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Abstract

We describe and prove the convergence of
several algorithms for approximate struc-
tured variational inference. We discuss the
computation cost of these algorithms and
describe their relationship to the mean-field
and generalized-mean-field variational ap-
proaches and other structured variational
methods.

1 Introduction

Graphical models are an important class of probabilis-
tic models. Their graphical structure, whether di-
rected, undirected, or mixed, provides an appealing
description of the qualitative properties of the model.
Furthermore, the modularity of the defined probability
distribution allows one to define general algorithms,
called inference algorithms, for computing marginal
and conditional probabilities and allows one to easily
incorporate prior knowledge. Inference algorithms are
also useful for parameter learning for graphical mod-
els with missing data because the E-step of the EM
algorithm can be computed using inference.

Although the inference problem is tractable for graph-
ical models with small treewidth, the general inference
problem is NP-hard (Cooper, 1990; Dagum and Luby,
1993) . In fact, for many graphical models of interest
the treewidth is too large to allow efficient inference
and one must use approximate or heuristic inference
methods. In this paper, we examine the family of ap-
proaches that optimize the KL divergence between a
distribution Q and the target distribution P where Q
is constrained to be from some family of distributions
for which inference is tractable.

∗ This work was partially done while the author visited
Microsoft Research.

One of the nice properties of this family of approaches
is that they provide a bound on marginal probabil-
ities that are useful in model evaluation and learn-
ing. In particular, let us assume that we are given
an intractable joint distribution P (X) over a set of
discrete variables X and our goal is to compute the
marginal probability P (Y = y) where Y ⊆ X. We
let H = X \ Y . The quantity of interest is bounded
by logP (Y = y) ≥ −D(Q(H) || P (Y = y,H)) where
D(· || ·) denotes the KL divergence between two prob-
ability distributions. The quantity −D(Q || P ) is often
called the free-energy and denoted by F (Q;P ) whereQ
and P are possibly un-normalized distributions. The
bound can be shown by the following argument:

−D(Q(H) || P (Y = y,H)) = −
∑
h

Q(h) log
Q(h)
P (y, h)

=
∑
h

Q(h) logP (y)−
∑
h

Q(h) log
Q(h)
P (h|y)

= logP (y) −D(Q(H) || P (H|Y = y)) ≤ logP (y).

The final inequality follows from the fact that
D(Q(H) || P (H|Y = y)) ≥ 0 with equality holding only
if Q(H) = P (H|Y = y). It is important to note
that if Q is tractable then D(Q(H) || P (Y = y,H))
can be effectively computed. The goal of ap-
proaches in this family is to find the Q(H) that mini-
mizes D(Q(H) || P (Y = y,H)) (or maximizes the free-
energy). Approaches in this family include the mean
field, generalized mean field, and structured mean field
approaches to variational inference. These methods
differ with respect to the family of approximating dis-
tributions that can be used with the structural mean
field approach subsuming the remaining approaches as
special cases.

In this paper, we develop a set of structural varia-
tional methods inspired by the sequence of papers Saul
and Jordan (1996), Ghahramani and Jordan (1997),
Wiegerinck (2000) and Bishop and Winn (2003). We
make several contributions with respect to this earlier



work. We provide a set of alternative structured vari-
ational methods and prove convergence of the alterna-
tives with a novel simple proof technique. Our alter-
native algorithms differ in their computational profile
with successive algorithms providing refined control
over the computational cost of obtaining a variational
approximation. We note that special cases of our fi-
nal algorithm, called vip

], were used in Jojic et al.
(2004) for applying variational inference techniques to
types of phylogenic models. For N ×N grid-like mod-
els, algorithm vip

] is 4N fold faster than algorithm
vip

+ and 12N folder faster than algorithm vip, yield-
ing a potential three orders of magnitude improvement
in applications such as phylogeny and genetic linkage
analyses.

2 Single Potential Update Algorithms

We denote distributions by P (x) and Q(x) and re-
lated un-normalized distributions by P̃ (x) ∝ P (X)
and Q̃(x) ∝ Q(x). Let X be a set of variables
and x be an instantiation of these variables. Let
P (x) = 1

ZP

∏
i Ψi(di) where di is the projection of the

instantiation x to the variables in Di ⊆ X. The con-
stant ZP normalizes the product of potentials and the
subsets {Di}Ii=1 are allowed to be overlapping. Note
that we often suppress the arguments of a potential
and of a distribution, using Φj instead of Φj(cj) and
P instead of P (X).

Our goal is to find a distribution Q that minimizes the
KL distance between Q and P . We further constrain
Q to be of the form Q(x) = 1

ZQ

∏
j Φj(cj) where ZQ

is a normalizing constant and where C1, . . . , CJ are
possibly overlapping subsets of X, which we call clus-
ters. Finding an optimumQ, however, can be difficult.
We set a more modest goal of finding a distribution Q
which is a stationary point for the KL distance between
Q and P , that is, ∇ΦD(Q || P ) = 0 where Φ = {Φj}j.

An algorithm, called vip (for Variational Inference
Procedure), that finds such a distribution Q is given
in Figure 1. The algorithm uses the following indica-
tor functions: gkj = 0 if Ck ∩ Cj = ∅ and 1 other-
wise, and fij = 0 if Di ∩ Cj = ∅, and 1 otherwise.
vip relies at each step on an (inference) algorithm to
compute some conditional probabilities from an un-
normalized distribution Q̃ represented by a set of po-
tentials Φj(cj), j = 1, . . . , J . This is accomplished by
using bucket elimination algorithm or the sum-product
algorithm described in (Dechter, 1999; Kschischang et
al., 2001) as follows. To compute Q(a|b) the algorithm
first computes Q̃(a, b) and then Q̃(b). The conditional
distribution of interest is the ratio of these two quan-
tities because the normalizing constant cancels. It is
important to note that for Q̃(x) =

∏
j Φj(cj) the com-

putation of these conditionals is not affected by mul-
tiplying any Φj by a constant α.

Algorithm vip generalizes the mean field (MF) algo-
rithm and the generalized mean field (GMF) algorithm
(Xing et al. 2003,2004). The mean field algorithm is
the special case of vip in which each Cj contains a
single variable. Similarly, the generalized mean field
algorithm is the special case in which the Cj are dis-
joint subsets of variables. Note that if Cj are disjoint
clusters, then the formula for γj in vip simplifies to
the GMF equations as follows (first term drops out):

γj(cj)←
∑

{i:fij=1}

∑
Di\Cj

Q(di|cj) logψi(di). (2)

The term Q(di|cj) can be made more explicit when Cj
are disjoint clusters. In particular, we partition the set
Di\Cj into Dk

i = (Di\Cj)∩Ck for k = 1, . . . , J where
k 6= j. Note that Dk

i = Di ∩ Ck. Using this notation
we have Q(di|cj) =

∏
kQ(dkj ) where Q(dkj ) = 1 when-

ever Dk
i = ∅. This factorization further simplifies the

formula for γj in vip as follows:

γj(cj)←
∑

{i:fij=1}

∑
D1
i

Q(d1
i ) . . .

∑
DJi

Q(dJi ) logψi(di)

(3)
We note that this simplification is achieved automati-
cally by the usage of bucket elimination for computing
γj . The iterated sums in Eq. 3 are in fact the buckets
formed by bucket elimination when Cj are disjoint.

Wiegerinck (2000) presents a less refined version of the
update equation (Equation 1) and proves convergence
to a stationary point of the KL distance between Q
and P among all distributions Q of the given form
using this update equation. We provide an alternative
novel proof of convergence for our refined version of
Wiegerinck’s algorithm in Section 4 as a corollary to
Theorem 1.

Equation 1 of vip requires the computation of the
quantities Q(ck|cj) and Q(di|cj), and this is done in
vip using the bucket elimination algorithm. How-
ever, because there could be many indices k such that
Ck ∩ Cj is not empty, and many indices i such that
Di∩Cj is not empty, these function calls are repeatedly
applied independent of each other. However, these
computations share many sub-computations, and it is
therefore reasonable to add a data structure to facili-
tate a more efficient implementation for these function
calls. In particular, it is possible to save computations
if the sets C1, . . . , CJ form a junction tree.

A set of clusters C1, . . . , CJ forms a junction tree iff
there exists a tree JT having one node, called Cj, for
each subset of variables Cj, and for every two nodes Ci
and Cj of JT, which are connected with a path in JT,



Algorithm vip(Q, P )

Input: A set of potentials Ψi(di) defining a probability distribution P via P (x) = 1
ZP

∏
i Ψi(di) and a

set of clusters Cj, j = 1, . . . , J , with initial non-negative potentials Φj(cj).

Output: A revised set of potentials Φj(cj) defining a probability distribution Q via
Q(x) = 1

ZQ

∏
j Φj(cj) where ZQ is a normalizing constant, such that Q is a stationary point of

the KL distance D(Q || P ).

Iterate over all clusters Cj until convergence
For every instantiation cj of cluster Cj do:

γj(cj)← −
∑

{k:gkj=1}

∑
Ck\Cj

Q(ck|cj) logQ(ck|cj) +
∑

{i:fij=1}

∑
Di\Cj

Q(di|cj) log Ψi(di) (1)

using the sum-product algorithm on Q̃(X) =
∏
i Φi(Ci)

to compute the quantities Q(ck|cj) and Q(di|cj).
Φj(cj)← eγj (cj)

Figure 1. The vip algorithm

and for each node Ck on this path, Ci∩Cj ⊆ Ck holds.
By a tree we mean an undirected graph, not necessarily
connected, with no cycles. Note that this definition al-
lows a junction tree to be a disconnected graph. When
C1, . . . , CJ form a junction tree, Q(x) has the decom-
posable form Q(x) =

∏
j Φj(cj)/

∏
e Φe(se), where Φj

are marginals on the subsets Cj of X, j = 1, . . . , J ,
and where Φe are the marginals on intersections Se =
Ci ∩ Cj, one for each two neighboring clusters in the
junction tree (Jensen 1996).

The revised algorithm, which we call vip
+, main-

tains a consistent junction tree JT for the distribution
Q(x). By consistency we mean that

∑
Cj\Ck Φj =∑

Ck\Cj Φk for every two clusters. In a consis-
tent junction tree, each potential Φj(Cj) is propor-
tional to Q(Cj). There are two standard opera-
tions for junction trees: DistributeEvidence(Φj),
and CollectEvidence(Φj) (Jensen 1996). Al-
gorithm vip

+ uses the former. The procedure
DistributeEvidence(Φj) accepts as input a con-
sistent junction tree and a new cluster marginal Φj
for Cj, and outputs a consistent junction tree, hav-
ing the same clusters, where Φj is the (possibly un-
normalized) marginal probability of Q on Cj , and
where the conditional probability Q(X|Cj) remains
unchanged. Algorithm vip

+ is given in Figure 2. This
algorithm is identical to Wiegerink’s algorithm except
that the normalizing constant is not computed in each
iteration. The fact that algorithm vip

+ converges to
a distribution Q which is a stationary point of the KL
distance D(Q || P ) is proved in Section 4 in Theorem 1.

Next we compare the computational benefit of vip
+

versus vip. The algorithms differ in two ways. First,

vip
+ makes the junction tree consistent with respect

to the updated cluster. Second, vip
+ uses junction

tree inference to compute the quantities Q(ck|cj) and
Q(di|cj) whereas vip uses the sum-product algorithm.

Most of the computation in both algorithms is directed
towards computing conditional probabilities Q(ck|cj)
and Q(di|cj). We distinguish among these conditional
probabilities as follows.

Definition: A conditional probability Q(A|cj) is sub-
sumed by Q if the set of target variables A is a subset
of some cluster Ck in Q (i.e., A \ Cj ⊆ Ck).

In the non-subsumed case, the set of target variables
spans multiple clusters (i.e., A \Cj 6⊆ Ck). Clearly, all
probabilities of the form Q(Ck|cj) are subsumed by Q.

The cost of running both the junction tree algorithm
and the sum-product algorithm to compute a sub-
sumed conditional probability Q(A|cj) is exponential
in the treewidth of the model Q. The cost of the junc-
tion tree algorithm is typically twice the cost of the
sum-product algorithm but, as we see below, this extra
factor can be useful in reducing overall costs. For non-
subsumed conditionals, both algorithms can cost upto
a multiplicative factor of the size of the non-subsumed
set. In the case of using junction trees, one can use
the variable propagation algorithm in Jensen (1996)
for each non-subsumed conditional.

The next example highlights the computational differ-
ence between vip and vip

+.

Example 1 The target distribution P is a square grid
of pairwise potentials (see Figure 3a) and the approx-
imating family is defined by the set of columns in the



Algorithm vip
+(Q, P )

Input: A set of potentials Ψi(di) defining a probability distribution P via P (x) = 1
ZP

∏
i Ψi(di) and a

set of clusters Cj, j = 1, . . . , J , with initial potentials Φj(cj) that form a consistent junction tree JT.

Output: A revised set of potentials Φj(cj) defining a probability distribution Q via Q(x) =∏
j Φj(cj)/

∏
eΦe(se), such that Q is a stationary point of the KL distance D(Q || P ).

Note: The potentials Φj are consistent un-normalized marginals encoding Q̃ ∝ Q. This fact is an
invariant of the loop due to initialization and Step 2.

Iterate over all clusters Cj until convergence

Step 1. For every instantiation cj of cluster Cj do:

γj(cj)← −
∑

{k:gkj=1}

∑
Ck\Cj

Q(ck|cj) logQ(ck|cj) +
∑

{i:fij=1}

∑
Di\Cj

Q(di|cj) log Ψi(di) (4)

where the quantities Q(ck|cj) and Q(di|cj) are computed via the junction tree
algorithm operating on JT .

Φj(cj)← eγj(cj)

Step 2. Make JT consistent with respect to Φj: DistributeEvidence(Φj)

Figure 2. The vip
+ algorithm

grid and denoted by QF (see Figure 3b) in which the
clusters Ci (i = 1, . . . , 30) correspond to edges.

Note that all conditionals required by the algorithms
when optimizing QF are subsumed. In this example,
for each cj not on the boundary, there are six condi-
tional probabilities that need to be computed. By us-
ing the junction tree algorithm all of these conditional
probabilities can be computed with one call to Dis-
tributeEvidence whereas, when using the sum-product
algorithm, each of these is computed separately. This
yields a 3-fold speed up for vip

+ with respect to vip.
For those cj on a boundary, the speedup is a factor
less than 3. As the size of the grid grows, a smaller
fraction of the edges are on the boundary, and, thus,
the speedup approaches a 3-fold speedup. For small
grids, vip

+ can be slower than vip.

3 Multiple Potential Update
Algorithm

In this section, we develop an algorithm to update mul-
tiple potentials at once to reduce the computational
cost of optimizing the Q distribution. Algorithms vip

and vip
+ do not assume any structure for Φj, namely,

these algorithms hold tables Φj with an explicit entry
for every instantiation of Cj. Since the computations
Q(ck|cj) and Q(di|cj) grow exponentially in the size
of Di and Ck, these algorithms become infeasible for
large cliques or clusters. However, when structure is
added to Φj, these algorithms can be modified to be

more efficient by simultaneously updating this struc-
ture. In particular, one can use structure of the form,

Φj(cj) =
nj∏
l=1

Φjl(cjl),

where the sets Cjl are possibly overlapping subsets of
Cj, and cjl is the projection of the instantiation cj on
the variables in Cjl. The potentials Φjl are assumed
to be full tables and to form a junction tree JTj .

Central to our development is a compatibility condi-
tion which allows us to simultaneously update the po-
tentials.

Definition: A distribution Q with clusters Cj and
subsets Cjl is compatible with a distribution P with
sets Di if for every Di and Cj the set of indices Bij =
{l : Di ∩ Cj ⊆ Cjl} is non-empty.

Our refined algorithm, vip
], given in Figure 4, uses an

indicator function fij(l) which equals 0 when Di∩Cj =
∅, and when Di ∩Cj 6= ∅, it equals 1 for a single fixed
index l ∈ Bij and 0 for all other indices in Bij . Our
algorithm is closely related to the algorithm in Bishop
and Winn (2003). As in Bishop and Winn (2003), we
assume that the clusters of the approximating distribu-
tion are independent, that is, Q(Ck|cj) = Q(Ck). Our
algorithm also generalizes the algorithm employed in
(Jojic et al. 2004), which concentrates on specific mod-
els for phylogenetic analysis. We prove convergence of
vip

] in Section 4.



Figure 3. (a) Grid-like P distribution (b) factored structured distribution QF (c) connected distribution QC.

Example 2 The target distribution P is a square grid
of pairwise potentials (see Figure 3a) and the approx-
imating family is a defined by the set of columns in
the grid and denoted by QF (see Figure 3b) where Ci
(i = 1, . . . , 6) are columns of the grid.

The approximating family with clusters defined by
columns in this example satisfy the compatibility con-
dition and the independence condition required by our
algorithm.

Example 3 The target distribution P is a square grid
of pairwise potentials (see Figure 3a) and the approxi-
mating family is a defined by the set of columns in the
grid and denoted by QC (see Figure 3c) where C1 is
the connected row of the grid and Ci (i = 2, . . . , 7) are
columns of the grid.

The approximating family defined in Example 3 satis-
fies the compatibility condition but not the indepen-
dence condition required by our algorithm. Note that,
while the approximating family in Example 3 cannot
be optimized using our refined algorithm below, it can
be optimized using either vip or vip

+ in which, for
instance, the Ci each contain a single edge.

We use Examples 1 and 2 to compare the benefits of
vip

] as compared to vip
+. To analyze the difference

between vip
] and vip

+ we need to analyze the num-
ber of times that one needs to call DistributeEvidence
while computing conditional and marginal probabili-
ties.

We begin by noting that the update Equation 5 in vip
]

takes advantage of the strong independence assump-
tion to factorQ(Di|cj), yielding a set of marginal prob-
abilities that do not depend on cj. Furthermore, the
assumption of compatibility between P and Q implies
that all the conditionals are subsumed. The factoriza-
tion and compatibility conditions imply that each of
these marginal probabilities can be obtained by lookup
from the appropriate junction tree without calling Dis-
tributeEvidence. Therefore, we need no calls to Dis-
tributeEvidence in Step 1 and only one call to an infer-
ence algorithm to calibrate the junction tree associated

with the potential being updated (Step 2).

In vip
+, for each cluster Cj (edge) not in the boundary

of the grid, there are twenty four conditionals that we
need to compute, six for each of the four possible values
for the cluster Cj. Every group of six conditionals can
be updated with a single call to DistributeEvidence
for a given cj which gives four calls to the Distribu-
teEvidence per cluster (edge). Again, as the size of the
N ×N grid grows, a smaller fraction of the edges are
on the boundary, and, thus, the speedup approaches
a 4N-fold speedup for vip

] as compared to vip
+, and

12N-fold as compared to vip.

4 Proof of Convergence

In order to prove convergence of our algorithms,
namely, that they converge to a stationary point of
the KL distance between Q and P among all distribu-
tionsQ of the given form, we examine properties of the
KL distance between two distributions Q and P . Our
proof technique is novel in that it uses properties of the
KL distance rather than being based on Lagrangians
(e.g., Wiegerinck 2000). The following lemmas furnish
the needed properties of KL via basic algebra.

Lemma 1 Let P (x) = 1
ZP

∏
i Ψi(ci) and Q(x) =

1
ZQ

∏
j Φj(dj). Then,

D(Q || P ) =
∑
Cj

Q(cj) log
Q(cj)
Γj(cj)

+ log(ZP ) (6)

where Γj(cj) = eγj(cj) and where

γj(cj) = −
∑
k

∑
Ck\Cj

Q(ck|cj) logQ(ck|cj)

+
∑
i

∑
Di\Cj

Q(di|cj) log Ψi(di).

Proof: Recall that

D(Q || P ) =
∑
x

Q(x) log
Q(x)

P (x)
= − [H(Q) +EQ[logP (x)]]

(7)



Algorithm vip
] (Q,P)

Input: A set of disjoint clusters Cj, j = 1, . . . , J and a nested structure Cjl (l = 1 . . . , nj) where Q(c) ∝∏
j,l Φjl(cjl). A set of potentials Ψi(di) defining a probability distribution P via P (x) = 1

ZP

∏
i Ψi(di)

such that the potentials are compatible with Q. A set of junction trees (JTj) for each cluster Cj and a
set of initial potentials Φj(cj) =

∏nj
l=1 Φjl(cjl).

Output: A revised set of potentials Φjl(cj) defining a probability distribution Q via Q(x) =
∏
j Qj(cj)

where Q(cj) ∝
∏nj
l=1 Φjl(cjl) such that Q is a stationary point of D(Q || P ).

Iterate over all clusters Cj until convergence

Step 1. Compute messages for l = 1, . . . , nj:

For every instantiation cjl of Cjl do:

γjl(cjl)←
∑

{i:fij(l)=l}

∑
D1
i

Q(d1
i ) . . .

∑
DJ
i

Q(dJi ) log Ψi(di) (5)

where the quantities Q(dki ) can be obtained by lookup in JTk for Φk.

Φjl(cjl)← eγjl(cjl)

Note: Φjl(cjl), l = 1, . . . , nj, implicitly encode the potential Φj(cj), which is not being held explic-
itly anymore as in vip, via Φj(cj) =

∏nj
l=1 Φjl(cjl). Recall that Dk

i = Di ∩ Ck.

Step 2. Make JTj consistent with respect to Φj : DistributeEvidence(Φj)

Figure 4. The vip
] algorithm

where H(Q) denotes the entropy of Q(x) and EQ de-
notes expectation with respect to Q. The entropy term
can be written as

H(Q) = −
∑
Cj

Q(cj) logQ(cj)

−
∑
Cj

Q(cj)
∑
X\Cj

Q(x|cj) logQ(x|cj)

where the first term is the entropy of Q(Cj) and the
second term is the conditional entropy of Q(X|Cj).
This well known form of H(Q) is derived by splitting
summation over X into summation over Cj and over
X \ Cj, and using the fact that

∑
X\Cj Q(x|cj) = 1.

By splitting the sum over X \Cj , this entropy term is
further rewritten as

H(Q) = −
∑
Cj

Q(cj) logQ(cj)

−
∑
Cj

Q(cj)
∑
k

∑
Ck\Cj

Q(ck|cj) logQ(ck|cj).

The second term of Eq. 7 is similarly written as

EQ[logP (x)] =

=
∑
i

∑
Cj

Q(cj)
∑
X\Cj

Q(x|cj) log Ψi(di) − log(ZP )

=
∑
Cj

Q(cj)
∑
i

∑
Di\Cj

Q(di|cj) log Ψi(di)− log(ZP )

Hence Eq. 7 is rewritten as

D(Q || P ) =
∑
Cj
Q(cj) logQ(cj)−

∑
Cj

Q(cj)

−∑
k

∑
Ck\Cj

Q(ck|cj) logQ(ck|cj)

+
∑
i

∑
Di\Cj

Q(di|cj) log Ψi(di)

+ log(ZP )

Denoting the bracketed term by γj(cj), and letting
Γj(cj) = eγj(cj), we get

D(Q || P ) =
∑
Cj

Q(cj) log
Q(cj)
Γj(cj)

+ log(ZP ). �

Note that Γj(cj) in Eq. 6 does not depend on Q(cj)
and is a function of Q(x) only through the conditional
distribution of X \ Cj given Cj (via Q(ck|cj)). Eq. 6
states that the KL distance between Q(x) and P (x) is
equal, up to an additive constant, to the KL distance
between Q(cj) and an un-normalized potential Γj(cj).
This interesting result generalizes a similar equation
for a special case derived in (Jojic et al, 2004).

The next lemma provides a variant of a well known
property of KL. Recall that for every two proba-
bility distributions Q(x) and P (x), the KL distance



D(Q(x) || P (x)) ≥ 0 and equality holds if and only
if Q(x) = P (x) (Cover and Thomas 1991; Theorem
2.6.3). A similar result holds also for un-normalized
probability distributions.

Lemma 2 Let Q̃(x) and P̃ (x) be non-negative func-
tions such that

∑
x P̃ (x) = ZP > 0, and let

Q̂(x) = min
{Q̃|
∑

x
Q̃(x)=ZQ}

D(Q̃(x) || P̃ (x))

where ZQ is a positive constant. Then Q̂(x) =
ZQ
ZP
P (x).

Proof. We observe that

D(Q̃(x) || P̃ (x)) = ZQ ·D( Q̃(x)
ZQ
|| P̃ (x)
ZP

) + log
ZQ
ZP

which implies, using the cited result about normal-
ized distributions, that the minimum is obtained when
Q̃(x)
ZQ

= P̃ (x)
ZP

, yielding the desired claim. �

Theorem 1 (Convergence of vip
+) Algorithm

vip
+ converges to a stationary point of the KL

distance between Q and P among all distributions Q
of the form Q(x) = 1

ZQ

∏
j Φj(cj).

Proof. We need to show that at the start of each
iteration of vip

+ the function Q defined by the revised
potentials Φj(cj) is closer to P in KL distance than
Q at the start of the previous iteration. We rewrite
the KL distance D(Q || P ) using Eq. 6, as justified by
Lemma 1. Using the given form of Q, we have

Q(cj) =
1
ZQ

 ∑
X\Cj

∏
k 6=j

Φk(ck)

Φj(cj). (8)

We denote the bracketed coefficient of Φj(cj) by B and
note that it is constant in the sense that it does not
depend on the quantity Φj being optimized. We now
use Eq. 8 to rewrite Eq. 6 as

D(Q || P ) =
B

ZQ

∑
Cj

Φj(cj) log
Φj(cj)
Γj(cj)

+ log
BZP
ZQ

.

(9)
Recall that Γj(cj) = eγj(cj) does not depend on Φj(cj)
since it only depends on the conditional probability
Q(X|cj). Hence, Lemma 2 states that the (global)
minimum wrt Φj is achieved when Φj(cj) is set to be
proportional to Γj(cj). It is possible to set Φj(cj) to
be proportional to Γj(cj), as done in Step 1 of vip

+,
because Φj(cj) is a full potential. The proportionality
constant does not matter because if Φj is multiplied by

α, and the arbitrary constraining constant ZQ is also
multiplied by α, these influences cancel in Eq. 9. For
simplicity, in the algorithm, we use α = 1 and therefore
Φj(cj) ← eγj (cj). Algorithm vip

+ computes Φj(cj)
according to this formula and hence decreases the KL
distance in each iteration by improving Φj(cj) while
holding all other cluster potentials fixed. Since the
KL distance is lower bounded by zero, vip

+ converges
to a stationary point.

It remains to show that at the start of each iteration,
the quantities Q(ck|cj) and Q(di|cj) can be computed
correctly from the junction tree for the un-normalized
distribution Q̃ of the current normalized distribution
Q. At each iteration, Q is computed up to some im-
plicit normalizing factor, say α, so that Q̃(x) = αQ(x).
The procedure DistributeEvidence(Φj) is based on
the following update scheme. Starting with Φj, every
neighboring cluster node Ck in the junction tree, rep-
resenting the cluster potential Φk(ck), is updated via

Φnewk (ck)← Φk(ck)
Φnewk (sjk)
Φk(sjk)

where sjk is the instantiation for the separator Sjk =
Cj ∩Ck consistent with the instantiation ck, and then
the cluster neighbors of the neighboring clusters are
updated similarly, until all clusters have been updated
(Jensen, 1996). In each step, any normalizing constant
implicitly appears 4 times in this update equation, and
it cancels out regardless of its value. Hence, the quan-
tities Q(ck|cj) and Q(di|cj) are updated correctly from
the un-normalized distribution Q̃. �

Corollary 1 (Convergence of vip) Algorithm vip

converges to a stationary point for the KL distance be-
tween Q and P among all distributions Q of the form
Q(x) = 1

ZQ

∏
j Φj(cj).

Proof. vip convergence follows from Theorem 1 be-
cause the update equations for the two algorithms,
Equations 1 and 4, are identical; the two algorithms
only differ in the method by which conditional proba-
bilities are computed. �

Theorem 2 (Convergence of vip
]) Algorithm

vip
] converges to a stationary point of the KL dis-

tance between Q and P among all distributions Q of
the form Q(x) = 1

ZQ

∏
jl Φjl(cjl) where Q and P are

compatible.

Proof: We analyze Equation 4 in light of the assump-
tions made in vip

]. The first term in Equation 4 is
constant with respect to cj and, thus, does not ef-
fect the update and can be dropped. Next, the fact
that the clusters Cj of Q are independent means that



Q(Di) =
∏
kQ(Dk

i ) where Dk
i = Di∩Ck. This factor-

ization implies that Q(Di|cj) =
∏
k 6=j Q(Dk

i ) which in
turn implies that Fi(c) =

∑
Di\Cj Q(di|cj) log Ψi(di)

equals
∑
D1
i
Q(d1

i ) . . .
∑
DJ
i
Q(dJi ) log Ψi(di). By the

assumption of compatibility, each Fi(c) is a function
of cjl (i.e., after summing out all variables in Di \Cj)
and, thus, can be put into the potential Φjl(cjl). Ev-
ery element in the second sum of Equation 4 is put
into some potential and Γj(cj) from Theorem 1 is
equal to

∏
l e
γjl(cjl). Therefore, by updating, for all

l, Φjl(cjl) ∝ Γjl(cjl) is equivalent to updating Φj in
Theorem 1 and, thus, the algorithm converges.�
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