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Abstract

In this paper I consider general obstacles to
the recovery of a causal system from its prob-
ability distribution. I argue that most of the
well-known problems with this task belong
in the class of what I call degenerate causal
systems. I then consider the task of dis-
covering causality of dynamic systems that
have passed through one or more equilibrium
points, and show that these systems present
a challenge to causal discovery that is fun-
damentally different from degeneracy. To
make this comparison, I consider two oper-
ators that are used to transform causal mod-
els. The first is the well-known Do operator
for modeling manipulation, and the second
is the Equilibration operator for modeling a
dynamic system that has achieved equilib-
rium. I consider a set of questions regard-
ing the commutability of these operators i.e.,
whether or not an equilibrated-manipulated
model is necessarily equal to the correspond-
ing manipulated-equilibrated model, and I
explore the implications of that commutabil-
ity on the practice of causal discovery. I
provide empirical results showing that (a)
these two operators sometimes, but not al-
ways, commute, and (b) the manipulated-
equilibrated model is the correct one under
a common interpretation of manipulation on
dynamic systems. I argue that these results
have strong implications for causal discovery
from equilibrium data.

1 Introduction

Causal Discovery refers to a special class of statisti-
cal analysis that seeks to infer, from a set of data,
information about causal relations between variables.

There has been much success on the topic of causal
discovery in the past decade in Artificial Intelligence
[Spirtes et al., 2000; Verma and Pearl, 1991; Hecker-
man et al., 1999; Tian and Pearl, 2001], building on
structural-equation modelling techniques originating
in early econometrics [cf., Simon, 1953; Wold, 1954].

There are, as one might expect, many difficulties with
inferring reliable causal relationships from data. La-
tent common causes confounding relations between the
observed variables, nonlinearity, acyclicity, and viola-
tions of faithfulness due to the cancelling of multiple
causal paths are just a few. Identifying prospective
pitfalls such as these is the critical first step to devel-
oping techniques to handle them in a principled way.

This paper exposes another obstacle to causal discov-
ery that is likely prevalent and important, but is not
currently being addressed by causal discovery research.
I describe this event as a violation of equilibration-
manipulation commutability (or EMC violation, for
short), for reasons that I hope to make clear shortly.
I show that EMC violation occurs in static systems,
but when those systems have an underlying dynamics
which have passed through some equilibrium points.
I illustrate the existence of EMC violation by exam-
ple. Then as further validation, I provide empirical
results showing that EMC violation occurs in prac-
tice, and its occurrence depends on the time-scale at
which the data is being collected relative to the impor-
tant time-scales of the underlying dynamic systems. I
argue that, since many real-world static systems are
essentially equilibrium points of underlying dynamic
systems, EMC violation is likely to be a common oc-
currence. I also argue that one can reduce the chance
of an EMC violation when building causal models by
taking care when choosing the set of variables to in-
clude in one’s model.

In Section 2, I define some background concepts and
explore known obstacles to causal discovery; in Sec-
tion 3, I show a motivating example of a dynamic
causal system going through equilibrium, I define the



EMC property and show why it is important; in Sec-
tion 4 I show empirically how an EMC violating system
can impact causal discovery in practice; in Section 5
I sketch two theorems that show sufficient conditions
for systems to violate and obey EMC, and finally I
conclude in Section 6.

2 Background Concepts

In this section I define a causal system, I explore known
obstacles to causal discovery, I introduce the EMC
questions and I demonstrate why these questions are
important.

2.1 Causal Discovery

I define a causal system [c.f., Pearl, 2000] in terms of
a set of structural equations:

Definition 1 (causal system) A causal system
over a set of variables V is a 4-tuple 〈U,V,E, φ〉,
where U is a set of random variables that are deter-
mined outside the system (“exogenous variables”),
V = {V1, V2, . . . Vn} is a set of n variables determined
by the system (“endogenous variables”), E is a set
of n equations, and φ : V → E is an onto mapping
such that for every Vi ∈ V, φ(Vi) can be written as
Vi = fi(Pai,U′), where Pai ⊆ V \ {Vi}, U′ ⊆ U, and
fi is a function.

A causal system defines a directed graph over variables
in V as follows: For each Vi, let φ(Vi) be written as
Vi = fi(Pai,U′), and draw an arc from all variables
P j

i ∈ Pai ∪U′ to Vi. A graph constructed in this way
is called a causal graph, and if P j

i is a parent of Vi

in this graph then P j
i is a cause of Vi, and Vi is an

effect of P j
i . All Bayesian networks can be mapped

onto a causal system [Druzdzel and Simon, 1993], but
the converse is not true, e.g., causal systems can define
cyclic graphs.

All randomness in a causal system is induced by the ex-
ogenous variables, which are assumed to be controlled
by external forces and therefore are treated as random
variables. To say that an equation φ(Vi) is determinis-
tic means that U′ = ∅, in which case, Vi is a determin-
istic function of Pai. Because the variables in U are
random variables, and because in general the variables
in V depend on U, the causal system S = 〈U,V,E, φ〉
will define a probability distribution P over the set V.
A common assumption is to assume that each endoge-
nous variable Vi in a causal system S depends on a
single exogenous variable Ui and for all i, j, Ui is in-
dependent of Uj .

Causal systems such that all fi functions are linear
and all Ui ∈ U are normally distributed are called lin-

ear structural equation models, and for decades these
have been widely used in econometrics and the social
sciences to model causality [c.f., Simon, 1953; Wold,
1954].

Causal discovery or causal inference is the task of ana-
lyzing a probability distribution P , and possibly other
background information I, to reconstruct the causal
system S that generated P . In practice, however, even
if P is known exactly, causal inference can do no bet-
ter than identifying the set of causal models that define
distributions identical to P that are consistent with I.
Probability distributions which do not uniquely define
a causal system are the most commonly observed ob-
stacles to causal discovery. I call a causal system for
which that is the case degenerate. Specific instances
of features of causal systems that lead to degenerate
probability distributions have been identified and are
discussed in the next section.

2.2 Degenerate Causal Systems

Examining the conditional independence relations
present in the probability distribution is a key method
for causal discovery. Obviously, it is the presence of
these relations that increases the specificity of the dis-
tribution and makes identification of causal relations
possible. One of the most general problems one en-
counters when trying to perform causal inference from
independence relations is a lack of faithfulness:

Definition 2 (faithfulness) A probability distribu-
tion P (V) over a set of variables V is faithful to a
directed graph G over V if, for every conditional in-
dependence relation (V1 ⊥ V2 | V′) in P , there exists
a d-separation condition (V1 ⊥d V2 | V′) in G and
vice-versa1, for V1, V2 ∈ V and V′ ⊂ V.

If P is faithful to G then G is called a perfect map or p-
map of P . P is called causally faithful to G when P is
faithful to G, and G is a causal graph. Specific cases in
which unfaithful distributions can be generated from
real causal systems have been identified in Spirtes et
al. [2000]. Two in particular are:

• Determinism: when a variable in a causal sys-
tem depends deterministically on other variables.
For example, in the causal graph with three vari-
ables {A,B, C} such that: A → B → C and
A → C, if C is a deterministic function of A, then
C is independent of B given A although that d-
separation condition does not exist in the causal
graph.

1Some definitions of faithfulness do not require the con-
verse.



• Cancelling causal paths: when two or more
causal paths exactly cancel out. This event can
make two or more variables non-correlated al-
though they are causally connected. Although
this is possible in principle, Spirtes et al. [2000]
argue that its occurrence has Lebesque measure
zero.

Other reasons for causal degeneracy are:

• Statistical Indistinguishability: when there
exist other causal structures that have the same
set of adjacencies and v-structures.

• Lack of causal sufficiency. A common cause
C ← A → B will cause a dependence between C
and B in the probability distribution over these
variables. If A has been marginalized out of
the distribution P , it becomes difficult to decide
whether there is a direct causal arc between C
and B given only P .

• cyclic causality: when a directed cycle exists
in the causal graph. Although the physical rel-
evance of these systems can be argued, they are
not forbidden by definition, and the implications
of their existence on independence relations is not
fully explored.

One mitigating fact for all of these obstacles is
that their occurrences are all detectable post-causal-
discovery, at least sometimes: Determinism and can-
celling causal paths will be detectable in the param-
eters of the model; statistical indistinguishability will
be identifiable from the structure of the model; hid-
den common causes and cyclic causality can sometimes
be detected: for example, when their presence causes
many v-structures, the PC algorithm for causal discov-
ery [Spirtes et al., 2000] can produce bi-directed arcs
or cycles, respectively.

Degenerate causal systems are on one hand problem-
atic, but on the other hand are easy to understand.
In the next section I introduce a qualitatively different
type of obstacle to causal discovery which, in the au-
thor’s opinion, is much less transparent and therefore
more interesting than causal degeneracy. I call it “vio-
lation of Equilibration-Manipulation Commutability.”

3 The EMC Property

When a causal system is based on a set of differen-
tial (or difference) equations, the probability distribu-
tion it specifies will not be static, but instead will be
a function of time. The evolution of the probability
distribution should be predictable. For example, con-
sider the following discrete-time first-order difference

system where the change, ∆X, in some variable X, is
determined by a linear balance of factors:

X0 = x0 (1)
F t

1 = α1U
0
1 (2)

F t
2 = α2X

t + U0
2 (3)

∆Xt = α3F
t
1 + α4F

t
2 + U0

x (4)
Xt+1 = Xt + ∆Xt, (5)

where all αi are constants. In this system, I have as-
sumed that the exogenous variables {U0

1 , U0
2 , U0

x} are
static throughout time (which is why they have a fixed
t = 0 superscript). The causal graph for this system
unrolled out to three time slices is shown in Figure 1-
(a). The dotted boxes around F1, F2 and ∆X are
used to denote the fact that the exogenous variables
are static through time and are thus parents of those
variables in each time slice. For conciseness I will use a
shorthand graph, based on the notation of Iwasaki and
Simon [1994], where arcs that occur through time are
shown with dotted lines, instantaneous arcs are shown
in solid, and static exogenous arcs shown dashed. The
corresponding shorthand graph for our toy example is
shown in Figure 1-(b). It should be emphasized that,
although the shorthand version of this graph contains a
directed cycle, it represents an acyclic dynamic graph.
Sometimes I may also drop the exogenous variables
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Figure 1: (a) A toy example dynamic causal graph
based on difference equations and with static exoge-
nous variables, and (b) the same graph in “shorthand”
form.

from this graph to emphasize the endogenous causal
relations.

If one considers what the probability distribution over
the endogenous variables of this system at the nth time
slice will look like, one needs only to expand this sys-
tem out n slices and marginalize out all variables from
previous time-slices to see the causal structure and
to generate the probability distribution of the vari-
ables at the nth slice. The problem, however, is, if
one waits long enough, it may very well be that this
system achieves equilibrium, at which time there will



be a qualitative change in the probability distribution.
Specifically, at equilibrium, ∆Xt = 0, so the system
of equations reduces to:

F1 = α1U
0
1 (6)

F2 = −α3F1/α4 − U0
x (7)

X = F2/α2 − U0
2 (8)

In the distribution defined by this system, although
U0

2 is a parent of F2 in the original causal system, it is
marginally independent of F2 in the equilibrium equa-
tion system. This fact is obvious by looking at the
independence graph of this system shown in Figure 2,
and it can also be easily derived from the equation
system assuming independent exogenous variables.
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Figure 2: The independence graph of the equilibrium
distribution defined by our toy causal system. Al-
though U0

2 is a parent of F2 in the original dynamic
system, it is marginally independent of F2 in the equi-
librium distribution.

This example illustrates a novel unanswered question
associated with dynamic causal systems. Namely, if a
causal system is a set of equations with some struc-
ture imposed upon it, and if, when a non-structural
equation system goes through equilibrium, the equa-
tions go through a qualitative change, how should the
causality of a system passing through an equilibrium
point be modelled? That is, if some equations and
variables are dropping out, how should the remaining
equations be structured? In the above example, Equa-
tion 4 was originally used to determine ∆X; however in
equilibrium ∆X has dropped out and Equation 4 has
changed into Equation 7 and now “determines” F2. In
fact, if one were to learn a causal graph given the equi-
librium distribution, obviously one would in general
recover a totally different causal structure than would
be recovered from the non-equilibrium system at some
arbitrary time slice n. I show this fact empirically in
Section 4.

It has been argued by Iwasaki and Simon [1994] that
the causal relations governing a dynamic system can
change as the time-scale of observation of the system
is increased. In particular, they introduce the Equili-
bration operator that they argue produces the causal
relations of a system in equilibrium given the dynamic
(non-equilibrium) causal system. A detailed treatment

of the equilibration operator is beyond the scope of this
paper (see Iwasaki and Simon [1994] for more details),
a sketch of the operator is as follows:

Definition 3 (Equilibration (sketch)) Let M =
〈U,V,E, φ〉 be a causal model, and let X ∈ V be a
dynamic variable in M . Equil(M,X) is a causal model
M ′ = 〈U′,V′,E′, φ′〉 that is defined by:

1. V′ is equal to V with all of X’s derivatives re-
moved.

2. E′ is equal to E with all integration equations re-
moved, and

3. φ′ : V′ → E′ is an onto mapping.

In general, such an operation may not define a unique
mapping φ′; however, in the remainder of the paper
I assume that φ′ is unique and only present examples
for which that is the case.

As we have done with our toy example, the equilibra-
tion operator formally makes the assumption of equi-
librium which causes a modification to the equations
of the system, then it recovers a structure consistent
with the remaining set of equations. In many cases,
there is a unique (independence) structure remaining
(as in Figure 2). Iwasaki and Simon argue that under
these circumstances that structure must be the causal
structure of the system under equilibrium.

The Do operator, Do(M,U = u), is another operator
of a causal system that transforms a causal model M
to a new causal model M ′ where a subset of variables
U in M ′ are fixed to specific values independent of
the causes of U. On the other hand, the Equilibra-
tion operator, Equil(M, X), transforms the model M
with a dynamic (time-varying) variable X to a new
causal model M ′ where X is static. This paper con-
siders the relationship between these two operators. In
particular I am interested in the what I call the Equi-
libration Manipulation Commutability property, or the
EMC property for short:

Definition 4 (EMC Property) Let M (V) be a
causal model over variables V. M satisfies
the Equilibration-Manipulation Commutability (EMC)
property iff

Equil(Do(M,U = u), X) = Do(Equil(M, X),U = u),

for all U ⊆ V and all X ∈ V.

In this paper, I consider the following set of questions
(hereafter referred to as the EMC questions):

1. Does the EMC property hold for all dynamic
causal models?



2. Does the EMC property hold for any dynamic
causal models?

3. Under what conditions is the EMC property guar-
anteed to hold?

4. Under what conditions is the EMC property guar-
anteed to be violated?

5. In general, is it sensible to reason about causal-
ity in a dynamic system that has passed through
some equilibrium points?

These questions are important for at least the follow-
ing reason: Very often in practice a causal model is
first built from either data or knowledge of equilibrium
relationships, and then causal reasoning is performed
on that model. This common approach takes path A
in Figure 3. When a manipulation is performed on a
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Figure 3: The EMC Questions consider under what
conditions the Do operator commutes with the Equili-
bration operator operating on a dynamic causal model
S.

system, however, the state of the system in general be-
comes “shocked” taking the system out of equilibrium,
a situation which is modelled by path B in Figure 3.
The validity of the common approach of taking path
A thus hinges on the answers to the EMC Questions.

This paper primarily answers EMC Questions 1, 2,
and 5. The toy example I prove by example and by
empirical tests that the answer to Question 1 is “No”
and that of Question 2 is “Yes”. These results in turn
implies that the answer to Question 5 is “Sometimes”.
The answers to Questions 3 and 4 are addressed in
Dash [2003], but I will sketch those results here as
well.

4 Discovery from Data: Empirical
Results

The previous section presented an example which im-
plied that the answer to EMC Question 1 is “no”. This
section addresses the EMC Questions using empirical

studies. I performed numerical simulations of a dy-
namic system to demonstrate that as the time scale
was increased enough so that an equilibration could
occur, the causal structure that was learned from data
corresponds to the structure obtained by applying the
Equilibration operator to the dynamic model. This
fact is significant because it indicates that whenever a
causal structure that is learned from equilibrium data
is used for causal reasoning, then Path A of Figure 3
is being taken: if the EMC property does not hold for
the model being used then subsequent causal reasoning
will produce incorrect results.

Consider the causal system of five variables {Qin,
Qout, D, K, P} defined by Equations 9–13 below.

K = K0 (9)
Qin = Q0 (10)

Ṗ = α2(α4D − P ) (11)
Q̇out = α3(α1KP −Qout) (12)

Ḋ = α0(Qin −Qout) (13)

where Q̇out, Ḋ and Ṗ are the first time-derivatives of
Qout, D and P , respectively, and αi : i ∈ {0, 1, . . . , 4}
are constants.

This system was taken from Iwasaki and Simon [1994].
To give some physical intuition, it roughly approx-
imates a filling-bathtub where water is entering the
bathtub from the faucet at a rate Qin liters per sec-
ond and is exiting the drain at a rate Qout liters per
second. The pressure of the water at the base of the
drain is P , the depth of the water is D, and the diam-
eter of the drain is K. In this system Qin and K are
exogenous and the remaining variables are dynamic.
The causal graph of this system is shown in Figure 4.
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Figure 4: The dynamic causal graph S0 of the bathtub
system.

This system has three dynamic variables, and therefore
three possible equilibrations, corresponding to the oc-
currence of Ṗ = 0, Q̇out = 0, and Ḋ = 0. When these
conditions occur, Equations 11, 12, and 13 reduce to
the equilibrium relations given by Equations 14–16,



respectively:

P = ρgD (14)
Qout = α1KP (15)
Qin = Qout (16)

This system has many potential equilibrium causal or-
derings depending on the relative time scales of the
three variables P , Qout and D, and depending on the
time scale at which the system is observed. If, for
example, P and Qout both reach equilibrium much
sooner than D, and the system is observed before D
has reached equilibrium but after P and Qout, then
Equations 11 and 12 get replaced by Equations 14 and
15, respectively. The causal ordering of this system is
shown in Figure 5.
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Figure 5: The causal ordering of the bathtub system
when P and Qout have been equilibrated but not D.

Because the system of Figure 4 involves three dynamic
variables, there exist three important time-scales for
this system, controlled by the inverse of the coeffi-
cients: τD ∝ 1/α0, τP ∝ 1/α2, and τQ ∝ 1/α3, for
D, P and Qout respectively. If τP ¿ τQ ¿ τD, then
there will exist four possible equilibrium causal struc-
tures learned from data depending on the time, τ , at
which the data was observed. These four structures
(over variables V = {Qin, Qout, P , T , K}) are shown
in Figure 6. At τ = 0 each of the five variables in
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τ ' τQ

τ >∼ τD 4
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Figure 6: The bathtub system has four correct equilib-
rium structures depending on the time scale at which
the system is observed.

V are given by their initial conditions and so are ex-
ogenous; in this case S1 will be the structure learned

from data. After enough time has passed for P to equi-
librate (τ ' τP ), then Equation 11 reduces to Equa-
tion 14, and the structure S2 will result. After τ ' τQ,
enough time has passed for Qout to equilibrate, and
Equation 12 reduces to Equation 15, resulting in the
structure S3. Finally, after τ > τD, enough time has
passed for D to equilibrate and Equation 13 reduces
to Equation 16, leading to a drastic restructuring of
equations and resulting in model S4.

I simulated learning over several time-scales for the
filling-bathtub system. The following values for con-
stants were used: α1 = 1, α0 = 0.005, α2 = 0.05, and
α3 = 0.01. All variables were initialized from the uni-
form distribution over the interval (0, 1). Independent
Gaussian error terms with mean 0 were added to each
derivative variable. The error terms for Ḋ and Q̇out

had standard deviation equal to 0.01, and Ṗ had stan-
dard deviation equal to 0.5. I assumed the bathtub
was infinitely high (no bound on D was enforced), so
given these constants, an equilibrium was guaranteed
to exist.

A database of N = 10000 records was generated for
each of the 29 time-scales given in the set T = {0−10,
20, 30, 40, 50, 80, 100, 125, 150, 200, 250, 300, 500,
750, 1000, 1250, 1500, 1750, 2000}, and for each of
these databases the PC algorithm was run to retrieve a
causal graph. A modified version of PC was used which
forbade cycles or bi-directional arrows and random-
ized the order in which independencies were checked
[Dash and Druzdzel, 1999]. Data for each variable took
on a continuous range of values, and in all cases the
Fisher’s-z statistic was used to test for conditional in-
dependence using a significance level of α = 0.05.

I restricted structure learning to the variables {D, P ,
Qout, Qin and K}, namely the variables relevant to
the static analysis of this system. This was performed
50 times for each time scale, and the number of times
the pattern corresponding to the graphs in Figure 6
were exactly recovered was counted.

The normalized results, showing the empirical proba-
bility of retrieving the four structures as a function of
the time scale, are shown in Figure 7. For example,
when the system is observed just one time step away
from the initial conditions, Figure 7 shows that struc-
ture S2 was learned around 45% of the time, structure
S1 was recovered around 6% of the time, structure
S3 was discovered less than 5% of the time, and some
other structure was learned the remainder (about 44%)
of the time. The time-scales 20 ≤ τ ≤ 750 are excluded
from this figure—they produced empirical probabili-
ties of 0 for all four structures. These results show con-
vincingly that as the time-scale increases, the learned
causal structure changes in the order predicted by the



Change in Structure over Time Scale for Bathtub Model
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Figure 7: As the time step is varied, each of the four
equilibrium structures can be recovered in sequence.

equilibration operator.

It is easy to verify that the EMC property holds
when only P or Qout are equilibrated and any of
these five variables are manipulated (by verifying
that manipulating any variable in S1 or S2 results
in the same graph as manipulating them in Fig-
ure 4 then equilibrating). On the contrary, it is
easy to verify that when D is equilibrated, the EMC
property is violated:Do(Equil(S0, D), D) corresponds
to S4 with the arc from P to D removed; whereas
Equil(Do(S0, D), D) (constructed by applying the Do
operator to S0 and then equilibrating all remaining
dynamic variables) corresponds to S3.

5 Theoretical Results: EMC
Questions 3 and 4

The results from Section 4 show that in some cases
the EMC property is preserved, while in others it is
not. While it is beyond the scope of this paper to
address the precise conditions when EMC will or will
not be violated, I will briefly sketch in this section two
results from Dash [2003] with proofs omitted. The first
states conditions for which EMC is guaranteed to be
violated, the second states conditions for which EMC
is guaranteed to be satisfied.

These results involve the concept of a feedback set. A
feedback set of a variable X in a causal model is the set
of variables that are both ancestors and descendants
of X in the shorthand causal graph. For example, in
Figure 4, the feedback variables of D are Ṗ , P , Q̇out,
Qout and Ḋ. I let Fb(X)M denote the set of feedback
variables of X in model M .

For the following two theorems, we consider a dy-
namic causal model M = 〈U,V,E, φ〉 and let Mṽ =
〈U′,V′,E′, φ′〉 denote the graph that results when

a variable V ∈ V is equilibrated in M : Mṽ =
Equil(M, V ). I assume that Mṽ is unique.

Theorem 1 (EMC violation) If both M and Mṽ

are recursive (have acyclic graphs) and there exists any
F ∈ Fb(V )M such that F ∈ V′ then Do(Mṽ, Y ) 6=
Equil(Do(M,Y ), V ) for any Y ∈ V.

For example, in Figure 6, the graph that results when
D is equilibrated contains variables that are in the
feedback set of D, so the bathtub system violates EMC
when D is equilibrated.

Theorem 2 (EMC obeyance) Let ∆nV be the
highest derivative (difference) of V in V. If both M
and Mṽ are recursive (have acyclic graphs) and V ∈
Pa(∆nV ), then Do(Mṽ, Y ) = Equil(Do(M, Y ), V ).

For example, in Figure 4, Pa(Ṗ ) = {P} and
Pa(Q̇out) = {Qout}, so the bathtub system will obey
EMC when either of these variables are equilibrated,
as seen in Figure 6.

6 Conclusions

The results of this paper have important consequences
for causal discovery. In particular, they emphasize the
importance of considering the time-scale of the data
being used for causal discovery. If data is recorded
of a system for which some variables have achieved
equilibrium, then learning a causal graph and using it
to predict the effects of manipulating variables in the
model amounts to taking path A in Figure 3; however,
path B is the correct one to take: if the EMC property
does not hold for that model, then incorrect inferences
could result.

The fact that taking path A in Figure 3 produces pre-
dictions that differ from path B requires us, if we in-
tend to perform causal reasoning with our model, to
either ensure that we are taking path B or ensure that
we are dealing with models that obey the EMC prop-
erty. Currently, most work regarding the discovery or
building of causal models takes path A and pays no
regard to the EMC property. I hope that this work
will bring attention to this fact and help to rectify it.

It is a valid question to ask why the EMC property is
useful at all. That is, why treat an equation system
that has passed through equilibrium as causal? The
answer to that question lies in the extreme difficulty
of knowing what the important time-scale of an un-
known causal system might be. On top of that, to
break a system down to its finest time-scale often in-
volves modeling the system in intractable detail. For
example, if it were necessary to model the microstates



of a statistical ensemble of particles rather than us-
ing the macroscopic laws directly, then modeling the
causality of any such system would be impossible.

The problem of identifying the relevant time-scales of a
system is especially acute for the task of causal discov-
ery (as opposed to building causal models from expert
knowledge), because obviously, if one is trying to learn
causal relations from data, it is likely that one is not
privy to the details of the underlying dynamics of the
system. The positive conclusion of this work is that,
for systems that obey EMC, one does not need to con-
sider the system on the shortest possible time scale
for the resulting model to accurately reflect causality.
The negative conclusion, however, is that at least some
knowledge of temporal behavior of the system is likely
necessary to ensure that the EMC condition is satis-
fied, and what knowledge is necessary and sufficient is
not yet known.

Although this work raises important objections to
some uses of causal reasoning with models learned
from data, I believe that the great potential of causal
modeling and causal discovery in artificial intelligence
make it all the more important for these questions
to be explored further and answered as forcefully as
possible. The fact that equilibrium causal models are
problematic for causal inference should not deter us
from developing further the theory that can allow us
to build and use them in practice.
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