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Abstract

We propose a semiparametric model for regres-
sion problems involving multiple response vari-
ables. The model makes use of a set of Gaus-
sian processes that are linearly mixed to cap-
ture dependencies that may exist among the re-
sponse variables. We propose an efficient ap-
proximate inference scheme for this semipara-
metric model whose complexity is linear in the
number of training data points. We present ex-
perimental results in the domain of multi-joint
robot arm dynamics.

1 Introduction

We are interested in supervised problems involving mul-
tiple responses that we would like to model as condition-
ally dependent. In statistical terminology, we would like to
“share statistical strength” between multiple response vari-
ables; in machine learning parlance this is often referred to
as “transfer of learning.” As we demonstrate empirically,
such sharing can be especially powerful if the data for the
responses is partially missing.

In this paper we focus on multivariate regression prob-
lems.1 Models related to the one proposed here are used
in geostatistics and spatial prediction under the name of
co-kriging [3], and an example from this domain helps to
give an idea of what we want to achieve with our tech-
nique. After an accidental uranium spill, a spatial map of
uranium concentration is sought covering a limited area.
We can take soil samples at locations of choice and mea-
sure their uranium content, and then use Gaussian process
regression or another spatial prediction technique to infer
a map. However, it is known that these carbon concentra-
tion and uranium concentration are often significantly cor-
related, and carbon concentration is easier to measure, al-

1In Section 5 we indicate how our technique can be extended
to other settings such as multi-label classification.

lowing for more dense measurements. Thus in co-kriging
the aim is to set up a joint spatial model for several re-
sponses with the aim of improving the prediction of one of
them. The model to be described in the current paper goes
beyond simple co-kriging methods in several ways. First,
rather than combining responses in a posthoc manner as
in co-kriging, our model uses latent random processes to
represent conditional dependencies between responses di-
rectly. The latent processes are fitted using the data from
all responses and can be used to model chacteristics of the
dependencies beyond those based solely on marginal rela-
tionships. Second, the nature of the dependencies does not
have to be known in advance but is learned from training
data using empirical Bayesian techniques.

Another example of a motivating application arises in com-
puter vision, where it is of interest to estimate the pose of
a human figure from image data. In this case the response
variables are the joint angles of the human body [1]. It is
well known that human poses are highly constrained, and it
would be useful for a pose estimation algorithm to take into
account these strong dependencies among the joint angles.

Historically, the problem of capturing commonalities
among multiple responses was one of the motivations be-
hind multi-layer neural networks—the “hidden units” of
a neural network were envisaged not only as nonlinear
transformations, but also as adaptive basis functions to be
“shared” in predicting multivariate responses. As neural
networks gave way to kernel machines for classification
and regression, with comcomitant improvements in flex-
ibility, analytical tractability and performance, this core
ability of neural networks was largely lost.

To elaborate on this point, note that there have been two
main paths from neural networks to kernel machines. The
first path, due to [10], involved the observation that in a
particular limit the probability associated with (a Bayesian
interpretation of) a neural network approaches a Gaus-
sian process. For some purposes, it is arguably advan-
tageous to work directly with the Gaussian process via
its covariance function. However, in this limit it also
turns out that the components of the response (the output



vector) are independent—the ability to model couplings
among these components is lost. The second path to ker-
nel machines, via the optimization of margins [14], sim-
plified the problem of fitting one-dimensional responses,
but largely neglected the problem of fitting dependent mul-
tivariate responses. This problem has returned to the re-
search agenda via architectures such as the conditional ran-
dom field which links response variables using the graphi-
cal model formalism [5, 13].

Our approach to modeling dependencies among response
variables heads in a direction that is more nonparametric
than the CRF. In the spirit of factor analysis, we view the
relationships among C components of a response vector y

as reflecting a linear (or generalized linear) mixing of P

underlying latent variables. These latent variables are in-
dexed by a covariate vector x, and thus we have a set of
indexed collections of variables; that is, a set of stochastic
processes. Specifically, we assume that each of the P vari-
ables is conditionally independently distributed according
to a Gaussian process, with x as the (common) index set.
The mean of the response y is then a (possibly nonlinear)
function of a linear combination of these conditionally in-
dependent Gaussian processes.

This model is a semiparametric model, as it combines
a nonparametric component (several Gaussian processes)
with a parametric component (the linear mixing). We re-
fer to the model as a semiparametric latent factor model
(SLFM). Note that factor analysis is a special case of the
SLFM, arising when x is a constant. Note also that Neal’s
limiting Gaussian process is a special case, arising when
P = 1. Finally, as we discuss in Section 2, when C = 1
and P > 1 the SLFM can be viewed as a Gaussian pro-
cess version of the multiple kernel learning architecture
proposed in [6].

As in the case of simpler Gaussian process models, a sig-
nificant part of the challenge of working with the SLFM
is computational. This challenge can be largely met by
exploiting recent developments in the literature on fitting
large-scale Gaussian process regression and classification
models. In particular, we make use of the informative
vector machine (IVM) framework for Gaussian processes
[8, 11]. In this framework, only a subset of “informative”
likelihood terms are included in the computation of the
posterior, yielding an training algorithm which scales lin-
early in the number of training data points. Moreover, the
Bayesian underpinnings of the IVM yields general methods
for setting free parameters (hyperparameters), an important
capability which is not always easily achieved within the
context of other kernel-based methodologies.

2 Semiparametric Latent Factor Models

In this section we give a description of our model for non-
parametric regression with multiple responses. We begin

with a short overview of Gaussian process (GP) regression
in the simpler setting of single responses.

A GP can be viewed as a prior over random real-valued
functions u : X 7→ R, and is parametrized by a mean func-
tion µ(·) and a covariance kernel k(·, ·). A random function
u(·) is said to be distributed according to a GP if for any
finite subset X = {x1, . . . ,xm} ⊂ X of covariate vec-
tors the random vector u(X) = (u(x1), . . . , u(xm))T ∈
R

m is distributed according to a Gaussian with mean
(µ(x1), . . . , µ(xm))T and covariance K ∈ R

m,m where
the i, j th entry is k(xi,xj). In our work we use GPs with
zero mean: µ(x) = 0 for all x ∈ X . The covariance ker-
nel k(·, ·) has to satisfy a symmetric positive-definiteness
(SPD) property; that is, K should be SPD for every finite
subset X . Thus, a GP is simply a consistent way of as-
signing multivariate Gaussian distributions to u(X) for any
finite X .

GPs have traditionally been used for Bayesian classifica-
tion and regression with a single response, where the prob-
lem is treated as that of estimating a random univariate
function from the covariate space to the response space.
Rather than assuming a parametric form for the random
function, the nonparametric Bayesian approach places a GP
prior over the space of all functions, and infers the posterior
over functions given the training data.

Returning to our multiple response setting, let X be the
covariate (input) space and let Y = R

C be the response
(output) space. We are interested in predicting y =
(y1, . . . , yC)T ∈ Y from x ∈ X ; i.e., in estimating
P (y |x). We model the conditional distribution using la-
tent variables v ∈ R

C such that the components yc are
mutually independent and independent of x given v :

P (y |v ,x) =

C
∏

c=1

P (yc|vc).

The conditional distribution of y given x is then:

P (y |x) =

∫

P (v |x)

C
∏

c=1

P (yc|vc) dv .

In this paper we focus on regression with Gaussian errors;
i.e., P (yc|vc) = N(yc|vc, σ

2
c ). We treat P (v |x) nonpara-

metrically, in particular using GPs. We do this by introduc-
ing a further set of latent variables u ∈ R

P and letting v

be linearly related to u:

v = Φu, (1)

with Φ ∈ R
C,P . Finally we assume that the coordinates

of u have independent GP priors conditional on x; i.e.,
there are random functions up : X 7→ R such that up =
up(x), and up(·) are distributed according to a GP with
zero mean and covariance kernel kp(·, ·). This setup allows
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Figure 1: A semiparametric latent factor model.

for conditional dependencies among the coordinates of v

to be expressed via Φ and the latent u variables.

The form assumed in Eq. 1 is in direct analogy with factor
analysis models. Note that the information learned from
each single response variable yc is reflected in the posterior
for the latent GPs u(·). Thus, there is sharing of statistical
strength across response variables.

We call the model a semiparametric latent factor model
(SLFM); the graphical model is shown in Figure 1. The pa-
rameters are the components of Φ and the hyperparameters
(aka, the nuisance parameters) are the kernel parameters θp

and the variance parameters σ2
c associated with the Gaus-

sian likelihoods P (yc|vc).

Note that each coordinate vc(·) of v(·) = Φu(·) is a priori
a GP with covariance kernel given by

∑P
p=1 φ2

c,pkp(·, ·),
where φc,p is the (c, p)th element of the matrix Φ. Hence
one interpretation of our model is that each response vari-
able is modeled as a Gaussian process with a kernel that
is an adaptive, conic combination of base kernels. In fact,
if we have C = 1 and P > 1, then this model can be
viewed as a Gaussian process version of the kernel learn-
ing proposed in [6]. However our model does not just fit
the kernel, it actually makes use of the same latent Gaus-
sian processes for every response variable, allowing more
expressive sharing of information across the response vari-
ates. Also, in the case P < C which is our focus in the
current paper, it is more efficient to represent u explicitly
than to integrate it out.

3 Inference

Given a model and training samples D = {(x1,y1), . . . ,
(xn,yn)} drawn i.i.d. from the model2, we perform
Bayesian inference for the latent variables and estimate the
parameters and the hyperparameters within an empirical
Bayes framework. We begin by introducing the relevant
latent variables.

Let ui,p = up(xi) and vi,c = vc(xi). We collect these
into vectors u = (ui,p)i,p and v = (vi,c)i,c where the dou-

2We allow incomplete observations of y
i
. That is, entries of

y
i

are allowed to be unobserved—this simply involves dropping
likelihood terms corresponding to the unobserved entries.

ble indices are flattened, with index i running over 1, . . . , n
first, e.g., u = (u1,1, u2,1, . . . , un,1, . . . , un,P )T . The vec-
tors u and v are again linearly related: v = (Φ ⊗ I)u,
where ⊗ is the Kronecker product. In the following we
will assume that P ≤ C and Φ has full rank so the pseudo-
inverse Φ

† such that Φ†
Φ = I exists and u = (Φ†⊗ I)v .

The case P > C requires a different treatment and will be
presented in future work. The variable u is distributed a
priori according to a Gaussian with zero mean and block
diagonal covariance matrix K = diag(K(p))p, where the

pth block has i, j th entry given by K
(p)
i,j = kp(xi,xj). The

covariance of v is thus K̃ = (Φ ⊗ I)K (ΦT ⊗ I).

The posterior processes u(·) |D are Gaussian in the case of
Gaussian likelihoods P (yc|vc), and in principle we could
compute their mean and covariance functions explicitly.
However, this is prohibitively expensive for all but fairly
small values of n and C (the procedure scales as O(n3 C3)
in general). We thus make use of the informative vector
machine (IVM) framework [8] which computes a sparse
approximation to the full Gaussian posterior P (v |D) by
means of greedy forward selection of an active subset of the
training sample using information-theoretic criteria. The
difference here is that P > 1 processes have to be rep-
resented along with their dependencies, and the empirical
Bayes maximization has to encompass a large number of
non-kernel parameters, namely the elements of Φ.

3.1 Forward selection

The active set I of size d consists of tuples (i, c) ∈
{1, . . . , n} × {1, . . . , C}. The goal is to select I such that
the approximate posterior

Q(v) ∝ P (v)
∏

(i,c)∈I

P (yi,c|vi,c) (2)

is close to P (v |D). For given I , the posterior approxi-
mation Q is given by simply ignoring all observations not
in I . However, our method of selecting I depends on the
complete sample D, as is discussed in this section. The
idea is to greedily select the candidate (i, c) which changes
the posterior most if we were to include it (i.e., incorpo-
rate its likelihood term into Q). A good way of measuring
this change is the information gain studied in the setting of
active learning (or sequential design). If Qk−1 denotes the
posterior approximation after k−1 inclusions, the criterion
is

∆info
i,c = D [Qi,c(v) ‖Qk−1(v)]

= D [Qi,c(vi,c) ‖Qk−1(vi,c)] ,

where Qi,c is the approximate posterior we obtain if the
term (i, c) is included at iteration k. At each iteration we
pick the (i, c) that maximizes ∆info

i,c . Since Qi,c(vi,c) ∝

P (yi,c|vi,c)Qk−1(vi,c), we can compute ∆info
i,c in O(1) if



the current marginal Qk−1(vi,c) is known. The represen-
tation of Q described in Section 3.2 makes it possible to
maintain all these marginals at all times so that we can
score all (i, c) 6∈ I prior to each inclusion. After d it-
erations we have an active set (i1, c1), . . . , (ik, ck) which
determines the approximate posterior in Eq. 2.

3.2 Representing the approximate posterior

The representation for the approximate posterior in Eq. 2
has to satisfy the following properties in order for it to be
useful: it should allow all marginals Q(vi,c) to be main-
tained explicitly at all times, which allows for forward se-
lection (see Section 3.1); it should have a small memory
footprint; and it can be efficiently updated when a new like-
lihood term is included. In this section we describe how
these properties are achieved.

Let Π = diag(πk)k be a diagonal matrix and b = (bk)k be
a vector which collects the parameters of the approximate
posterior, in the sense that

Q(v) ∝ P (v) exp

(

−
1

2
vT

I ΠvI + bT vI

)

,

where vI = (vi1,c1
, . . . , vid,cd

)T . In the case of regres-
sion we have πk = σ−2

ck
and bk = σ−2

ck
yik,ck

. Note that
Π and b are ordered according to the order in which like-
lihood terms are included. To convert from this ordering to
the natural ordering of u and v , define a selection matrix
P ∈ R

d,nC where P k,(ik,ck) = 1 for k = 1, . . . , d, and
zeros elsewhere (note that the natural ordering in which we
flatten i, c indices runs over i first).

Given Π and P , the covariance of Qk(v) is

Ã = (K̃
†
+ P T

ΠP )†.

Given our assumption P ≤ C, we can represent the ap-
proximate posterior in terms of u to minimize memory and
time requirements. As u = (Φ† ⊗ I)v , the covariance of
Qk(u) is

A = (Φ† ⊗ I)(K̃
†
+ P T

ΠP )†(Φ†T ⊗ I).

Using the Sherman-Morrison-Woodbury formula, we ob-
tain

A = K − MMT , M = K (ΦT ⊗ I)P T
Π

1/2L−T ,

(3)

where L is the lower triangular Cholesky factor of

B = I + Π
1/2P K̃P T

Π
1/2.

The mean of Qk(u) is obtained as

h = EQk
[u] = Mβ , β = L−1

Π
−1/2b (4)

while the mean and variance of vi,c under Qk are

h̃i,c = φ(c)hi, ãi,c = φ(c)Aiφ
(c)T ,

where hi and Ai are the mean and covariance of ui, ex-
tracted from entries of Eq. 4 and Eq. 3 respectively, and
φ(c) is the cth row of Φ. The forward selection can be car-
ried out once h̃i,c and ãi,c are computed for every (i, c) not
already included in the active set.

Finally, the representation of Q(u) is given by L ∈ R
d,d,

β ∈ R
d, M ∈ R

nP,d, and the mean hi ∈ R
P and co-

variance Ai ∈ R
P,P of ui, for i = 1, . . . , n. Since the

rows of L, β , and M are already ordered by inclusion
iteration, they can be updated efficiently and stably by ap-
pending new rows or columns. If at iteration k we included
likelihood term (i, c), we compute

l =
√

1 + πkãi,c, l = π
1/2
k

∑

p

φc,pM
(i,p) T

µp =
φc,pπ

1/2
k K

(p)
i − M (p)l

l
γ =

π
−1/2
k bk − lT β

l
,

where M (p) is a matrix whose rows are M (i,p). The new
row of L is (lT l), the new column of M (p) is µp, and the
new entry of β is γ. Let µi = (µi,p)p. Then hi is updated
by adding γµi while µiµ

T
i is subtracted from Ai.

The memory requirement is dominated by M which is
O(nPd), while the P matrix-vector multiplications in-
volved in computing µp dominate the update time com-
plexity, which is O(nPd). Computing the information gain
scores ∆info

i,c requires O(nCP 2) time which is in general
subdominant to O(nPd). Note that all costs are linear in
the number of training points n which is the dominant fac-
tor in many large applications.

3.3 Parameter and hyperparameter estimation

We have described an effective procedure to compute an
approximation to the posterior of the latent variables. Here
we outline empirical Bayes estimation of the parameters
and hyperparameters. Let α denote a parameter or hy-
perparameter of interest, and let s denote the variational
parameters which define the approximate posterior—these
are the active set indicators, Π and b. Since we cannot
compute the marginal probability of y given x and α ex-
actly, we optimize a variational lower bound instead:

log P (y |x,α) ≥

EQ[log P (y |u,α)] − D[Q(u)‖P (u |α)], (5)

where Q(u) is the approximate posterior, given by Eq. 2.
We use a double loop iterative procedure, where in the in-
ner loop we optimize Eq. 5 with respect to α using a quasi-
Newton method while keeping s fixed, and in the outer



loop we reselect a new s greedily as detailed above. No-
tice that Q(·) is dependent on both s and α. For purposes
of optimizing α we propagate derivatives with respect to α

through Q(·), but keep s fixed. This differs from most other
variational methods that keep all of Q(·) fixed when opti-
mizing α. Note that the overall optimization is not guar-
anteed to converge, since the s updates are not guaranteed
to increase the lower bound. In practice we find the opti-
mization almost always increases and behaves well. The
criterion and gradient computation has the same complex-
ity as the conditional inference, but is much faster in prac-
tice because code for large matrix operations can be used.
The memory requirements are not increased significantly,
because M can be overwritten. The derivation is rather
involved; it can be found in [12].

4 Experiments

In this section we present experimental results for the re-
gression task of modeling of the dynamics of a 3-D, four-
joint robot arm. The dataset is created using realistic simu-
lation code which provides a mapping from twelve covari-
ates (the angles, angular velocities and torques at each of
the four joints of the arm) to four responses (the angular
accelerations at the four joints).

We preprocessed the raw data by fitting a linear regression
to the training set and replacing all responses by the cor-
responding residuals, then normalizing both covariate and
response variables to have mean zero and variance one.
This removal of the linear component of the regression
helps clarify the relative contributions made by the nonlin-
ear methods that are our focus. Finally the four responses
were linearly mixed using randomly sampled unit length
vectors to produce six response variables. Thus the dataset
is a mapping from twelve covariates to six responses, where
it is known that four latent variables are sufficient to capture
the mapping.

The dataset sizes are n = 1000 for training and 500 points
for testing. We report mean squared error (MSE) and av-
erage marginal log probability (LOGP) in the experiments
below.3 To calibrate the numbers, note that linear regres-
sion would have an average MSE of 1 on this task.

We compare our model against a baseline method (INDEP)
in which each response variable is simply modeled inde-
pendently, i.e., taking P = C and Φ = I . We use the
IVM technique for both models. For our model we use a
joint active set I of size d, while for the baseline we use
individual active sets of size d′ per response variate. It is
clear that for similar training set size and coverage by ac-
tive points, training for INDEP is significantly faster than
for SLFM, and in this study we do not attempt to equalize
training times.

3LOGP is log Q(y∗|x∗) averaged over the test set.

In both models we use the squared-exponential covariance
function (SQEXP):

kp(x,x′) = νp exp

(

−
∑

l

1

2θ2
p,l

|xl − x′
l|

2

)

, (6)

where θp,l is the length scale for dimension l, and νp > 0
sets the overall variance. For the SLFM, the same kernel is
used for all latent GPs and we set νp = 1 since the variance
can already be represented by scaling the columns of Φ.
We allow different length scales for each input dimension
because we find that this has a significant impact on the
quality of prediction—if the length scale is constrained to
be the same for all covariate dimensions then less relevant
input dimensions tend to obscure the more relevant ones.
Note that this large set of hyperparameters is adjusted based
on the training set within our empirical Bayesian frame-
work; no validation set is needed.

The mean squared errors and log probabilities are shown in
Table 1 as a function of P as P is varied from 2 to 6. The
model performs best at P = 4, although similar accuracy
is achieved for P = 4, 5, 6. We do expect the performance
to degrade for even larger values of P but we have not in-
vestigated this. For the rest of this section we chose P = 4
since this is the smallest value supported by the data.

c \ P 2 3 4 5 6
1 0.2930 0.2340 0.1220 0.1190 0.1130
2 0.2840 0.2950 0.1780 0.1890 0.1880
3 0.3940 0.1570 0.1080 0.1060 0.1030
4 0.3630 0.2980 0.1270 0.1490 0.1410
5 0.3080 0.2830 0.1760 0.1840 0.1810
6 0.5560 0.3010 0.1180 0.1190 0.1100

LOGP -5.770 -4.571 -2.342 -2.516 -2.466

Table 1: The mean squared errors for each response variate
on the test set and the average log probability per training
point assigned by our model for varying P .

Next we compared the SLFM with P = 4 to the base-
line of independently modeled response variables. We used
a training set of size n = 1000 and active sets of size
d = 1000 and d′ = 180 (if all INDEP active sets are dis-
joint, their union has size 6 · 180 = 1080). The results are
shown in Table 2. Note that the MS errors for our model
are smaller than for the baseline.

We also tested for the effects of varying the active set size
d; results are given in Table 3.

We see that the active set size d has a significant effect on
prediction accuracy. The quadratic scaling in d can be ob-
served from the training times, except for the largest values
of d, where the O(d3) component in the gradient computa-
tion dominates the O(nP d2) component.

Since our method models dependencies among the re-
sponse variables, for every test point we have a joint predic-
tive distribution over the response variables y∗ ∈ R

C . This



SLFM INDEP SLFM INDEP
c MSE MSE LOGP LOGP
1 0.122 0.133 0.018 -0.110
2 0.178 0.202 -0.244 -0.335
3 0.108 0.152 -0.025 -0.352
4 0.127 0.179 0.011 -0.271
5 0.176 0.202 -0.340 -0.349
6 0.118 0.135 0.053 -0.046

Table 2: Comparing our model (SLFM) against the base-
line (INDEP) on the robot arm task, with C = 6, P = 4.
Rows correspond to response variables.

c \ d 500 1000 2000 3000
1 0.174 0.122 0.096 0.067
2 0.285 0.178 0.107 0.094
3 0.228 0.108 0.072 0.062
4 0.283 0.127 0.082 0.068
5 0.281 0.176 0.100 0.090
6 0.196 0.118 0.090 0.066

time 382 1269 5806 16746

Table 3: MS test errors for each response as the active set
size d is varied. time gives the complete training time in
seconds.

can be used to further improve the prediction of the model
for any specific component y∗,c, if in addition to the co-
variates x∗ we are also given a subset of the other response
variables y∗,c′ . In Table 4 we show the mean squared errors
attained for response c = 5, when we are also given other
responses. The errors are reduced significantly, especially
for c′ = {2}, and further improve as we observe more re-
sponses; in particular when we observe c′ = {3, 4}. Note
that for the baseline method each response variable is mod-
eled independently and the predictive distribution over v∗

factorizes, hence knowledge of other responses cannot help
in predicting y∗,c.

c′ MSE LOGP
{1} 0.1770 -0.2640
{2} 0.0380 0.2450
{3} 0.1490 -0.2760
{4} 0.1320 -0.2940
{6} 0.1740 -0.3440
{3, 4} 0.112 -0.221

Table 4: Improved predictions of the model on response
variable c = 5 when the model is given other responses
y∗,c′ .

Finally we report an experiment that aimed at improv-
ing our understanding of how statistical strength is shared
across response variables. We again focus on predicting re-
sponse variate c = 5 in the task with 1000 training points.
However, instead of presenting all 1000 covariate/response
pairs simultaneously, we start by observing only response
variable c = 5, for a subset of l < 1000 points. Subse-

quently, we are given all 1000 covariate vectors and the cor-
responding responses for a subset c′ not including c = 5.
We ask whether this will improve our prediction of re-
sponse variable c = 5. Note that this setup is similar to
co-kriging scenarios mentioned in Section 1. Table 5 shows
the mean squared errors attained for various values of l and
for various subsets c′ of additional observed response vari-
ables. We see a large improvement of the mean squared
error for c′ = {1, 2}. Even for l = 50 the errors are al-
ready smaller than those in Table 2. This is because of
the strong dependencies between response variables c = 2
and c = 5 (as seen in Table 4). Note also that the case
c′ = {1, 2, 3, 4, 6} performed worse than c′ = {1, 2},
though still yielding a marked improvement over no addi-
tional training set (c′ = ∅). This occurs because the func-
tional that our method optimizes is a joint functional over
the response variables, and thus depends more strongly on
response variables with more training data. Performance
as assessed by this functional indeed improved for larger
c′. If our goal is to obtain good prediction for a particular
response variable, we can consider a different functional
which focuses on the response variable of interest.

l \ c′ ∅ {1, 2} {1, 2, 3, 4, 6}
50 1.011 0.111 0.202
150 0.752 0.111 0.198
250 0.278 0.105 0.183

Table 5: Mean squared error on test set for varying training
set sizes l and additional response variables c′.

5 Discussion

We have described a model for nonlinear regression in
problems involving multiple, linked response variables. In
a manner reminiscent of factor analysis in the parametric
setting, we model the response vector as (a function of) a
linear combination of a set of independent latent Gaussian
processes. This rather simple semiparametric approach to
sharing statistical strength has a number of virtues—most
notably its flexible parametrization in terms of sets of co-
variance kernels and its computational tractability. We pre-
sented an efficient approximate inference strategy based on
the IVM. While our primary focus has been prediction,
the inferential tools provided by the IVM also allow us to
compute posteriors over various components of the model,
in particular the latent factors and the parameters. Possi-
ble extensions of the model include placing an automatic
relevant determination (ARD) prior on the columns of the
mixing matrix Φ and letting the model determine P auto-
matically. It is also of interest to consider ways in which
the mixing matrix might be dependent on the covariates as
well.

There are other ways of combining multiple Gaussian pro-
cesses. [9] and [7] present models in which the hyperpa-



rameters of a set of Gaussian processes are endowed with a
common prior. This hierarchical model couples the Gaus-
sian processes as in the SLFM, but the amount of shar-
ing that it induces is rather limited, since it involves only
the hyperparameters of the Gaussian processes. In our ap-
proach the sharing involves entire processes and as such
can be much more expressive. Note also that although we
considered tasks involving a single regression problem with
multiple responses, the SLFM can readily accommodate
the setting in which there are multiple related tasks, each
with a single response and with a separate training set.

As we have noted, the semiparametric approach presented
here is an alternative to the parametric methodology of con-
ditional random fields (CRFs) that has recently been the
focus of attention in the machine learning and computer vi-
sion communities [5, 4]. When the response variables can
plausibly be linked in a simple structure, for example ac-
cording to a chain or a tree, the CRF approach would seem
to be preferable to the SLFM approach. On the other hand,
when the graph is not a chain, the potential intractability
of the partition function can be a significant drawback of
the CRF approach. In vision problems, for example, one
would like to use a two-dimensional Markov random field
for modeling dependencies, but this runs aground on the
problem of the partition function. In our approach, cou-
plings among variables arise by marginalizing over a latent
set of linearly mixed Gaussian processes, and this provides
an alternative, implicit approach to linking variables. In
cases in which graphical models are intractable, this ap-
proach may provide the requisite tractability at a cost of
modeling flexibility. Finally, note also that the SLFM ap-
proach is a kernel-based approach by definition; there is no
need to explicitly “kernelize” the SLFM.

Several methods for multiple responses in regression have
been proposed which involve posthoc combinations of the
outputs of the independent baseline method. An example
is the curds and whey method [2] for multiple linear re-
gression. It is important to stress that our approach is fun-
damentally different in that the latent u processes are fit-
ted jointly using all data. These processes can represent
conditional dependencies directly, while the processes of
the baseline method only ever see marginal data for each
response. Posthoc combination schemes should be suc-
cessful if response dependencies are mainly unconditional
but may fail to represent dependencies which change with
x. An advantage of posthoc methods is that they can be
cheap computationally, having essentially the same scaling
as the independent baseline (which they use as a subrou-
tine). Whether a more flexible technique such as ours with
a computational complexity closer to the baseline method
exists is an open question.

5.1 Applications to classification

Our model can be extended to classification problems
and to other problems involving non-Gaussian likelihoods
P (yc|vc). The basic idea is to again make use of GP-based
techniques such as the IVM that have been extended to GP-
based classification in the single response variable case [8].
The non-Gaussian likelihoods are effectively replaced by
Gaussians whose parameters are determined by sequential
moment matching.

The extension to classification is of particular interest in
the multiple response variable setting because it allows us
to address multi-label classification problems in which the
class labels are not assumed to be mutually exclusive and
may exhibit interesting and useful interdependencies.

In a preliminary investigation of this extension we con-
sidered the toy example shown in Figure 2. We sampled
500 two-dimensional covariate vectors uniformly at ran-
dom from [−1, 1]2 and labeled these vectors using eight bi-
nary response variables, one for each of the regions shown
in the top left panel of Figure 2. There was no label noise,
but 10% of the n = 500 training responses were missing at
random. We fit this data with an SLFM suitably extended
to probit likelihoods, using P = 3 latent GPs, each with
a different SQEXP kernel (Eq. 6) and with a single length
scale parameter (i.e., θp,l = θp,l′ ).
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Figure 2: Top left: the eight regions. Rest: posterior mean
function of the latent GPs. Light colors correspond to larger
values.

After training, the test set errors for the eight response
variables were 0.0345, 0.0261, 0.0133, 0.0296, 0.0602,
0.0176, 0.0494 and 0.0230. The remaining three panels
in Figure 2 show the approximate posterior mean functions



for the three latent GPs. Roughly speaking, one GP is used
for vertical discrimination, one for horizontal, and a third
for inside-vs-outside separation (although the first two GPs
also distinguish inside-vs-outside separation to a lesser ex-
tent). Thus we see that the model has formed a combi-
natorial code in which it is able to classify eight response
variables using only three latent GPs.

5.2 Other issues

Computational issues remain a serious concern if the
SFLM is to be scaled to larger problems. The main avenue
open for tackling larger datasets is to refrain from scoring
all remaining points for all later inclusions. In particular,
after a number of initial inclusions selected from all re-
maining points we can potentially narrow down the candi-
date set stepwise by excluding points with the worst current
scores. The empirical Bayes learning procedure then ap-
proximates the full likelihood by the likelihood restricted
to the final candidate set (which always includes the ac-
tive set). For very large tasks, even more elaborate caching
strategies could be envisaged. A natural limit for the ac-
tive set size d is imposed by the O(d3) time and memory
scaling.

While we have focused on the case P < C in the current
paper, it is also of great interest to explore cases in which
P > C. In particular, in the P < C regime the variable
v ∈ R

C is constrained to lie in a P -dimensional subspace;
while the analogy to factor analysis suggests that this may
be a useful constraint in some problems, it also may im-
pose an overly narrow bottleneck on the regression map-
ping in other problems. There are several possible ways to
remove this constraint and consider versions of the SFLM
that operate in the P > C regime. One interesting vari-
ant involves replacing Eq. 1 by v = v(0) + Φu where
all components of (v(0)T ,uT )T are conditionally indepen-
dent and are given GP priors with different kernels. While
this setup can be viewed as simply a particular choice of
Φ in a generic SFLM with P > C, the additional inde-
pendences in the model aid in the design of approximate
inference methods based on a variant of belief propagation.
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