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Abstract

We present a novel structured variational infer-
ence algorithm for probabilistic speech separa-
tion. The algorithm is built upon a new genera-
tive probability model of speech production and
mixing in the full spectral domain, that utilizes
a detailed probability model of speech trained in
the magnitude spectral domain, and the position
ensemble of the underlying sources as a natural,
low-dimensional parameterization of the mixing
process. The algorithm is able to produce high
quality estimates of the underlying source con-
figurations, even when there are more underly-
ing sources than available microphone record-
ings. Spectral phase estimates of all underlying
speakers are automatically recovered by the algo-
rithm, facilitating the direct transformation of the
obtained source estimates into the time domain,
to yield speech signals of high perceptual quality.

Audio demonstrations at http:// www.comm.utoronto.ca/∼rennie/srcsep

1 Introduction

The speech separation problem is one that has been very
heavily researched, and whose solution under practical
conditions still alludes us today. Several existing ap-
proaches work well under various problem assumptions
– such as negligible or stationary reverberation, instanta-
neous mixing, or more microphones recordings than speech
sources – but break down when these conditions are re-
laxed.

Two important directions of progress in speech separation
research have been the incorporation of detailed informa-
tion about the nature of speech into the estimation process,
and the utilization of multiple signal mixtures (Frey et al.
2001; Bell and Sejnowski 1995). Currently the emphasis of
much research is on utilizing these methodologies simulta-
neously (Attias 2003; A.Acero, Altschuler and Wu 2000;

Rennie et al. 2003). Approximate inference techniques
have been applied to the problem to facilitate the incorpo-
ration of more representative models of speech production
and mixing into the estimation process, with success (At-
tias 2003; Rennie et al. 2003). Spatially selective (e.g.
beamforming) algorithms, on the other hand, have demon-
strated significant results via the utilization of source posi-
tion or direction information, despite the fact that the ma-
jority of existing techniques do fully decoupled source esti-
mation, and do not incorporate prior information about the
nature of speech (Aarabi and Shi 2004; Cohen and Berdugo
2002; Nix, Kleinschmidt and Hohmann 2003).

In this paper, we present a novel structured variational in-
ference algorithm for probabilistic speech separation. The
algorithm is built upon a new generative probability model
of speech production and mixing in the full spectral do-
main, that utilizes a detailed probability model of speech
trained in the magnitude spectral domain, and the posi-
tion ensemble of the underlying sources as a natural, low-
dimensional parameterization of the mixing process.

For the case where the locations of the underlying speakers
are known, the algorithm is able to produce high quality es-
timates of the underlying source configurations, even when
there are more underlying sources than available micro-
phone recordings. When only noisy estimates of the posi-
tions of the underlying speakers are available, the algorithm
is automatically able to refine the position estimates, im-
proving the achieved separation results substantially. The
algorithm also automatically recovers high fidelity esti-
mates of the spectral phase of the underlying speakers, fa-
cilitating the direct transformation of the obtained source
estimates into the time domain, to yield speech signals of
high perceptual quality.

2 The Mixing Process

We model the signal received by microphone m of a col-
lection of microphones M as a scaled, time-delayed com-



bination of all underlying speech sources, and noise:

xm(t) =
∑

S

km,szs(t − τm,s) + nm(t) (1)

where τm,s and km,s are the time delay and intensity decay
associated with the propagation of source signal s to micro-
phone observation m, and nm represents all noise corrup-
tion (including transduction noise, other acoustic sources,
and reverberation when present).

Both the propagation delay and the intensity decay asso-
ciated with a given source are a function of the position
of the source, ρs, relative to that of the microphone, ρm,
and the propagation media. Under generally encountered
indoor conditions (negligible wind and temperature gradi-
ents), the relationship between τm,s and ρs given ρm can
be approximated to high fidelity as frequency independent
and geometric:

τm,s = τm,s(ρs) =
‖ρs − ρm‖

vs

(2)

where vs is the speed of sound in air. Similarly, under gen-
erally encountered room conditions the intensity decay as-
sociated with atmospheric effects such as wind and tem-
perature gradients, and molecular absorption, are negligi-
ble compared to the intensity decay associated with the ge-
ometric spread of the acoustic signal from its origin. As
such the intensity of the source signal decay is proportional
to one over the distance from the source:

km,s = km,s(ρs) =
ks · gm

‖ρs − ρm‖
(3)

where gm is the gain associated with the mth transducer,
and ks is a generally unknown constant that equalizes the
source signals observed at the microphones relative to a
chosen reference.

An equivalent representation of the relation (1) in the fre-
quency domain is given by:
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where the matrix Aw(ρ) consists of 2 × 2 blocks
Awm,s

(ρs) of the form:

Awm,s
(ρs) = km,s

[

cosωτm,s sin ωτm,s

− sinωτm,s cosωτm,s

]

(5)

and zsω
is the Short-Time Discrete Fourier Transform of

the sth (sampled) sound source signal at center frequency
ω in vectored form:

zsω
=

[

Re{
∑

n zs[n]w[n]e−j 2πk
N

n}

Im{
∑

n zs[n]w[n]e−j 2πk
N

n}

]

, ω = k
N

ωs

(6)

and xmω
is similarly defined. Here w[n] is a (gener-

ally non-rectangular) windowing function that is non-zero
over N contiguous samples of the sampled source signal
zs[n] = zs(nTs) that we wish to generate a spectral rep-
resentation of, and ws = 2π/Ts is the sampling rate, in
radians per second.

Applying (4) over segments of length such that the error in
the relation due to windowing and the assumption of signal
stationarity is minimal (typically 10-20 ms for speech), we
have for each segment, given the source position ensemble
ρ = {ρs}, a system of linear equations constraining the
underlying source signal spectra. Furthermore we have ex-
pressed the mixing process in terms of the underlying low
dimensional manifold – defined by the positions of the un-
derlying speakers – which relates the observed mixtures to
the direct signal component of the speech sources.

3 Modelling Speech in the Full Spectral
Domain

When doing speech separation on real microphone record-
ings in the frequency domain, the mixing process has both
amplitude and phase components, and so to incorporate
prior information about the nature of speech it is essential
to move to the full spectral domain, so that both amplitude
and phase corruption can be filtered.

Here the fidelity of the recovered spectral magnitude and
phase estimates will be coupled for each source, and across
sources: therefore even in cases where we are interested
only in recovering the magnitude spectrum of a given
speaker (for input to a machine recognition system, for ex-
ample) phase representation during source inference is crit-
ical.

In cases where a time domain estimate of one or more
sources is of interest, the spectral phase of the estimate
recovered in the frequency domain will greatly affect the
perceptual quality of the obtained result. Recent research
efforts on the reconstruction of speech given only it’s en-
ergy spectrum have demonstrated the importance of phase
on perceptual quality, and the difficulty of the problem
(Achan, Roweis and Frey 2003).

Although it is well known that the spectral phase of speech
is coupled across harmonics, this knowledge is difficult
to utilize in practice, as frequency sampling complicates
the theoretically straightforward relationship. The defini-
tion of spectral phase relationships across adjacent analysis
frames are similarly complicated by the discretization of
frequency. No one has yet identified any utility in the phase
of speech for as a feature for sound discrimination or recog-
nition. The magnitude spectrum of speech (or transform of
the magnitude spectrum), on the other hand, is established
as an excellent feature domain for speech analysis. Speech
sounds are characterized by their spectral magnitude pro-



file across frequency, and across time. LPC and Gaussian-
based (HMM,Mixture) models are the current representa-
tions of choice for capturing these relationships (Rabiner
and Juang 1993; Frey et al. 2001; Attias 2003). These ob-
servations collectively lead us to seek a probability model
of speech in the full spectral domain that incorporates de-
tailed information about the nature of speech (as charac-
terized in the magnitude spectral domain), and is phase-
invariant across both frequency and time.

Based on the forgoing discussion then, we define a phase-
invariant model of speech in the full spectral domain as
follows. We map a learned HMM model of speech in the
magnitude spectral domain into the full spectral domain by
rotating the (diagonal covariance) Gaussian state emission
distributions, at each frequency, at discrete, regular inter-
vals, and introducing phase covariance proportional to the
chosen interval size. The result is a generative model of
speech in the full spectral domain that is approximately
phase-invariant:

p(zs) =

1

Zθs

∑

cs,θs

p(cs0
)

T−1
∏

t=0

p(cst+1
|cst

)

T
∏

t=0

p(zst
|cst

, θst
) (7)

p(zst
|cst

, θst
) = N(zs,t; µcst

,θst
,Σcst

,θst
),

p(cst+1
|cst

) = acst+1
,cst

, p(cs0
) = πcs

µcst
,θst

= Rθst
µcst

, Σcst
,θst

= Rθst
Σcs,t

RT
θst

where the random variables cst
and θst

represent the un-
derlying state configuration, and the coarse phase of speech
source s during time frame t, respectively. µcst

and Σcst

are the mean and diagonal covariance of the emission dis-
tribution of state cst

for θst
= 0, and Rθs,t

is a determin-
istic rotation matrix given θs,t.

Figure 1 illustrates how the resulting MOG models of
speech in the full spectral domain at each frequency, for
a given speech class, are approximately phase invariant as
desired.

Note that in the case that the HMM emissions are defined as
zero-mean, the model collapses to the more standard model
utilized in (Ephraim and Rabiner 1989; Attias 2003), the
θst

variable becomes redundant, and phase invariance is
automatically achieved. This close relationship allows for
the seamless substitution of the more standard model into
our source inference algorithm when desired. In particu-
lar, we have found that by utilizing the zero-mean source
model inference result to initialize source inference un-
der the full probability model (utilizing the non-zero mean
source model), the estimation was sped up substantially.
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Figure 1: By rotating the source models learned in the mag-
nitude spectral domain at discrete, regular intervals, and in-
troducing phase covariance proportional to the chosen rota-
tion interval size, a phase invariant model of speech in the
full spectral domain is obtained.

4 A Generative Model for the Speech
Production and Mixing

Based on the foregoing a generative probability model for
speech production and mixing over a set of temporally ad-
jacent or overlapping analysis frames T can be written as
follows:

p(c, θ, z, ρ,x)

=
∏

s

p(cs) ·
∏

s,t

p(θst
)p(zst

|cst
, θst

) ·

∏

s

p(ρs) ·
∏

t

p(xt|zt, ρ)

=
1

Zθ

∏

s

πcs

T−1
∏

t=0

acst+1
,cst

·

T
∏

t=0

N(zs,t; ksµcst
,θst

, k2

sΣcst
,θst

) ·

∏

s

N(ρs; %, ς) ·
∏

t

∏

ω

N(xω,t;Aω(ρ)zω,t,Ψω) (8)

where we have modelled noise in the mixing relationship
as zero-mean and Gaussian, and treated the positions of the
underlying speakers as stationary Gaussian random vari-
ables over set of analysis frames (analysis window); an ac-
curate assumption in most settings for analysis windows
on the order of 500 ms. Note that the scale equalization pa-
rameters ks have been moved into the definition of source
models since they are independent of the microphones. The
mixing matrix retains its dependence on scale as a function
of source position.



2
ρ

S
ρ

1
ρ ...

zS,t+1

S,t+1θ

cS,t+1

x1,t+1 x2,t+1 xM,t+1

...

...

z2,t+1

2,t+1θ

c2,t+1

z1,t+1

1,t+1θ

c1,t+1

... zS,t-1

S,t-1θ

cS,t-1

x1,t-1 x2,t-1 xM,t-1

...

...

z2,t-1

2,t-1θ

c2,t-1

z1,t-1

1,t-1θ

c1,t-1

zS,t

S,tθ

cS,t

x1,t x2,t xM,t

...

...

z2,t

2,tθ

c2,t

z1,t

1,tθ

c1,t

...

... ...

Figure 2: A Bayes net depicting the dependencies that exist between random variables of the speech production and mixing
process.

Under this description the generation process for each anal-
ysis frame proceeds as follows:

• A speech sound is emitted from each speaker in ac-
cordance with the conditional prior p(cst+1

|cst
) =

acst+1
,cst

.

• The coarse phase of each speaker at each frequency is
uniformly generated from the domain of θst

.

• Given cst
and θs,t, and instance of the speech sound is

generated from the distribution of the specified speech
cluster for all speakers.

• A position ensemble is sampled from the distribution
of ρ.

• Given ρ and zt, the microphone observa-
tions are generated according to p(xt|zt, ρ) =
∏

t

∏

ω N(xω,t;Aω(ρ)zω,t,Ψω).

Figure 2 depicts a Bayes net of the generative model pre-
sented above.

5 Source Inference

Given our generative probabilistic description of speech
production and mixing, the problem of estimating the con-
figuration of the underlying sources over an analysis win-
dow given observed microphone mixtures becomes one of
simultaneous probabilistic learning and inference, as gen-
erally both the configuration of the underlying sources and
the parameters of the model {Ψ,k, %, ς} will be unknown.

Because the decision about the configuration of the under-
lying sources is fully coupled by the observed microphone
data, even when the positions of the underlying sources are
known, exact inference is exponential in the representation
complexity of the underlying speech model, and hence gen-
erally intractable to compute. However the relationship be-
tween the observed mixtures and the underlying sources
given the source positions constructed in Section 2 is lin-
ear, and the source model defined in Section 3 is built upon
Gaussian basis functions, and so the system is conditionally
amenable to variational approximate inference techniques
(Jordan et al. 1999).

In general however, the position of the underlying sources
will not be known, and so a posterior distribution over the
source positions must simultaneously estimated. Unfortu-
nately the entries of the mixing matrix are non-linear in the
time delays defined by the source positions, and the delays
themselves are a non-linear function of the source positions
ρ, and so density estimation and propagation through these
relationships is difficult (and fully coupled) problem, not
amenable to analytic approaches.

Here we will concentrate on the case when rough estimates
of the underlying source positions are available, and col-
lapse the position ensemble distribution estimation prob-
lem onto a point, making it a parameter to be refined dur-
ing source inference. In making this assumption we remind
the reader that source localization in of itself is a very dif-
ficult problem, with today’s best acoustic techniques gen-
erally requiring many more microphones than sources to
achieve position estimates of fidelity (DiBiase, Silverman



and Brandstein 2001; Aarabi 2003). Note however, that
it is the utilization of a naturally existing parameter (the
source locations) in defining the mixing process that makes
the requirement that some information about the parameter
be available plausible.

We achieve simultaneous learning of the unknown param-
eters of the model and inference of the configuration of the
underlying sources by iterating between inferring a struc-
tured variational approximation to the posterior distribution
of the underlying sources given the current model param-
eters to define an approximate E-Step and obtain a lower
bound the data likelihood, and maximizing the bound with
respect to the model parameters {ρ,k,Ψ} to define the M-
Step of our Expectation-Maximization algorithm for infer-
ring the configuration of the underlying sources.

E-Step: We define the form of the variational surrogate as:

q(z, θ, c)

=
∏

s

q(cs0
)
∏

t

q(cst+1
|cst

) ·
∏

s,t,ω

q(θsω,t
) ·

∏

ω,t

q(zω,t)

=
∏

s

χs0

∏

t

χst+1,t

∏

s,t,ω

γθsω,t

∏

t,ω

N(zω,t, ηω,t,Ωω,t)

(9)

where {χ, γ, η,Ω} are the variational parameters to be
found so that q best approximates the true posterior of
the hidden random variables under our speech separation
model. To identify q we minimize the Kullback-Leibler
(KL) divergence of p(z, θ, c,x) from q(z, θ, c). Exploiting
the conditional independencies, conditional linearity, and
Gaussian decomposition of the underlying model p given
the model parameters, and the chosen form of the varia-
tional surrogate, we arrive at the set of coupled fixed point
equations for the variational parameters, given in appendix
A, that may be iterated to identify q. The computational
complexity of the inference algorithm is linear (as opposed
to exponential) in the representation complexity of the uti-
lized speech model.

M Step: The update for the source positions ρ is obtained
by solving:

[{∂L/∂ρsxi
} = 0 (10)

The form of ∂L/∂ρsxi
is given in the appendix. The closed

form updates for ks and Ψω can also be found in the ap-
pendix.

6 Results

A database of dictated speech, consisting of 18 minutes of
data (3 mins. x 6 female speakers) from the Wall Street
Journal database (WSJ) was used to train a 128-component,
speaker independent, diagonal covariance Gaussian emis-
sion HMM model of speech in the magnitude spectral do-
main. This model was used to define the (common) source

prior in the full spectral domain that was utilized in all
our experiments, by isotropically expanding the learned
covariances, and rotating the model at intervals of π/32
(as described in section 3). A 128-component zero-mean,
speaker independent, diagonal covariance Gaussian emis-
sion HMM model was also trained in the magnitude spec-
tral domain, and mapped directly into the complex domain.
For both models, several training trials, (100 EM itera-
tions each) were performed, and the model that maximized
the probability of a 12 minute validation database (defined
analogously to how the training set was defined) was se-
lected.

A test database of 1 minute of WSJ speech data from each
speaker in the training database was used to define the
speech sources for all test scenarios presented. Simulated
microphone recording were generated via the standard im-
age method (Allen and Berkley 1979), with additional 20
dB Gaussian noise corruption. All simulated scenarios
were set in a 7 by 6 by 2.5 m room, with all source and mi-
crophone heights set at 1.5m. The horizontal coordinates
of the sources and microphones are given in Appendix B.
In all the forthcoming results, a non-overlapping, 20 frame
analysis window (T = 20) was employed, with the 0-4kHz
region of the half overlapped, hanning-windowed FFTs of
the data (16ms segments) defining each processing frame.

To speed up source inference, for all test scenarios the zero-
mean speech model-based version of our speech separation
algorithm was first run until convergence, and the inference
result was then used to seed our full speech separation al-
gorithm, which was run for an additional 10 EM iterations
to yield final source estimates. It worthy of note that in all
(non-reverberative) test scenarios, the additional iterations
with the non-zero mean source model resulted in substan-
tial (5% to 15%) increases in SNR gain.

Figure 3 depicts spectrograms of a typical microphone
recording, and typical separation results achieved for the
case of zero reverberation, known source position informa-
tion, 6 underlying speech sources, and only 4 available mi-
crophone observations (Figure 4 depicts the spatial setup of
this test scenario). The separation result achieved via norm-
constrained inversion of the data likelihood (a beamformer
utilizing all source position information):

z
∗

ω,tnc
= (AT

ωAω + 0.1I)−1
A

T
ωxω,t, all ω, t (11)

are included for comparative purposes. Looking at the re-
sults, we can see that our variational inference algorithm
is able to yield a dramatic improvement over the norm-
constrained inversion based estimate, and recovers a high
fidelity estimate of the underlying source, despite the fact
that there are two more sources than microphones, and the
sources have strongly overlapping spectral-temporal fea-
ture content.

Table 1 summarizes the SNR gain results obtained (relative
to taking a microphone reading as the source estimates) for
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Figure 3: Our algorithm is capable of producing high quality estimates of the magnitude spectra of the underlying sources even
when there are more underlying sources than available microphone observations. The obtained SNR Gain over taking a microphone
observation as our estimate, and the norm-constrained estimate (11) in this frame is 14.5 and 10.4 dB, respectively.
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the case of known source position information, for vari-
ous source to microphone count combinations, and rever-
beration times. The average gain of applying the norm-
constrained data inversion (beamforming) estimate (11) has
also been included in brackets for comparative purposes.

For non-reverberative mixing, our variational algorithm

Table 1: Source vector SNR gain performance of our algorithm
as a function of microphone noise corruption level and the number
sources and microphones. All gains are calculated in the time
domain, and reported in decibels.

Number of Number of Reverberation Time (s)
Sources Microphones 0 0.05

4 4 23.6 (5.3) 0.3 (1.0)
5 4 18.0 (4.77) 0.3 (1.4)
6 4 14.5 (4.37) 0.4 (0.9)
4 2 5.3 (2.0) 0.9 (1.1)
3 2 9.6 (2.9) 1.3 (1.4)

is able to greatly improve upon the beamforming esti-
mate (11), and yields high SNR gain results, even when
there are more sources than microphones. The algo-
rithm is automatically able to recover high fidelity esti-
mates of the spectral phase of all sources, to facilitate
the direct transformation of the obtained estimates into
the time domain, to yield speech signals of high percep-
tual quality. Audio demonstrations can be listened to at
www.comm.utoronto.ca/˜rennie/srcsep.

It is difficult to directly compare our results to existing
work. The best performing spatial filtering algorithms that



we are aware of are the aggressive beamforming techniques
(Cohen and Berdugo 2002; Aarabi and Shi 2004), which
have demonstrated SNR gains in the range of 10 dB at
sub-zero dB SNRs. These techniques perform decoupled
source inference, and do not incorporate prior informa-
tion about the nature of speech into the estimation process.
Here to no surprise, we have demonstrated much higher
fidelity results, by addressing the shortcomings of these al-
gorithms.

Perhaps the most advanced information processing algo-
rithms for speech separation we are aware of are those pre-
sented in (Attias 2003). SNR gain results of 3.7 dB and
4.4 dB are reported for the case of 5 sources and 5 mi-
crophones and 10 dB microphone noise corruption, and 3
microphones and 2 sources and 10 dB microphone noise
corruption, respectively. In this case, however, no knowl-
edge of the spatial locations of the underlying sources was
utilized.

In (Nix, Kleinschmidt and Hohmann 2003) a particle fil-
tering algorithm for simultaneous source separation and
source direction estimation is presented. Excellent source
direction estimation results are presented, but source sepa-
ration performance results are omitted.

Looking now at our results for reverberant mixing, we can
see that in sharp contrast to the non-reverberant mixing re-
sults, the algorithm performed very poorly. In (Attias 2003)
for example, source vector gains of 7+ dB are reported for
more serious reverberative conditions than tested here. We
expected the spatial selectivity inherent to the problem for-
mulation to be able to combat some reverberation. Further
analysis revealed, however, that the likelihood associated
with a given source under the model was only discrimina-
tive against sounds immediately around the other sources.
The results give us a renewed interest in the operation of the
aggressive beamforming techniques (Cohen and Berdugo
2002; Aarabi and Shi 2004) which are highly spatially dis-
criminative.

7 Concluding Remarks

In this paper, a novel structured variational learning and in-
ference algorithm for probabilistic speech separation, built
upon a new generative probability model of speech produc-
tion and mixing, was presented. For the case of multi-path
free mixing, and known source position information, ex-
cellent separation results were demonstrated. Even in sce-
narios where there were more sources than microphone ob-
servations, the algorithm has demonstrated the ability to
automatically recover high quality estimates of the magni-
tude and phase spectrum of all underlying sources, yielding
time domain source estimates of high perceptual quality.
We are currently investigating the performance of the al-
gorithm when only noisy position estimates are available.
Preliminary results have indicated that when the available

source position estimates are within 0.25 meters of the their
true values, our algorithm is able to consistently refine the
source position estimates; a capability that has yielded a
SNR gain performance increase (over assuming the noisy
position estimates are correct) consistently over 5 dB and
often exceeding 10 dB. More generally the problem of si-
multaneous source localization and separation constitutes
a difficult and open problem; extensions to the presented
model may be able to break ground.

We are also interested in pursuing further the presented
model of speech in the full spectral domain. Relationships
between frequency harmonics, though difficult to utilize in
discrete fourier domains, could potentially be exploited by
dynamically tuning the analysis frame length to place the
pitch period and associated harmonics at the sampled fre-
quencies.

Perhaps the most interesting, and most challenging direc-
tion of future work in this research area however, is to in-
vestigate new ways of dealing with reverberation.
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Appendix A: E and M Step Updates
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Appendix B: Test Scenario Details

XSYM - X source, Y microphone test scenario
SP - Source positions
MP - Microphone positions

4S4M:
SP = (0.7,3.6),(3.5, 5.3),(2.8,1.8),(5.3,3.0)
MP = {(0,0),(6.5, 0),(0 5.5),(6.5,5.5)}

5S4M:
SP = {(0.7,3.6),(3.5,5.3),(1.4,1.8),(5.3,3.0),(4.2,1.2)}
MP = {(0,0),(6.5, 0),(0 5.5),(6.5,5.5)}

6S4M:
SP = {(0.7,3.6),(3.5,5.3),(1.4,1.8),(5.3,4.0),(5.6,2.1),(4.2,1.2)}
MP = {(0,0),(6.5, 0),(0 5.5),(6.5,5.5)}

3S2M:
SP = {(0.5,1.5),(3.0,3.0),(6.3,1.2)}
MP = {(1.5,0),(3, 0)}

4S2M:
SP = {(0.5,1.5),(1.4,3.6),(4.6,3.0),(6.3,1.2)}
MP = {(1.5,0),(3, 0)}


