dard code from R, the stepwise regression wasmuch slower
than the streaming regression, to the point where running
stepwise regression on data sets with tens of thousands of
features was not possible.

One might
BIC RIC SFS

features 89.3 25.5 61.5
error 6.24 9.57 7.60

Table 2. RIC underfits for q � 1. Same
parameters as Table 1 (streaming) exceptn =
1,000,q = 100 features in data andσ2 = 15.

hope that
adding
more
spurious
features to
the end of
a feature
stream
would not
severely harm an algorithm’s performance. However, BIC,
since its penalty is not a function ofp, will add even more
spurious variables (if BIC haven’t already added a feature
for every observation!). RIC (or Bonferroni) puts a harsher
penalty asp gets large, adding fewer and fewer features.
As Table 3 shows, SFS is clearly the superior method when
the true features occur early in the feature stream. SFS
continues to occasionally add features to the model, which
would be good if there were predictive features later in the
stream, but does not lead to much overfitting when there
are no such features.

It is often the case that large numbers of features are
generated, with the best ones tending to be earlier in
the sequence. Such feature streams are generated when
one searches over interactions and transformations, as in
the bankruptcy example presented below. Similar feature
streams arise when one computes features at many length
scales, as for face or object recognition in machine vi-
sion. Another example is Structural Relational Learning
(SRL), where potential features are generated by searching
the space of logic queries or relational database queries.

We have used the CiteSeer data set, which contains about
500,000 papers, 100,000 “constants” (words, authors, and
journals), and around ten different relations (including au-
thor, venue, cites, has-word, institution, download) to pre-
dict which journal a given paper will be published in, or
which papers it will cite. Predictions using CiteSeer benefit
from the generation of rich sets of features, and depending
on the exact task, SFS gives out-of-sample errors compara-
ble to, or several percentage points below those from non-
adaptive techniques [6]. Learning in SRL methods such as
Structural Generalized Linear Regression (SGLR) [6] ben-
efit from efficient integration of feature generation and se-
lection; as each feature is tested for possible inclusion in
the model, the results are fed back to the feature genera-

p 1,000 10,000 100k 1M
features 39.3 199 199 199

BIC false pos. 29.5 189 189 189
error 3.21 4.45 4.45 4.45

features 7.1 3.8 1.2 0.9
RIC false pos. 0.1 0.5 0.1 0.2

error 2.88 3.49 3.77 3.91
features 5.4 5.4 5.7 5.7

SFS false pos. 0.3 0.5 0.8 0.8
error 3.16 3.30 3.29 3.29

Table 3. Effect of adding spurious features Same pa-
rameters as Table 1 except that additional spurious features
have been added after the first 1,000 features. “false pos.”
indicates the average number of features incorrectly added.
(average over 10 runs)

tor, which can then use this information to determine which
further features to generate. Since generating the features
from these databases takes CPU days, avoiding generating
features is important both for computational as well as for
statistical efficiency methods.

We also tested a slight modification of SFS on a problem of
predicting personal bankruptcies[7]. The data set is highly
un-balanced, containing 2,244 bankruptcy events and hun-
dreds of thousands of non-bankruptcy observations. The
real world loss function for predicting bankruptcy is quite
asymmetric: the cost of predicting a bankruptcy when none
occurs is much higher than the cost of failing to predict a
bankruptcy when one does occur. We call the ratio of these
two costsρ.

We compared Streaming Feature Selection against boosted
C4.5, doing 5-fold cross-validation, where each pass of the
cross-validation uses 100,000 non-bankruptcies and about
one fifth of the bankruptcies. SFS was run once, and then
the out-of-sample costs were estimated for each cost ratio,
ρ using the predicted probability of bankruptcy. C4.5 was
run separately for each value ofρ.

ρ 199 99 19 6 4 1
C.45 cost 132 76 18.6 7.2 5.09 1.45
SFS cost 61 41 15.3 6.9 5.02 1.54

Table 4. Loss as a function of the loss ratio,ρ, for
boosted C4.5 and for SFS

Table 4 shows that for low cost ratios, the two methods
give very similar results, but at higher cost ratios, SFS gives
around half the loss of C4.5. Using AIC, one would expect
over 1,000 variables to be falsely included in the model,
based on the fact that an f-statistic-based penalty of 2 cor-
responds to a t-statistic of

√
2 which is a wildly generous

threshold when considering 67,000 features. BIC also mas-
sively overfits, although less severely.

4 Alternate feature selection methods

Recent developments in statistical variable selection take
into account the size of the feature space, but only allow
for finite, fixed feature spaces, and do not support sequen-
tial (or streaming) feature selection. The risk inflation crite-
rion (RIC) produces a model that possesses a type of com-
petitive predictive optimality [4, 3]. RIC chooses a set of
features from the potential feature pool so that the loss of
the resulting model is within a factor oflog(p) of the loss
of the best such model. In essence, RIC behaves like a
Bonferroni rule [3]. Each time a predictor is considered,
there is a chance that it will enter the model even if it is
merely noise. In other words, the tested null hypothesis
is that the proposed feature does not improve the predic-
tion of the model. Doing a formal test generates a p-value
for this null hypothesis. Suppose we only add this predic-
tor if its p-value is less thanαj when we consider thejth
predictor. Then the Bonferroni rule keeps the chance of
adding even one extraneous predictor to less than, say, 0.05
by constraining

∑

αj ≤ 0.05.

Bonferroni methods like RIC are conservative, limiting the
ability of a model to add factors that improve its predic-
tive accuracy. The connection of RIC toα-spending rules
leads to a more powerful alternative. Anα-spending rule
is a multiple comparison procedure that bounds its cumula-
tive type 1 error rate at a small level, say 5%. For example,
suppose one has to test thep hypothesesH1, H2, . . . , Hp.
If we test the first using levelα∆, the second using level
α2 and so forth with

∑

j αj = 0.05, then we have only a
5% chance of falsely rejecting one of thep hypotheses. If
we associate each hypothesis with the claim that a predictor
adds to value to a regression, then we are back in the situa-
tion of a Bonferroni rule for variable selection. Bonferroni
methods and RIC simply fixαj = α/p for each test.

Alternative multiple comparison procedures control a dif-
ferent property. Rather than control the cumulativeα (also
known as the family wide error rate), these control the so-
called false discovery rate [5]. Control of the false dis-
covery rate at 5% implies that at most 5% of the rejected
hypotheses are false positives. In variable selection, this
implies that of the included predictors, at most 5% de-
grade the accuracy of the model. The Benjamini-Hochberg
method for controlling the false discovery rate suggests the
α-spending method for keeping the false discovery rate be-
low α: Order the p-values of the independents tests of
H1, H2, . . . , Hp so thatp1 ≤ p2 ≤ · · · pp. Now find the
largest p-value for whichpk ≤ α/(p− k) and reject allHi

for i ≤ k. Thus, if the smallest p-valuep1 ≤ α/p, it is
rejected. Rather than compare the second largest p-value to
the RIC/Bonferroni thresholdα/p, rejectH2 if p2 ≤ 2α/p.

There have been many papers that looked at procedures of
this sort for use in variable selection from an FDR perspec-
tive [8], an empirical Bayesian perspective [9, 10], an infor-
mation theoretical perspective [11] or simply a data mining
perspective [7]. But all of these require knowing the en-
tire list of possible variables ahead of time. Further, most
of them assume that the variables are orthogonal and hence
tacitly assume thatp < n.

We are currently exploring a way of doing SFS that uses
what we callα-investing instead of IIC. In SFS using IIC,
we keep track of the number of bits saved and use these
bits to invest in future variables. Whereas inα-investing
the medium of exchange is the accumulation ofα that has
yet to be spent. When a significant variable is found, the
α-spending account goes up, but when a variable is found
to be insignificant, the account decreases. Though theα-
investing rule sounds like it might be close to Benjamini-
Hochberg’s FDR procedure described above, it turns out to
be fairly different. In particular, the Benjamini-Hochberg
method fails asp gets large; it is a batch-oriented proce-
dure. But theα-investing shares with IIC the property of
not needing to knowp ahead of time and hence being able
to handle a potentially infinite stream of predictors.

5 Summary

A variety of machine learning algorithms have been devel-
oped for online learning whereobservations are sequen-
tially added. Algorithms such as SFS which are online in
the features being used are much less common. For some
problems, all predictors are known in advance, and a large
fraction of them are predictive. In such cases, regulariza-
tion or smoothing methods work well and streaming fea-
ture selection does not make sense. For other problems,
selecting a small number of features gives a much stronger
model than trying to smooth across all potential features.
(See [12, 13] for a range of feature selection problems and
approaches.) For example, in predicting what journal an
article will be published in, we find that roughly 10-20 of
the 80,000 features we examine are selected [14]. For the
problems in citation prediction and bankruptcy prediction
that we have looked at, generating potential features (e.g.
by querying a database or by computing transformations or
combinations of the raw features) takes orders of magni-
tude more time than the machine learning done by stream-
ing feature selection. Thus, the flexibility that SFS provides
to dynamically decide which features to generate and add
to the feature stream provides potentially large savings in
computation.

Streaming feature selection can be done using any penalty
method such as AIC, BIC or RIC, but is functions best
when using a method such as IIC which adapts the penalty
as a function of what features have been seen and added at
each point. The widely used BIC criterion is only valid in

the limit as the number of observationsn goes to infinity
while the number of featuresp remains small. The more
modern RIC assumes thatn andp are large but that the
number of true variables in the model is close to one. Un-
like BIC and RIC, IIC works for all values ofp andn, and
for anyq � p. The results presented in this paper are for
“hard” problems, in which the coefficients are close to the
limit of being detectable above the noise. For easy prob-
lems, where the signal to noise ratio is high, all methods
tend to work reasonably well. For problems which have a
mix of easy and hard coefficients, the SFS algorithm can
be modified to make multiple passes, first “investing” a rel-
atively small number of bits to find the easy features, and
then using the algorithm as described above to find the hard
features.

Key to the guarantee that IIC works for widely varying val-
ues ofn, p andq is the use of an adaptive penalty to control
the ratio of correct (“true”) to incorrect (“false”) features by
using an information theoretic coding to adjust the thresh-
old on the entropy reduction necessary for adding a variable
to the model. Streaming Feature Selection with IIC is ex-
tremely easily to implement on top of any algorithm which
incrementally considers features for addition and calculates
their entropy reduction or p-value. For linear and logistic
regression, we have found that SFS can easily handle mil-
lions of features.

References

[1] S. Dzeroski and N. Lavrac.Relational Data Mining.
Springer-Verlag, 2001.

[2] Jorma Rissanen. Hypothesis selection and testing by
the mdl principle. The Computer Journal, 42:260–
269, 1999.

[3] D. P. Foster and E. I. George. The risk inflation cri-
terion for multiple regression.Annals of Statistics,
22:1947–1975, 1994.

[4] D. L. Donoho and I. M. Johnstone. Ideal spatial adap-
tation by wavelet shrinkage.Biometrika, 81:425–455,
1994.

[5] Y. Benjamini and Y. Hochberg. Controlling the false
discovery rate: a practical and powerful approach to
multiple testing.Journal of the Royal Statistical So-
ciety, Series B(57):289–300, 1995.

[6] A. Popescul and L. H. Ungar. Cluster-based concept
invention for statistical relational learning. InProc.
Conference Knowledge Discovery and Data Mining
(KDD-2004), 2004.

[7] D. P. Foster and R. A. Stine. Variable selection
in data mining: Building a predictive model for
bankruptcy. Journal of the American Statistical As-
sociation (JASA), 2004. 303-313.

[8] Felix Abramovich, Y. Benjamini, D. Donoho, and Ian
Johnstone. Adapting to unknown sparsity by control-
ling the false discovery rate. Technical Report 2000–
19, Dept. of Statistics, Stanford University, Stanford,
CA, 2000.

[9] E. I. George and D. P. Foster. Calibration and empiri-
cal bayes variable selection.Biometrika, 87:731–747,
2000.

[10] I. M. Johnstone and B. W. Silverman. Needles and
straw in haystacks: Empirical bayes estimates of pos-
sibly sparse sequences.Annals of Statistics, 32:1594–
1649, 2004.

[11] D. P. Foster and R. A. Stine. Adaptive variable se-
lection competes with Bayes experts. Submitted for
publication, 2004.

[12] In JMLR Special Issue on Variable Selection. Journal
of Machine Learning Research (JMLR), 2003.

[13] In NIPS 2003 workshop on feature extraction, 2003.

[14] A. Popescul and L. H. Ungar. Structural logistic
regression for link analysis. InKDD Workshop on
Multi-Relational Data Mining, 2003.

