
Recursive Autonomy Identification for Bayesian Network Structure
Learning

Raanan Yehezkel and Boaz Lerner
Pattern Analysis and Machine Learning Lab

Electrical and Computer Engineering
Ben-Gurion University, Israel
{raanany, boaz@ee.bgu.ac.il}

Abstract

We propose a constraint-based algorithm for
Bayesian network structure learning called
recursive autonomy identification (RAI). The
RAI algorithm learns the structure by recursive
application of conditional independence (CI)
tests of increasing orders, edge direction and
structure decomposition into autonomous sub-
structures. In comparison to other constraint-
based algorithms d-separating structures and then
directing the resulted undirected graph, the RAI
algorithm combines the two processes from the
outset and along the procedure. Learning using
the RAI algorithm renders smaller condition sets
thus requires a smaller number of high order CI
tests. This reduces complexity and run-time as
well as increases accuracy since diminishing the
curse-of-dimensionality. When evaluated on
synthetic and "real-world" databases as well as
the ALARM network, the RAI algorithm shows
better structural correctness, run-time reduction
along with accuracy improvement compared to
popular constraint-based structure learning
algorithms. Accuracy improvement is also
demonstrated when compared to a common
search-and-score structure learning algorithm.

1 INTRODUCTION
Most algorithms for Bayesian network (BN) structure
learning are either search-and-score based [Heckerman,
1995; Friedman et al., 1997] in which the structure
achieving the highest score given the data is pursued or
constraint-based in which the structure is learned from
constraints derived from statistical tests of independence

between variables combined with causality inference rules
[Pearl, 2000; Spirtes et al., 2000]. The main problem of
constraint-based algorithms is their inefficiency and
inaccuracy (due to the curse-of-dimensionality) in
performing conditional independence (CI) tests for large
condition sets. Most constraint-based algorithms, such as
Inductive Causation (IC) [Pearl, 2000], PC [Spirtes et al.,
2000] and Three Phase Dependency Analysis (TPDA),
[Cheng et al., 1997], construct a directed acyclic graph
(DAG) in two consecutive stages. First is learning
associations between variables for constructing an
undirected structure. This requires an exponentially
growing number of CI tests with the number of nodes,
which can be reduced to polynomial by fixing the number
of parents (PC algorithm) or using the values computed in
the CI test and some strong assumptions (TPDA
algorithm). These assumptions however may not be valid
in all situations. Another flaw of the TPDA algorithm is
ignoring the curse-of-dimensionality in CI tests by not
limiting the size of the condition set. The second stage in
most constraint-based algorithms is causality inference
performed in two consecutive steps: finding and directing
V-structures and inductively directing additional edges
[Pearl, 2000]. Causality inference, and especially the
induction step, is unstable, i.e., small errors in the input to
the stage yield large errors at its output [Spirtes et al.,
2000]. Thus, the algorithms increase stability by
separating the two stages trying in the first stage to
minimize erroneous decisions about d-separation caused
by invalid threshold selection or poor estimation due to
the curse-of-dimensionality.

We propose a constraint-based algorithm that recursively
tests conditional independencies with condition sets of
increasing orders, directs edges for each order and
identifies autonomous sub-structures complying with the
Markov property (i.e., the sub-structure includes all node
parents). By considering directed rather than undirected

edges, the RAI avoids unnecessary CI tests and performs
tests using smaller condition sets. Repeated for
autonomies decomposed recursively from the graph both
mechanisms reduce computational and time complexities,
database queries and errors of subsequent iterations.
Using smaller condition sets, the RAI algorithm also
improves accuracy since diminishing the curse-of-
dimensionality. After providing some preliminaries in
Section 2 we introduce the RAI algorithm in Section 3
and present its experimental evaluation in Section 4
before concluding the paper in Section 5.

2 PRELIMINARIES
A BN B(G,Θ) consists of a structure (graph) G and a set
of probabilities Θ quantifying the graph. G(V,E) consists
of V, a set of nodes representing domain variables, and E
a set of edges connecting the nodes. Pap(X,G), Adj(X,G)
and Ch(X,G) are respectively the sets of potential parents,
adjacent nodes and children of node X in a partially
directed graph G, Pap(X,G)=Adj(X,G)\Ch(X,G).
Similarly, Pa(X,G) and Desc(X,G) are the sets of parents
and descendants of X in G. We indicate that X and Y are
independent given a set of nodes S using X || Y|S and
make use of the notion of d-separation [Pearl, 2000]. We
also define d-separation resolution evaluating d-
separation for different values of the maximal number of
nodes in the condition set, an exogenous cause to a graph
and an autonomous sub-structure.

Definition 1: The d-separation resolution between any
pair of non-adjacent nodes is the size of the smallest
condition set that d-separates the two nodes.

Definition 2: The d-separation resolution of a graph is the
highest d-separation resolution in the graph.

Definition 3: Y is an exogenous cause to G(V,E) if Y∉V
and ∀X∈V, Y∈Pa(X) or Y∉Adj(X) [Pearl, 2000].

Definition 4: A sub-structure GA(VA,EA) in G(V,E) s.t
VA⊂V, EA⊂E is autonomous given a set of exogenous
nodes Vex to GA if ∀X∈VA, Pa(X,G)⊂{VA∪Vex}. If Vex
is empty, we say the sub-structure is autonomous.

We define sub-structure autonomy in the sense that the
sub-structure holds the Markov property for its nodes.
Given a structure G, any two non-adjacent nodes in an
autonomous sub-structure GA are d-separated given nodes
either included in the sub-structure or exogenous causes
to it. This notion is elaborated in Section 3.3.

3 RECURSIVE AUTONOMY
IDENTIFICATION

Starting from a complete graph and proceeding from low
to high graph d-separation resolution, the RAI algorithm
uncovers the correct pattern (i.e., a family of structures
Markov equivalent to the true underlying structure) by
recursive (1) test of CI between nodes and removal of
edges related to independencies (thinning), (2) edge
direction according to inferred causality rules and (3)
graph decomposition into autonomous sub-structures.

CI testing of order n between X and Y is performed by
thresholding a criterion, such as the χ2 goodness of fit
[Spirtes et al., 2000] or conditional mutual information
[Cheng et al., 1997]. The criterion measures dependence
conditioned on a set of n nodes from the parents of X or Y
determined by the Markov property [Pearl, 2000], e.g., if
X is directed into Y only Y's parents are included in the
set.

Directing edges is conducted according to causality rules
[Pearl, 2000] by identifying intransitive triplets of nodes
(V-structures), i.e., non-adjacent parents having a
common child, directing the relevant edges, and applying
additional rules to further direct edges until no more
edges can be directed (the inductive step).

Decomposition into autonomous sub-structures reveals
the structure hierarchy and allows performing a fewer CI
tests conditioned on a large number of potential parents
thereby reducing complexity. The RAI algorithm
identifies ancestor and descendant sub-structures, the
latter are autonomous given nodes of the former.

3.1 THE RAI ALGORITHM

Iteration of the RAI algorithm starts with knowledge
produced in the previous iteration and the current d-
separation resolution, n. Previous knowledge includes
Gstart, a structure having d-separation resolution of n-1 and
Gex, a set of structures having each possible exogenous
causes to Gstart. In the first iteration, n = 0, Gstart(V,E) is a
complete graph and Gex=∅.

Given a structure Gstart having d-separation resolution n-1,
the RAI algorithm seeks independencies between adjacent
nodes conditioned on sets of size n, resulting in a
structure having d-separation resolution of n. After
directing edges, the algorithm decomposes the structure
into ancestor and descendent autonomous sub-structures
in order to reduce complexity of successive stages. A
descendant sub-structure is established by identifying the
lowest topological order nodes (either a single node or a

Figure 1: The RAI algorithm

several nodes having the same lowest order). This
structure is autonomous given ancestor sub-structures
composed of nodes of higher order. In order to consider a
smaller number of parents for each node of the
descendent sub-structure, the algorithm recursively learns
ancestor sub-structures and only then their descendant
sub-structure. Note that this latter structure may consist of
a several non-connected sub-structures. Figures 1-3 show
respectively the RAI algorithm, a manifesting example
and the algorithm execution order for this example.
Figure 2a shows the true underlying structure. Initially,
Gstart is the complete graph and Gex is empty so stage A is
skipped. At stage B1, any pair of nodes is CI tested given
an empty condition set (marginal independence) yielding
the removal of the edges between node 1 and nodes 3, 4

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 2: Learning an example structure. a) The true

underlying structure and structures learned by the RAI
algorithm in stages (see Figure 1) b) B1, c) B2, d) B4, e)

C, f) D and A1, g) D and A2 and h) D and B1 (the
resulting structure)

Figure 3: The execution order of the RAI algorithm for
the structure of Figure 2. Recursive calls of stages C and

D are marked with a double and single arrow,
respectively.

RAI(0,G({X1…X7}),{})

RAI(1,G({X3,X4,X5}),{})

RAI(1,G({X2,X6,X7}),G({X1,X3,X4,X5}))

1
3

7

RAI(2,G({X2}),G({X1,X4}))

RAI(2,G({X6,X7}),G({X2}))

5

6

RAI(2,G({X3,X4,X5}),{})

4

2

8
9 10

12

Main function Gout = RAI(n,Gstart,Gex)

Exit condition
If all nodes in Gstart have less than n-1
potential parents exit.

A. Thinning the link between Gex and Gstart and
directing Gstart

1. For every node Y in Gstart and its parent X in Gex,
if ∃S⊂{Pap(Y,Gex)\X∪Pap(Y,Gstart)} and |S|=n s.t
X || Y|S, then remove the edge between X and Y.

2. Direct the edges using causality inference rules.

B. Thinning, directing and decomposing Gstart.
1. For every node Y and its potential parent X, both

in Gstart, if ∃S⊂{Pap(Y,Gex)∪Pap(Y,Gstart)\X}and
|S|=n s.t X || Y|S, then remove the edge between
X and Y.

2. Direct the edges using causality inference rules.
3. Group the nodes having the lowest topological

order into a descendant sub-structure GD.
4. Remove GD from Gstart temporarily, and define

the resulting unconnected structures as ancestor
sub-structures GA1,…, GAk.

C. Ancestor sub-structure decomposition
for i = 1 to k, call RAI(n+1,GAi,Gex)

D. Descendant sub-structure decomposition
1. Define GD_ex={GA1,…,GAk,Gex} as the exogenous

structure to GD.
2. Call RAI(n+1,GD,GD_ex)

RAI(1,G({X1}),{})

11

and 5 (Figure 2b). The causal relations inferred at stage
B2 are shown in Figure 2c. The nodes having the lowest
topological order (2, 6, 7) are grouped into a descendant
sub-structure GD (stage B3) while the remaining nodes
form two unconnected ancestor sub-structure, GA1 and
GA2 (stage B4) (Figure 2d). At stage C the algorithm is
called recursively for each of the ancestor sub-structures
with n=1, Gstart=GAi and Gex=∅. Since sub-structure GA1
contains a single node, the exit condition for the structure
is satisfied. While calling Gstart=GA2, stage A is skipped
and stage B1 identifies that X4 || X5|X3 thus removes edge
X4⎯X5. No causal relations are identified so the nodes
have equal topological order and they are grouped to from
a descendant sub-structure. The recursive call for this sub-
structure with n=2 is returned immediately since the exit
condition is satisfied (Figure 2e). Moving to stage D, the
RAI is called with n=1, Gstart=GD and Gex={GA1,GA2}.
Then, in stage A1 relations (X1 || {X6,X7}|X2), (X4 ||
{X6,X7}|X2) and ({X3,X5} || {X2,X6,X7}|X4) are identified
and the corresponding edges are removed (Figure 2f). At
stage A2 node X2 is identified as a parent of X6 and X7
(Figure 2g). Stage B1 identifies the relation (X2 || X7|X6)
and stage B2 identifies X6 as a parent of X7 (Figure 2h).
Further recursive calls are returned and the resulting
partially directed structure represents a family of Markov
equivalent structures of the true structure.

3.2 MINIMALITY, STABILITY & COMPLEXITY

Minimality A structure having a higher d-separation
resolution entails a fewer dependencies and thus is
simpler and preferred to a structure having a lower d-
separation resolution [Pearl, 2000]. By increasing the
resolution, the RAI algorithm moves from a complete
structure having maximal dependency relations between
variables to structures having less (or equal) dependencies
than previous structures ending in a structure having no
edges between conditionally independent nodes, i.e., a
minimal structure.

Stability is measured by the number of errors in the output
structure due to CI test errors, which are the only source
of errors. CI test errors are the result of unnecessary large
condition set leading to the curse-of-dimensionality or
choosing an inaccurate condition set due to partial
information (e.g., undirected edges). Although as a
recursive algorithm the RAI might be unstable, errors are
practically less likely to occur since the algorithm utilizes
more information (e.g., edge direction and graph
decomposition) from previous iterations to choose
smaller, informative condition sets for performing the
tests.

Complexity CI tests are the major contribution to
complexity (run-time) [Cheng and Greiner, 1999]. In the
worst case, the RAI algorithm will not direct any edges
nor decompose the structure thus identify the entire
structure as a descendant sub-structure calling stage D
iteratively while skipping most other stages. Then, the
execution of the algorithm will be similar to that of the
PC algorithm and the complexity will be bounded by that
of the PC algorithm. Given the maximal number of
possible parents k and the number of nodes n, the number
of CI tests is bounded by [Spirtes et al., 2000]

() 12

0

1 1
2 .

2 (1)!

kk

i

n n n n
i k

−

=

− −⎛ ⎞ ⎛ ⎞
⋅ ≤⎜ ⎟ ⎜ ⎟ −⎝ ⎠ ⎝ ⎠
∑

This worst case scenario rarely occurs in “real-world”
applications requiring structures having colliders.

3.3 CORRECTNESS

Proposition: If the input data to the RAI algorithm is
faithful to a DAG, G, having any d-separation resolution,
then it yields the correct pattern, Gout.

Proof: (by induction, ignoring notions common to the
RAI and PC algorithms which are proved in [Spirtes et
al., 2000])

Base case: If the input data to the RAI algorithm is
faithful to a DAG with d-separation resolution 0, then it
yields the correct pattern Gout.

Since Gstart is a complete graph, the algorithm tests in
stage B marginal independence between pairs of nodes
and then direct edges. Thus, the resulting structure
contains only edges between marginally dependent nodes,
therefore having d-separation resolution of 0. From the
decomposition stages, B3 and B4, based on the
topological order identified from the partially directed
structure, it follows that every edge from a node X in an
ancestor sub-structure to a node Z in the descendant sub-
structure is directed, X→Z. Also, there is no edge
connecting one ancestor sub-structure to another ancestor
sub-structure. Thus, every ancestor sub-structure contains
all the potential parents of its nodes, i.e., it is autonomous.

Lemma 1: If the given data entails X || Y|S and X,Y are
members of an autonomous sub-structure GA(VA,EA),
then ∃S’ such that S’⊂VA and X || Y|S’.

Lemma 2: In a DAG, if X and Y are non-adjacent and X
is not a descendant of Y then X and Y are d-separated
given Pa(Y) (proved in [Spirtes et al., 2000]).

An autonomous sub-structure contains all potential
parents (either sub-structure nodes or exogenous causes)
of each of its nodes. Thus, from Lemma 2, if X and Y are
independent given a set of nodes (i.e., d-separated in the
true underlying graph), then they are d-separated given
PaP(X) or PaP(Y) which are contained in the autonomous
sub-structure. Thus, every ancestor sub-structure can be
processed independently by recursive calls of the
algorithm. The recursive call of the descendant sub-
structure regards the ancestor sub-structure nodes as
exogenous causes. The data does not entail any higher
order conditional independencies and no more edges are
removed.

Inductive case: Suppose that the RAI algorithm yields the
correct pattern given data faithful to a DAG having d-
separation resolution n. Then, given data faithful to a
DAG having d-separation resolution n+1 the RAI
algorithm yields the correct pattern.

After achieving d-separation resolution of n in an
autonomous sub-structure, G(n), a recursive call with n+1
is made. The exit condition is not satisfied in case an edge
exists in G(n) and does not exist in the true structure Gt.
Suppose an edge EXY=(X→Y) exists, such that EXY∈G(n)
and EXY∉Gt, then the smallest condition set required to
identify the independency between the nodes is SXY, such
that |SXY| ≥ n+1. Thus, it follows from Lemma 2 that
either |Pa(X)| ≥ n+1 or |Pa(Y)|≥n+1 and the exit condition
is not satisfied. Every pair of connected nodes is tested for
independence in stage B1 using condition sets of size n+1
and the corresponding edges are removed resulting in a
sub-structure having d-separation resolution of n+1.

The correctness of edge directing is discussed in [Pearl,
2000; Spirtes et al., 2000].

4 EXPERIMENTS AND RESULTS
The RAI algorithm was experimentally compared to the
PC and TPDA algorithms, two popular constraint-based
structure learning algorithms reported frequently as
having good performance [Ramsey et al., 2002]. For
simplicity, no speeding-up heuristic techniques [Spirtes et
al., 2000] were applied to either algorithm, and the RAI
algorithm employed only V-structure identification
deferring the inductive step after forming the structure.

The complexity and prediction accuracy of the RAI
algorithm were compared to those of the PC and TPDA
algorithms using a synthetic problem and fifteen “real-
world” databases of the UCI Repository [Murphy and
Aha, 1994]. Interested mainly in classification, the

0 1 2 3
0

5

1 0

1 5

2 0

2 5

C on d i tio n se t siz e

A
ve

ra
ge

 n
un

be
r

of
 C

I t
es

ts

P C
R A I

0 1 2 3

0

1 0

2 0

3 0

4 0

5 0

C on d i tio n se t siz e

C
I t

es
ts

 r
ed

uc
tio

n
(%

)

Figure 4: (a) The number of CI tests required by the RAI
and PC algorithms for increasing orders averaged over all
possible structures having five nodes. (b) CI test reduction

by the RAI algorithm compared to the PC algorithm

prediction accuracy is preferred over the likelihood in
evaluating performance, as the likelihood ignores the
importance of the class variable [Friedman et al., 1997].
Structural correctness was evaluated in recovering the
ALARM network in comparison to the TPDA and PC
algorithms. BN implementation was aided by the Bayes
net toolbox (BNT) [Murphy, 2001] and BNT structure
learning package [Leray and Francois, 2004].

4.1 A SYNTHETIC PROBLEM

All 29,281 possible structures having five nodes were
learned by the PC and RAI algorithms. Since the true
structure is known, the actual CI relationships could be
inputted to the algorithms. Figure 4a shows the
complexity, evaluated using the averaged number of CI
tests over all possible structures, of the algorithms for
increasing orders (condition sets). Figure 4b illustrates the
percentage of CI tests reduced by the RAI algorithm in
comparison to the PC algorithm.

4.2 “REAL-WORLD” DATA

A several databases of the UCI Repository were
employed in order to evaluate prediction accuracy. When
needed, continuous variables were discretized using the

Table 1. The average number (percentage) of CI tests
reduced by the RAI algorithm compared to the PC

algorithm for different orders

CI test order Database

0 1 2 3 4
shuttle (s) 0

(0)
1.4

(0.7)
95.8

(43.8)
117.6
(49.3)

83.6
(56.0)

car 0
(0)

16
(100)

11.2
(100)

3.2
(100)

corral 0
(0)

22.4
(100)

26
(100)

3.6
(100)

mofn
3,7,10

0
(0)

17
(100)

4
(100)

tic-tac-toe 0
(0)

53.2
(27.1)

56.6
(48.6)

1.8
(51.4)

led7 0
(0)

46.2
(45.7)

105
(100)

140
(100)

105
(100)

breast 0
(0)

107.2
(54.8)

35
(99.1)

vote 0
(0)

24.2
(21.9)

17.2
(98.1)

6.4
(100)

1
(100)

flare C 0
(0)

16
(39.6)

3
(100)

wine 0
(0)

25.8
(41.0)

44.2
(67.6)

40.6
(82.4)

19
(96.7)

cmc 0
(0)

10.2
(10.9)

8
(32.5)

crx 0
(0)

8.8
(49.6)

zoo 0
(0)

82
(27.8)

365.8
(29.6)

1033.4
(27.7)

1928.6
(25.6)

australian 0
(0)

3.8
(34.4)

iris 0
(0)

2
(40)

MLC++ library [Kohavi et al., 1994]. Variable A14 of the
“shuttle-small (s)” database was ignored by the
discretization function of MLC++ and thus omitted from
the experiments. “flare1” and “flare2” were merged to
form the “flare C” database where the class node is the
number of “C-class” flares. All databases were analyzed
using a CV5 experiment except the large “shuttle” and
“mofn 3-7-10” databases which were analyzed using a
hold-out experiment. CI tests were carried out using the
χ2 test [Spirtes et al., 2000] with thresholds chosen for
each algorithm and database in order to maximize the
prediction accuracy on a validation set selected from the
training set. If a several thresholds were suitable, the

Table 2. Mean (std) prediction accuracy of the RAI
algorithm in comparison to the PC algorithm and “other”

classifiers reported in [Friedman et al., 1997] (F) and
[Cheng and Greiner, 1999] (TPDA algorithm) (C), as well
as the cut (%) of CI test run-time using the RAI algorithm

in comparison to the PC algorithm

Database run-
time

cut (%)

PC
accuracy

(%)

RAI
accuracy

(%)

other

shuttle (s)

38.94 98.40 99.22 99.17(F)

car 91.10 85.07
(1.83)

92.94
(1.06)

86.11(C)

corral 87.94 84.53
(15.45)

98.52
(3.31)

97.60(F)

mofn
3,7,10

67.70 81.45 93.16 85.94(F)

tic-tac-
toe

36.52 74.74
(1.48)

75.57
(1.93)

led7 91.74 73.31
(1.80)

73.59
(1.56)

breast 71.87 95.46
(2.04)

96.49
(1.61)

96.92(F)

vote 46.06 95.64
(1.87)

95.87
(1.71)

94.94(F)
95.17(C)

flare C 20.38 84.30
(2.54)

84.30
(2.54)

82.74(F)
82.27(C)

wine 29.11 85.44
(7.79)

87.07
(5.88)

cmc 14.22 50.92
(2.33)

51.12
(3.16)

crx 25.25 86.38
(2.63)

86.38
(2.63)

85.60(F)

zoo 13.63 88.95
(8.79)

88.95
(8.79)

australian 6.05 85.51
(0.52)

85.51
(0.52)

86.23(F)

iris 19.10 96.00
(4.35)

93.33
(2.36)

94.00(F)

chosen threshold was that leading to the fewest CI tests.
Parameter learning was performed using sequential
Bayesian updating with Dirichlet priors of unit hyper-
parameters [Heckerman, 1995].

Complexity was measured by the number of CI tests
employed and the corresponding run-time. Table 1 shows
the average number and percentage of CI tests reduced by
the RAI algorithm compared to the PC algorithm for

different orders. A 100% cut in CI tests for a specific
order means that the RAI does not need any CI tests for
this order. Empty cells mean that no CI tests of this order
are required. Both Table 1 and Table 2, depicting the cut
in run-time due to the RAI algorithm, demonstrate that the
RAI algorithm outperforms the PC algorithm in all cases.

Prediction Accuracies of the RAI and PC algorithms for
the experimented databases are summarized in Table 2.
On ten of the fifteen databases the RAI algorithm
improves accuracy on the PC algorithm, on four keeps
accuracy intact and on the remaining “iris” database
deteriorates accuracy. Examination of the “iris” database
reveals discrepancy between the results of CI tests of
orders 0 and 1 violating the Markov property. Three
nodes are found marginally dependent on each other
whereas nodes of each pair of this triplet are found
independent given the third node. The prediction accuracy
is also compared in Table 2 to that of the TPDA algorithm
[Cheng and Greiner, 1999] and a BN learned by a search-
and-score method using the minimum description length
criterion [Friedman et al., 1997].

4.3 LEARNING THE ALARM NETWORK

Recovering the correct structure was evaluated using the
ALARM network [Beinlich et al., 1989], which is widely
accepted as a benchmark for evaluating structure learning
algorithms. The RAI algorithm was compared to the PC
and TPDA (PowerConstructor [Cheng, 1998]) algorithms
using ten randomly generated databases each containing
10,000 cases. Since the TPDA algorithm had used the
conditional mutual information CI test, we employed this
test also here. For comparison, we selected the TPDA
threshold of 0.003 [Cheng et al., 1997] for testing also the
RAI algorithm and a threshold of 0.002 for the PC
algorithm providing better accuracy for this algorithm
than using a threshold of 0.003.

Structural correctness for the algorithms was evaluated
using two types of errors due to extra edges (EE;
commission) and missing edges (ME; omission) (Table
3). The PC and RAI algorithms achieved the smallest
errors of extra and missing edges, respectively. The total
structural error (Table 4) accounting for both errors was
evaluated using

2 2
TError EE ME= + .

The RAI algorithm yielded structures with the smallest
total structural error of all algorithms which was validated
using a t-test with 1% significance level. Others structural
errors (e.g., edge reversal) were not recorded though we

Table 3. Extra edge (EE) and missing edge (ME) errors
(%) when learning the ALARM network in 10 trials using

the TPDA, PC and RAI algorithms

TPDA PC RAI Trial
EE ME EE ME EE ME

1 0.48 8.70 0.16 2.17 0.97 0
2 0.32 4.35 0 6.52 0.65 2.17
3 0.32 4.35 0 4.35 0.65 2.17
4 0.32 6.52 0.16 4.35 0.32 0
5 0.48 8.70 0 2.17 0.65 0
6 0.48 8.70 0.16 4.35 0.48 0
7 0.48 8.70 0.32 0 0.65 0
8 0.16 2.17 0.16 2.17 0.81 2.17
9 0.16 2.17 0.16 4.35 0.81 2.17

10 0.48 8.70 0.32 4.35 0.65 0
mean
(std)

0.37
(0.13)

6.30
(2.80)

0.15
(0.12)

3.48
(1.83)

0.66
(0.18)

0.87
(1.12)

Table 4. The total structural error (%) in 10 trials of the
ALARM network learned using the TPDA, PC and RAI

algorithms

Trial TPDA PC RAI
1 8.71 2.18 0.97
2 4.36 6.52 2.27
3 4.36 4.35 2.27
4 6.53 4.35 0.32
5 8.71 2.17 0.65
6 8.71 4.35 0.48
7 8.71 0.32 0.65
8 2.18 2.17 2.32
9 2.18 4.35 2.32

10 8.71 4.36 0.65
mean
(std)

6.32
(2.80)

3.51
(1.77)

1.29
(0.88)

expect the RAI algorithm to dominate both algorithms
due to its enhanced mechanism of directing edges.

Complexity The average reduction in CI tests achieved by
the RAI algorithm compared to the PC algorithm for the
ALARM network is presented in Figure 5. The RAI
algorithm avoids completely the use of CI tests of order 4
and 5 and almost completely CI tests of order 3, and it
reduces the use of CI tests of order 2 by more than 83%.
However, there is almost no reduction in CI tests of order
1 which are most of the tests. The total CI test run-time

Figure 5: Average percentage (number) of CI tests
reduced due to the RAI algorithm compared to the PC

algorithm for increasing orders and the ALARM network

reduced by the RAI algorithm compared to the PC
algorithm is 38%.

5 DISCUSSION
The performance of constraint-based algorithms of BN
structure learning depends on the size of the condition set
used for testing conditional independence. The larger the
condition set is, the more CI tests (especially of high
order) have to be performed and the less is their accuracy.

We propose the constraint-based RAI algorithm that
learns BN structures recursively by performing 1) CI tests
of increasing orders, along with 2) directing edges
employing causality inference rules and 3) decomposing
the structure into autonomous sub-structures. These
mechanisms provide smaller condition sets enabling the
performance of fewer CI tests of higher order thus
reducing the algorithm run-time and increasing its
accuracy. Other constraint-based algorithms directing
edges after accomplishing the undirected graph using all
orders, rather than continuously through learning, are
expensive and more sensitive to errors accumulated along
the procedure.

We demonstrate on a synthetic problem, fifteen real-
world databases and the ALARM network that the RAI
algorithm significantly reduces the number of CI tests
required for structure learning and yields more accurate

structures as well as higher prediction accuracy compared
to other constraint-based algorithms.

Acknowledgement

This work was supported in part by the Paul Ivanier
Center for Robotics and Production Management, Ben-
Gurion University, Beer-Sheva, Israel.

References

 Beinlich, I. A., Suermondt, H. J., Chavez, R. M. &
Cooper, G. F. The ALARM monitoring system: A
case study with two probabilistic inference techniques
for belief networks. Second European Conf. on
Artificial Intelligence in Medicine, pages 246-256,
1989.

Cheng, J. PowerConstructor system, 1998.
http://www.cs.ualberta.ca/~jcheng/bnpc.htm.

Cheng, J., Bell, D. & Liu, W. Learning Bayesian
networks from data: an efficient approach based on
information theory. Sixth ACM Int. Conf. on
Information and Knowledge Management, pages 325-
331, 1997.

Cheng, J. & Greiner, R. Comparing Bayesian network
classifiers, Fifteenth Conf. on Uncertainty in Artificial
Intelligence, pages 101-107, 1999.

Friedman, N., Geiger, D. & Goldszmidt, M. Bayesian
network classifiers. Machine Learning, 29:131-161,
1997.

Heckerman, D. A tutorial on learning with Bayesian
networks. MS TR-95-06, March 1995.

Kohavi, R., John, G., Long, R., Manley D. & Pfleger, K.
MLC++: A machine learning library in C++, Sixth Int.
Conf. on Tools with AI, pages 740-743, 1994.

Leray, P. & Francois, O. BNT structure learning package:
documentation and experiments. PSI TR, 2004.

Murphy, K. Bayes net toolbox for Matlab. Computing
Science & Statistics, 33, 2001.

Murphy, P. M. & Aha, D. W. UCI Repository of machine
learning databases, 1994.
http://www.ics.uci.edu/~mlearn/MLRepository.html.

Pearl, J. Causality: Models, Reasoning, and Inference.
Cambridge. 2000.

Ramsey, J., Gazis, P., Roush, T., Spirtes, P. & Glymour,
C. Automated remote sensing with near infrared
reflectance spectra: Carbonate recognition. Data
Mining & Knowledge Discovery, pages 277-293,
2002.

Spirtes, P., Glymour, C. & Scheines, R. Causation,
Prediction and Search, 2nd edition, MIT Press, 2000.

