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Supporting information 

 

Introduction 

Our goal is to understand how the brain performs marginalization. This is a probabilistic 
computation of the form 

         ,  |p d p d p p    s s s s s s s s  (S1) 

where s′ is a variable (possibly vector valued) of interest and s is the set of variables that are 
“marginalized” out. The classic example is a sensorimotor transformation, in which s′ might 
be the body centered position of an object and s the joint angles that would place one’s hand 
on the object. In this case, s′=F(s) is a deterministic function, since given joint angles one 
knows exactly the position of one’s hand. However, it is not uniquely invertible, as there are 
many combinations of joint angles that lead to the same hand positions. Consequently, to find 
the probability distribution over the position of one’s hand, it is necessary to integrate 
(marginalize) over the probability distribution of all sets of joint angles that lead to each hand 
position. Another way to see this is to note that we can replaced p(s′|s) with δ(s′-F(s)), where 
δ(·) is the Dirac delta-function, but we still have to do an integral. Of course, the class of 
computations which require marginalization is much larger than the set of deterministic 
transformations; it can include non-deterministic ones in which the relationship between s′ 
and s is probabilistic.   

Our starting point is an encoding model for a probability distribution s, which is 
captured by the likelihood function, p(r|s), where r is the neural response. Typically r is a 
vector of spike counts, although when we represent time dependent processes, as in the 
Kalman filter example below, neural representation will be denoted by ( )tρ and will indicate 

a population of spike trains. We also assume that the prior is known, which means we can use 
Bayes’ theorem to recover the posterior, p(s|r). This allows us to write an expression for the 
true posterior over s′, 

      ( | )  | | ( ( )) |  ,truep d p p d p     s r s s s s r s s F s s r  (S2) 

where p(s′|s) describes the (known) probabilistic relationship between s′ and s. For a 
deterministic transformation this can be replaced with a Dirac delta-function, as in the above 
expression.  

The goal is to find a transformation of the form 

   r f r  (S3) 

such that  | ( )p  s r = f r  is as close as possible to  |truep s r . This is, of course, an ill-

defined problem – letting  r r  would imply that  |p s r  is exactly equal to  |truep s r . 
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However, because r represents s′ only indirectly (one still has to do the integral in equation 
(S2)), such a transformation buys us nothing. To make this problem well-defined, and at the 
same time force the transformation to be useful, we demand that all variables be encoded 
using a linear probabilistic population code (linear PPC); that is, a code of the form 

  ( | ) ( , )exp ( ) .p  r s,g r g h s r  (S4) 

We have introduced an additional set of nuisance parameters, denoted g, into the measure 
function ( , ) r g . Here, g is intended to play the role of a nuisance parameter which controls 

the quality of the representation of s provided by the induced pattern of activity, r; in 
practice, g, can be thought of as image contrast. Note that ( , ) r g  must be chosen so as to 

normalize the probability distribution, but is otherwise arbitrary. The vector h(s) is called the 
linear kernel, and “·” denotes the standard dot product. Thus, the goal is to find both the 

transformation   r f r and a linear kernel,   h s , such that the posterior of s′ given r , 

which is proportional to  exp ( ) h s r , is as close as possible to  |truep s r when   r f r . 

 An important feature of the linear PPC encoding is that the posterior over s is 
independent of the nuisance parameters g, and has an especially simple form,

 

  
  
 

exp ( )
| ,

,

p

p

h
p

Z h

 


h s r s
s r

r
 (S5) 

where the prior is proportional to log hp(s), ( , )pZ hr  is the normalization constant, and the hp 

dependence in Z is shorthand for a dependence on the parameters of the function hp(s). 

Note that while r is a vector of spike counts, it is not necessarily the case that the 

optimal transformation,   r f r , will result in an integer valued quantity. This is a concern 

because we would like to create a self consistent neural code which utilises only spikes and 
spike counts. Our solution to this problem is to turn r  into a vector of spike counts (or spike 
trains in the case of a Kalman filter), by sampling from a Poisson distribution (or process). 
This additional Poisson step does lead to some loss of information, but we will show that the 
information loss is relatively small. 

In the next several sections, we consider specific examples of marginalization for a set 
of common problems encountered by biological organisms. 

 

Coordinate transformations 

A coordinate transformation is a mapping from one set of scalar variables to another; for a 
mapping from two variables to one, which is the case we focus on here, a general coordinate 
transformation has the form 
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  3 1 2, .s F s s  (S6) 

As usual, s1 and s2 are encoded, probabilistically – in this case in the spike counts r1 and r2, 

respectively – and we seek a transformation to a new population, 3r , that codes for s3. For the 

latter transformation, we write, as in equation (S3), 

  3 1 2, .fr r r  (S7) 

As discussed above, this transformation should lose as little information as possible; 

that is, 3 3 1 2(s | ( , ))p r f r r  should be as close as possible to the true posterior. That posterior, 

denoted ptrue(s3|r1, r2), is given by (assuming s1 and s2 are encoded independently) 

         3 1 2 1 2 3 1 2 1 1 2 2| ,  , | | .truep s ds ds s F s s p s p s r r r r  (S8) 

In general, the integral in equation (S8) cannot be computed exactly, and so must be 
approximated. As discussed above, the approximation we investigate here is one in which

 | ,  1 3i ip s i r  , are encoded as linear PPCs (see equations (S4) and(S5)). As such we 

seek to approximate the true posterior,  3 1 2| ,truep s r r , by  

      
 

3 3 3
3 3 1 2

3

exp
| , .

s
p s

Z


 

h r
r f r r

r
 (S9) 

Because all variables are encoded in linear PPCs, the posteriors for s1 and s2 are given 
by 

  
    
 

exp s s
| ,

,

i i i pi i

i i

i pi

h
p s

Z h

 


h r
r

r
 (S10) 

i=1,2 (see equation (S5)). Combining equation (S8)-(S10), and recalling that the goal is to 
have the approximate and true posteriors as close as possible, we have 

 

    
  

           

3 3 1 2

1 2

1 1 1 1 1 2 2 2 2 2

1 2 3 1 2
1 1 2 2

exp ,

,

exp
            ,  

( , ) ( , )

KL

p p

s

Z

s h s s h s
ds ds s F s s

Z s Z s





    


h f r r

f r r

h r h r

r r

 (S11) 

where the subscript “KL” indicates that the metric we use to measure the quality of the 
approximation is the Kullback–Leibler divergence between the true and approximate 

distributions. The goal is to choose  1 2,f r r  and  3 3sh  so that the KL divergence between 

the right and left hand sides in equation (S11) is as small as possible.   
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Linear transformations 

We first consider a case in which the left and right hand sides of equation (S11) can be made 
identical: the posterior distributions over both s1 and s2 are Gaussian and F(s1, s2) is a linear 

function of s1 and s2. Without loss of generality, we consider addition, 3 1 2s .s s 
  Our 

analysis, however, applies to any linear transformation. (Note that in the main text, we used 
xR, xE and xA for s1, s2 and s3, respectively, and rR, rE and rA for r1,  r2 and r3, respectively. 
We use the s notation here for consistency with the rest of Supporting Information.) 

Because s1 and s2 are Gaussian, their distributions are determined solely by their 

means and variances, which we denote i  and 2
i , i=1, 2. In addition, s3 is also Gaussian, 

and its mean and variance, 3  and 2
3 , respectively, are given by 

 3 1 2

2 2 2
3 1 2 .

  

  

 

 
 (S12) 

The fact that the posterior distributions on si are Gaussian makes the kernels, hi(si) 
especially simple, 

    
2

( | , ) exp ( ) exp .
2
i

i i i i i i i i pi i i i

s
p s g s s

 
        

 
r h r a r b r  (S13) 

Note that we have used a Gaussian prior with zero mean and variance 1/ pi . For this choice 

of kernels, the mean and variance of si are given by 

 
2 1

,

i i
i

i i pi

i
i i pi










 


 

b r

a r

a r

 (S14) 

i=1, 2, and 3.  Note that 3 0p   despite the fact that the prior on s3 is not flat. This is because 

the population patterns of activity, r1 and r2, provide a direct representation the likelihood 
function, while the population r3 provides a direct representation of the posterior distribution. 

Combining equations (S12) and (S14), we see that an optimal transformation  3 1 2,r f r r

should satisfy 

 

3 3 1 1 2 2

3 3 1 1 1 2 2 2

3 3 1 1 1 2 2 1

1 1 1
,

p p

p p

 

 

  
 

    

 
    

b r b r b r

a r a r a r

a r a r a r

 (S15) 
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or, equivalently,  

 

  

     

1 1 1 2 2 1

3 3
1 1 2 2 1 2

1 1 2 2 2 2 2 1 1 1

3 3
1 1 2 2 1 2

.

p p

p p

p p

p p

 
 

 
 

   
 

    

      
 

    

a r a r
a r

a r a r

b r a r b r a r
b r

a r a r

 (S16) 

A transformation,  3 1 2,r f r r , that satisfies equation  (S16) is 

 

  

     

1 1 1 2 2 2†
1 2 3

1 1 2 2 1 2

1 1 2 2 1 2 2 1 1 1†
3

1 1 2 2 1 2

†
3 3 1 2

( , )

              

              ( ,

p p

p p

p p

p p

f

 

 

 

 

   


    

      


    



a r a r
f r r a

a r a r

b r a r b r a r
b

a r a r

c r r )

 (S17) 

where †
3a , †

3b , and †
3c  obey the relationships 

 
† †

3 3 3 3

† † † †
3 3 3 3 3 3

1

0,

   

       3 3

a a b b

a b a c b a b c
 (S18) 

and f3(r1, r2) is an arbitrary scalar function of r1 and r2. 

 Because equations (S17) and (S18) give us the optimal transformation, it immediately 
gives us the true posterior over s3 given r1 and r2, 

 
 

2
3

3 1 2 3 1 2 3 3 1 2
1 2

1
( | , ) exp ( , ) ( , ) .

( , ) 2true

s
p s s

Z

 
     

 
r r a f r r b f r r

f r r
 (S19) 

A network that implements 3 1 2( , )r f r r  leads to a posterior over s3 that is exactly equal to 

the true posterior. Networks, however, communicate via spikes, not spike count. Thus, the 
actual transformation is probabilistic, and has the form 

    3 3 1 2( , ) ,i i ir Poisson r Poisson f  r r  (S20) 

where the notation Poisson indicates a Poisson distribution. 

The noisy transformation given by equation (S20) loses information, but if the 
number of neurons is large and the information is order(1), it doesn’t lose much. To see why, 
note that for Poisson noise added to some fixed population pattern of activity r, 

    2 2Var[ ( ) ] ( )Var ( ) .i i i i
i i

s h s r h s r     r rh  (S21) 
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For information to be order(1), ( )ih s  must scale as 1/N where N is the number of neuron. 

Thus, the term on the right hand side of equation (S21) also scales as 1/N.  This, in turn, 
implies that the additional noise added to ( )s h r  must scale as 1/N.  

There is a great deal of freedom in choosing both h3(s3) (because a3 and b3 are only 
required to be non-parallel; see equation (S18)) and f(r1,r2) (because f3(r1,r2) is arbitrary). In 
addition, to completely specify the encoding model, we need to choose the prefactors in the 

likelihood functions, ( , )i ig r , i=1, 2 (see equation(S4)). 

We now consider a concrete example in which the encoding model is a conditionally 
independent Poisson, 

  
     | , exp ,
!

ijr

i j i

i i i i j i
j ij

g f s
p s g g f s

r
 r  (S22) 

i=1, 2. Here rij is the spike count of the jth neuron in population i and fj(si) is the tuning curve 
of the jth neuron in population i. To ensure that the likelihood functions are Gaussian 
distributed, we use Gaussian tuning curves,  

    20

2
exp .

2
j

j
w

s s
f s



   
 
 

 (S23) 

The preferred orientations, 0
js , are uniformly distributed on a finite interval and symmetric 

around 0. Note, therefore, that 0 0j
j

s  , a fact we make use of below. For tuning curves of 

this shape we can rewrite the likelihood functions for the input populations (r1 and r2) as 

       0 2 2| , exp ( ) / 2 exp exp
!

ijn

i
i i i ij j w i j i i i i

j jj ij

g
p s g r s g f s s

r


     
              

 r h r

 (S24) 

where 

  
2

,
2i i i

s
s s  h a b  (S25) 

with 

 

2

0

2
.

i
w

i
w









1
a

s
b

 (S26) 
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Here 1 is a vector consisting of all 1’s. Because the preferred orientations, 0
js , must be 

distributed over a finite range, the gain parameter, gi, interacts with the stimulus, si, via the 
third term in equation (S24). Therefore, the likelihood function given in that equation is not a 
linear PPC. We sidestep this issue by placing a prior on s1 and s2 that effectively restricts 

them to values for which  j i
j

f s is nearly flat.  

The parameters of the output kernel, a3 and b3, are essentially arbitrary. However, it is 
convenient to make them orthogonal, and to have the same general shape as a and b. 
Therefore, we choose a3i to be an even function of its index i and b3i to be an odd function, 
and we choose them so they are approximately constant and linear over the range spanned by 
the tuning curves. One such choice is 

 
     

    

2 22 2
3 1 0 3 0 3

2 2
3 1 0 0 3

1
exp 2 ( ) / / exp 2 ( ) / /

( ) / exp 2 ( ) / /

i w w
i

i w

a i i N i i N
N

b i i N i i N

  

 

        

   


 (S27) 

where i0=(N+1)/2, 1  is an arbitrary scale parameter, 3w  controls the width of the tuning 

curves in the output population, and i goes from 1 to N.  Because a3 and b3 are orthogonal, 
they are self adjoint, up to a normalizing constant so that 

 

† 3
3

† 3
3

i
i

a

i
i

b

a
a

Z

b
b

Z




 (S28) 

with Za and Zb chosen to ensure that † †
3 3 3 3 1   a a b b . Finally, we choose 

 †
3

2

1
.ic


  (S29) 

With this choice of parameters we have, via equation (S17) and the fact that  

 3 1 2,r f r r , 
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 
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 



  
   

  
    

   
      

   
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 (S30) 
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where N1 and N2 are the number of neurons associated with r1 and r2, respectively. Taking 

advantage of the fact that ai·bj=0, i,j=1,2, and using 2/i wa 1 , equation (S30) can be 

rewritten as

 

 

 

 
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1 2

1 22 23 3
1 2 1 2 1 2
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 
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


   
      

    
    

 




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a r a r

r r
r r

 (S31) 

where

 

 

 

 
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1 2 1 2

1 22 2
1 2
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1

1
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2
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k k
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b
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k
i i j

a
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p

j

a b
w a b a a b

Z Z

r r
N N

a

 
 


 

 

  
   

  
    




a r a r

r r

 (S32) 

Written in this way it becomes easy to see why we refer to this network has having a 
quadratic non-linearity, with divisive normalization. Note that equation (S31) corresponds to 
equation (8) of the main text (except that in the main text, αp1, αp2 and f3(r1,r2) are all set to 
zero). 

 

Nonlinear transformations 

We also consider a nonlinear coordinate transformation for which the quantity of interest is 
the angular location of the ‘hand’ in ‘body’ centered coordinates, as shown in Figure S1. We 
assume that the lengths of the arms are known, and our goal is to find the angular location of 
the hand (s3) in terms of the angular locations of the two arms (s1 and s2). Mathematically, the 
relationship between these three angles is given by

 

 

3 3 1 1 2

2 2

1 2

3 3 1 1 2 1

2
3 1 2 1 2 2

2

sin( ) sin( ) sin( )

cos( ) cos( ) cos( )

cos( )2

d s d s d s s

d s d s d s s

d d sd d d

  

  

    (S33) 

Unlike for linear transformations, there is no simple way to determine the optimal network. 
However, this is some hope that the network architecture we used for the linear 
transformation will also work for nonlinear ones. To test this notion we use gradient descent 
learning on the parameters of a nonlinear network transformation which takes the form of 
equation (S31). The details are described in the Statistical verification section below.   
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Figure S1. Here the ‘shoulder’ is depicted by the circle in the lower right and the ‘hand’ by 
the circle in the upper left. Proprioception provides information about the angle by which the 
body upper arm is deflected from a body centric coordinate system, s1, and the angle by 
which the lower arm is deflected from the upper arm, s2. Upper and lower arms are of length 
d1 and d2 respectively. The quantity of interest, s3, is the angular position of the hand in body 
centered coordinates. 

 

Kalman filters 

A Kalman filter is an algorithm for determining the probability distribution of a variable, or 
set of variables, based on noisy observations over time. The defining feature of a Kalman 
filter is that the variables of interest are Gaussian and obey linear dynamics. Given the 
analysis in the previous section, in which linear PPCs exactly implemented marginalization 
over Gaussian variables, we expect that linear PPCs will exactly implement a Kalman filter. 
This is, indeed, what we find. 

 

 

Figure S2. Graphical model for a Kalman filter. The top row contains s(t), a real valued 
random variable which represents the position of a particle subject to linear dynamics and 
additive white noise, and g(t), the gain. The bottom row contains the population activity, 
rin(t),  which provides a noisy estimate of s(t) and g(t). Gain is best thought of as representing 
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the quality of the population code, and reflects task irrelevant nuisance parameters like the 
contrast of the stimulus. Here gi(t) and si(t) are assumed to be independent.   

The setup we consider is the hidden Markov model shown in Fig. S2. The variable of 
interest, s(t), evolves under its internal dynamics, as indicated by the arrows connecting the 
top row of circles. In addition, at each time step we receive noisy information about s(t) via 
population activity denoted rin(t), as indicated by the downward arrows; this information 

comes via the likelihood function, ( ( ) | ( ), ( ))inp t s t g tr , specified in equation (S37) below. 

Here rin(t) is a vector of spike counts between time t-Δt and t; that is, ( )in
ir t  is the number of 

spikes that occurred on neuron i between time t-Δt and t. Note that when Δt is small – the 
limit of interest here – for most time points, rin(t) contains no spikes, and so does not provide 
any information about s(t). Thus, for most time intervals, the probability distribution over s 
evolves only in accordance with the dynamics of s(t). 

The goal is to construct population activity that codes for the probability distribution 
of s(t) at time t, denoted p(s(t)).  Clearly, knowledge of rin(t) for all times up to t will tell us 
p(s(t)|rin(t) , rin(t-Δt),...). However, it is quite inefficient for the brain to store the whole time-
history of rin(t). We seek, therefore, a transformation that takes the time-history of rin(t) and 
maps it to population activity whose current set of firing rates tell us p(s(t)| rin(t), rin(t- Δt),...). 

To find this transformation, we make use of the update rule for hidden Markov 
models, 

                    | , | .inp s t p t s t g t ds t t p s t s t t p s t t      r  (S34) 

The two ingredients we need to compute the right hand side are the likelihood, p(rin(t)|s(t)) 
(downward arrows in Fig. S2), and the transition probability, p(s(t)|s(t-Δt)) (horizontal arrows 
in Fig. S1). We start with the latter. 

Although s(t) evolves in discrete time in Fig. S1, ultimately we are interested in the 
continuous time limit, which we access by, eventually, letting Δt go to zero. Therefore, we 
write a continuous time evolution equation for s,  

 ( )
ds

s t
dt

     (S35) 

where η(t) is white noise with variance 2
 ; that is, 2( ) ( ') ( ')t t t t      . With this 

dynamics, the conditional probability distribution of s(t) given s(t-Δt) is Gaussian with mean 

(1-γΔt)s(t-Δt) and variance 2 t  , 

    2( ) | ( ) ~ (1 ) ( ), .p s t s t t t s t t t      N  (S36) 

The second ingredient in equation (S34), p(rin(t)|s(t),g(t)), is encoded via a linear PPC, 

       ( ) | ( ), ( ) ( ), ( ) exp ( ) ( )in in in inp t s t g t t g t s t t r r h r  (S37) 
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where the gain, g(t), is an arbitrary, and possibly random, function of time. We use a 
likelihood function that is Gaussian in s(t), for which hin(s(t))·rin is given by 

  
2( )

( ) ( ) ( ) ( ) ( ).
2

in in in in in ins t
s t t t s t t     h r a r b r  (S38) 

With this form for the likelihood, the mean and variance of s(t) given rin(t) are independent of 
the gain, g(t) and, assuming a flat prior, are given by 

 
2

2

( ) / ( ) ( )

1 / ( ) ( ).

in in
in in

in in
in

t t t

t t

 



 

 

b r

a r
 (S39) 

Note that we are using the so called natural parameters, 2/in in   and 21/ in , rather than the 

more standard mean and variance. This is because a linear PPC encodes the natural 
parameters as a linear combination of neural activity.  

Inserting equations (S36)-(S39) into (S34), performing the integral on the right hand 
side (which is Gaussian, and, therefore, straightforward), carrying out a small amount of 
algebra, and using equation (S38), we find that the update rule for the mean and variance of 
s(t), denoted μ(t) and σ2(t) is given by 

 
2 2 2 2 2

2 2 2 2 2

( ) ( ) (1 ) ( )

( ) ( ) ( )(1 )

1 1 1
.

( ) ( ) ( )(1 )

in

in

in

t t t t t

t t t t t t

t t t t t t





   
    

    

   
 

     

 
     

 (S40) 

To complete our analysis, we take the limit Δt → 0. In this limit, we need to consider 
two cases. In the first, there are no spikes on rin(t) in the time interval between t-Δt and t. 

Examining equation (S40), we see that in this case 2 ( )in t   . Consequently, the term 
21/ ( )in t  in equation (S40) is zero, and so μ/σ2 and 1/σ2 evolve according to 

 

2
2 2 2 2

2
2 2 2 2

( / )
( / ) ( / )( / )

(1/ )
2 (1/ ) ( / )(1/ ).

d

dt

d

dt





        

     

 

 

 (S41) 

In the second case, there are spikes on rin(t) in the time interval between t-Δt and t. Here μin 

and 2
in  are both order(1), and so both μ and σ2 exhibit jump discontinuities. In the limit Δt → 

0, these are given by 

 
2 2 2

2 2 2

/ / /

1 / 1/ 1/ .

in in

in

     

  

 

 
 (S42) 

Combining equations (S41) and (S42) into a single equation, we have 
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2
2 2 2 2

2
2 2 2 2

( / )
( / ) ( / )( / ) ( )

(1 / )
2 (1 / ) ( / )(1 / ) ( )

in in

in in

d
t

dt

d
t

dt





        

     

   

   

b ρ

a ρ

 (S43) 

where ( )in tρ  represents a set of delta function spike trains,  

  in j
i i

j

t t    (S44) 

with j
it  the time of the jth spike of input neuron i, so that integrating this quantity over time 

window t  would yield ( )in tr . 

Finally, we recall that the goal was to obtain a linear PPC encoding for p(s(t)), which 
we write 

       2
( )

( ) | ( ) exp ( ) ( ) exp ( ) ( ) ( ) .
2

s t
p s t t s t t t s t t

 
        

 
h a b     (S45) 

What we need to do is find the time evolution of ν(t) such that p(s(t)| ν(t)) will be Gaussian 
with the mean and variance one would find by solving equation (S43). When we do that, it 
will turn out that ν(t) is a vector of time-dependent rates. Eventually, of course, we have to 
convert to spikes. However, as shown in Fig. 3b-c of the main text, that conversion leads to 
almost no loss of information. 

Our starting point is the observation that, in terms of the parameters of equation (S45), 
the mean and variance of s(t) are given by 

 
2

2

( ) / ( ) ( )

1 / ( ) ( ).

t t t

t t

 



 

 

b

a




 (S46) 

We can now substitute equation (S46) into (S43) to yield continuous time equations for b·ν 
and     a·ν, 

 
  

  

2

22 .

in in

in in

d

dt
d

dt





 

 


      


      

b
b a b b ρ

a
a a a a ρ


  


  

 (S47) 

An equation for ν that is consistent with equation (S47) is 

  2 † (in in
c

d
f

dt       W a M ρ c ρ


       (S48) 

where 
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† †

† †

2

,in in



 

W a a b b

M a a b b


 (S49) 

a†, b† and c† obey the orthogonality condition given by equation (S18), but without the 

subscript “3”, and ( in
cf ρ   is an arbitrary scalar functional. Direct inspection verifies that 

equation (S48) is the most general equation that is consistent with equation (S47). Equation 
(S48) corresponds to equation (19) in the main text, except that in the main text, for clarity 
we do not include fc(ν, ρ

in). 

To see that equation (S48) implements a divisive normalization, we solve this 
equation in the limit that dν/dt=0, for which we can set ρin to its long term average, which we 

denote in . (This limit doesn’t, in fact, exist, as ρin is time-varying; however, it is a useful 

abstraction.) Setting dν/dt to zero in equation (S48) (or alternatively, (S47)) and solving for 
a·ν and b·ν, we find that 

 

2 2

2 2 2 2

2 2
.

in
in

in
in

in
in

in
in



  



  
    



  

 
 

 




 

a
a

a

b
b

a









 (S50) 

And so we observe that, in the steady state, the relationship between ν and the average input 

pattern of activity, in , contains a divisive normalization which is related the square root of 

in . 

How is the population activity in our model related to known properties of Kalman 
filters? The answer to this question will be useful for making experimental predictions. One 

relevant regime is the limit in which there is no input information, 0in ρ , and no internal 

dynamics (γ=0). In that limit, the variance of s increases linearly with time. What happens to 
the activity? Rewriting equation (S47) with both ρin and γ set to zero, we see that b   and 
a   evolve according to  

 
  

  

2

2 .

d

dt
d

dt










   


   

b
a b

a
a a


 


 

 (S51) 

Solving for a   and b  , we find that 

 
1

c t
   


a b   (S52) 

where c is some constant. This indicates that neural activity decreases inversely with time, 
mirroring the behaviour of the inverse of the variance. When γ is non-zero this relationship 
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holds initially, but eventually neural activity approaches a pattern of activity which 
corresponds to a zero mean Gaussian distribution with fixed variance.    

When the rate parameter, ν, evolves according to equation (S48), there is no 
information loss. However, as with the sensory transformation, we need to convert to spikes. 
This is slightly more complicated than for the coordinate transformation, since ν appears on 
the right hand side of equation (S48). Thus, we proceed in two steps. The first is to replace 

the terms a ν , W ν  and  in
cf ρ  that appear on the right hand side of equation (S48) with 

a ρ , W ρ and  in
cf ρ ρ , where ρ  is a spike train generated according to the rate parameter 

λ; that is, 

  ( ) ~  ( ) .i it Poisson process t   (S53) 

Here we use “Poisson process,” rather than just “Poisson” (as in equation (S20), the 
coordinate transformation example) to indicate that ρ(t) consists of a set of δ-function spikes. 

Second, as equation (S48)  is written, there is no guarantee that the rate parameter, ν, 

will be nonnegative. Fortunately, we can insure this by choosing †c  to be a vector that is 
composed entirely of ones, and insert a new parameter (denoted ν0 below) which allows us to 
control the mean activity of the population. 

 With these replacements, and letting  †
0( /in

c Nf   c 1ρ ρ1ρ   , the network 

evolves according to 

  2
0 ,ind

dt N         
 

ρ
ρ ρ ρ

1
W a M 1


   (S54) 

where 1=(1, 1, …) and N is the number of neurons in the population (the dimensionality of 
the rate vector, ν). Note that it is still rate that evolves according to equation (S54); this is 
because we assume that neurons have, in some abstract sense, access to their own internal 
rates. However, when we compute the posterior, we use spike count, r, in an interval t , 

 ( )  ( ).
t t

t

t d


 


 r ρ  (S55) 

The posterior, as computed by the network, is then given by equation (S45), but with ( )tν  

replaced by ( ) /t tr . For fixed t , as the number of neurons increases, the posterior 

becomes more and more accurate. 

 Finally, we need to set the parameters a, b, †a , †b , a
in, and bin. For a, b, 

†a , and †b , 

we choose 
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 
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 
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†
0
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cos 2 ( ) /
2
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i

i

i

i

a i i N
N

b i i N
N

a i i N

b i i N







 

 

 

 

 

 

 (S56) 

As above, i0=(N+1)/2,   is a scale parameter which, along with ν0, adjusts the mean firing 
rate of the output population. Recall that this choice is more or less arbitrary so long as the 

vectors a, b, †a , and †b   are orthogonal to the vector of ones and span a two dimensional 
vector space. With this choice for parameters, the mean firing rate, / N  1 ν , evolves 
according to

 

  2
0

d

dt       a ρ  (S57) 

where / N  1 ρ  is the empirical average of the output population activity. In steady state (

/ 0d dt  ), with  replaced by  ,   is given by 

 0
2

.
1 




 
 a ν

 (S58) 

Thus, ν0 can be used to raise the average firing rate, and thus ensure that the minimum firing 
rate is nonnegative. 

 Specifying ain and bin is not completely straightforward, as our choice must result in 
Poisson spikes in the limit Δt → 0. However, it turns out that a valid choice is, as for equation 
(S26), 

 

2

0

2

in

w

in

w









1
a

s
b

 (S59) 

where 0
is are a set of evenly spaced points which will turn out to correspond to the preferred 

stimuli of the neurons (see equation (S61) below) and, recall, 1 is a vector of all 1’s. To see 

that this is correct, we need to choose the prefactor,  ( ), ( )in t g t r , that appears in equation 

(S37), and then take the limit Δt → 0. The appropriate prefactor is (suppressing the time 
dependence in rin and g) 

       1
, exp log ,

!
iin n

i i in
i i i i

g r g gt t f s
r

  
   

 
  r  (S60) 
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where the fi(s) are tuning curves, which we take to be Gaussian, 

      0 2

2
exp .

2i
w

is t s
f s t



   
 
 

 (S61) 

Here, 0
is is the preferred stimulus value of neuron i and w  is the tuning curve width. Note 

that this choice of generative model for the input spikes does not technically lead to evidence 

which can be modelled by equations (S37) and (S38), unless preferred stimuli 0
is  are such 

that  ii
f s  is approximately independent of s on the interval in which s(t) tends to live. An 

easy way to insure that this is the case is to choose evenly and closely spaced preferred 

stimuli, 0
is , which span the interval which covers the 99% confidence region associated with 

the prior p(s). 

 Given equations (S59)-(S61), it is straightforward to show that 

 

        ~ .in
i it Poisson process g t f s t  (S62) 

 

Generalization to higher dimensions 

For the hand-tracking problem that we consider in the main text, we need to know 
how a network could implement a Kalman filter in higher dimensions. For a D dimensional 
Kalman filter, we can apply the same analysis, and the result is essentially the same: a 
network with divisive normalization and a quadratic nonlinearity is sufficient to implement 
the filter. Here we sketch the analysis. We start with the evolution equation for the vector-
valued stimulus, s(t), which is given by  

    d
t t

dt
   

s
s u η  (S63) 

where Γ is a DxD, positive-definite matrix,  tη  is Gaussian and white with DxD covariance 

matrix ηηΣ  (i.e.,      ' 't t t t ηηη η Σ ), and, to increase generality, we have added a 

control signal, u(t). Equation (S63) is the D dimensional generalization of equation (S35), but 
with the addition of a control signal, u(t). The probability distribution for the evidence rin 
given s(t) is written 

       ( ) | ( ), ( ) ( ), ( ) exp ( ) ( ) ,in in in inp t t t t t t t r s g r g h s r  (S64) 

where, analogous to equation (S38), hin(s(t))·rin(t), is given by 
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   1
( ) ( ) ( ) ( ) ( ) ( ) ( ).

2
in in in in in in

i j ij i i
ij i

t t s t s t t s t t      h s r a r b r  (S65) 

Equations (S64) and (S65) are D dimensional generalizations of equations (S37) and (S38). 

The natural parameters of the posterior are given by I , the inverse of the covariance 

matrix of s, and I μ , the product of this matrix with the mean of s, the latter denoted μ . (We 

use I for the inverse of the covariance matrix because it corresponds to the DxD specific 
Fisher information, also known as the precision matrix.) When these natural parameters are 
encoded in a linear PPC they are linearly related to a rate parameter, ν. To see why, note that 
if we were to write 

   1
( ) ( ) ( ) ( ) ( ) ( ) ( ),

2 i j ij i i
ij i

t t s t s t t s t t      ν νbνh s a  (S66) 

and p(ν (t)|s(t)) ~ exp(h(s(t))· ν (t)), then we would have 

 
 
 

( )

( ) ( ) .

ij ij

ij j i
j

Ι t t

Ι t μ t t

 
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a

b

ν

ν  (S67) 

In these equations, aij= aji so that the precision matrix I(t) is guaranteed to be symmetric, and 
the vectors aij and bi must be chosen so that they span a D+D(D+1)/2 dimensional space (one 
dimension for each of the natural parameters of the D dimensional Gaussian posterior).   

Repeating the above analysis for multiple dimensions in the presence of the control 
signal u(t) yields evolution equations for the natural parameters, which take the form  

 

       T

T
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.

in

in

d
t

dt
d

dt


          
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ηη

ηη

I μ
I μ I u I Σ I μ I μ

I
I I I Σ I I



 
 (S68) 

This is a generalization of equation (S43). We may then obtain rate equations by inserting 
equation (S67) into (S68), which yields 
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ij in in
kj ik ki kj ik kl lj ij
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 
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   
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a
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ν
b

b a b bν ν ρν a

 (S69) 

where ij and ij  are the components of the matrices Γ  and ηηΣ , respectively. Recall that 

while the subscripts can take on the values i,j=1..D, these equations are redundant since we 
have constrained aij=aji. Consequently, for a two dimensional state vector s(t), equation (S69) 
consists of five independent equations of evolution.  



18 
 

This set of equations can be written as an evolution equation for ν by defining adjoint 

vectors †
ija , †

ib  and †c  according to 

 

†

† † †

† † †
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0

ij kl ik jl il jk

lk kl i j ij

ij k i ij
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

  

  
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a a

a a b b

a b b c = a c
 (S70) 

where †
ija and †

ib  are constrained to lie in the D+D(D+1)/2-dimensional subspace spanned by 

ija and ib . This yields 
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where   , in
cf ν ρ  is any function of ν and ρin. That equation (S71) satisfies equation (S69) 

can be verified by direct substitution. As above, ρin corresponds to delta-functions at the 
times of the input spikes. 

Equivalently, we can define feedforward and recurrent connectivity by  

 

 

† †

† † †

†

(3) † †

( ) ( )

in in
ij ij i i

ij i

kj ij ik ki ij kj ki i k
ijk ik

j i ij
ij

kl ik ij lj kl ik i l
ijkl ikl

t u t

  

 

 

  



 

 

 



 

M a a b b

W a a a a b b

U b a

Q a a a a b b

 (S72) 

which allows us to write 
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0( ) ind
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where we have chosen † c 1  and fc(ν)=ν0-1·ν/N (recall that N is the number of neurons, and 

so the dimensionality of the rate vector, ν ) and that the parameter 0 can be used to adjust the 

mean firing rate of the population so that all components of  tν  remain positive.  
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 The network implementation of the two dimensional case mimics the one dimensional 
example described above, although it is slightly more complicated.  For the two dimensional 
network, we use 
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where the vectors a and b are given in equation (S56). In the 2D simulations presented in this 

work, in
ija  and in

ib were also obtained by analogue to the one dimensional case (in particular 

equation (S59)-(S62)). Specifically, we assumed that information about s1 and s2 came from 
two independent population of Poisson spiking neurons with Gaussian tuning curves; i.e. 
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Where 
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Comparing equations (S75) and (S76) to (S61) and(S62), we see that in
ija  and in

ib  are given by 
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where the components of ain and bin are given by equation (S59) with  

 1
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As an aside, we note that, while this analysis only considered Gaussian posterior 
distributions, a derivation based upon the Fokker-Plank equation which does not make this 
assumption also leads to network with quadratic dynamics in the rate domain, but can require 
a stimulus dependent kernel, h(s), which spans a much larger basis.   
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Olfaction 

A simple model of olfaction is shown in Fig. S3. For this model, we modify, and expand, our 
notion of what a stimulus is: the sk in Fig. S3 are now binary variables, denoting the presence 
(sk=1) or absence (sk=0) of odors (or anything else; we use odors for concreteness); the ck 
denote concentrations. We have also introduced intermediate variables, odorant receptors, 
denoted oi in Fig. S3. The activation of these variables is a measure of the actual substances 
in the air. 

 

Figure S3. (a) Graphical model for olfaction. Top row: the sk are binary variables which 
indicate the presence or absence of an odor. The associated ck represent the intensity of the 
odors on each trial. Second row: the odorants, oi, are real valued quantities which represent 
actual substances in the air; in this model, they are given by a mixture of odors. Bottom row: 
the ri are the population patterns of activity which provides a linear PPC representation of the 
odorants.  (b) Graphical model describing the blicket experiment.  Here, sA and sB are binary 
variables which indicate whether or not the objects A and B are blickets.  Two experiments 
are performed with outcomes o1 and o2.  In experiment 1 both objects are placed on the 
detector.  In experiment 2 only object B is placed on the detector.    

  

The full encoding model, p(r={r1,r2,...}|s, c), is given by 

    | ,  | ( | , ),i i
i

p d p o p r s c o r o s c  (S79) 
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where bold quantities refer to the whole collection of firing rates, stimuli or concentrations 
(e.g., s=(s1, s2, …)). We assume, as usual, that the transformation from odorants to spike 
counts is given by a linear PPC. Here we specialize immediately to Poisson encoding, 

    | ,i i i i bp o Poisson o r f f  (S80) 

for fixed vectors fi and fb. This equation gives the population response of the neurons which 
are sensitive to odorant i. We also assume that ri is independent of oj for i≠j. We take the 
transformation from odors to odorants to be a (deterministic) linear combination of the 
presence or absence of the odors weighted by the concentrations, 

 .i ik k k
k

o w c s  (S81) 

 Because o is a deterministic function of c and s, the integral over odorants in equation 
(S79) is trivial (basically, replace oi by the sum above wherever it appears). This makes it 
easy to write down the full posterior, which is given by 

   1
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  

  s c r s c  (S82) 

where p(s,c) is the prior on the odors and their concentrations. Note that the posterior is not a 
linear PPC as the sum over ijk inside the exponent typically depends on the stimulus and the 
concentration 

 The quantity of interest is the marginal distribution of the presence of a particular 
odor, independent of its concentration and the concentrations and presence or absence of the 
other odors. The true marginal for oder k given by  

    
\

|  , |true k
k

p s d p
s

r c s c r  (S83) 

where the notation s\k  means sum over all odors except sk and  , |p s c r  is given in equation 

(S82). We now seek a transformation, 

   ,out
k kr f r  (S84) 

such that out
kr  codes, probabilistically, for sk. As usual, we encode the marginal distribution 

on s1 using a linear PPC, 
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Note that because sk is a binary variable, we may write its posterior as 
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where (1) (0)k k k a h h . 

Unfortunately, the true marginal distribution cannot be represented as a linear PPC.  
Nor can the parameters of a linear PPC approximation to the true posterior be computed 
explicitly, as was done for the Gaussian case. What we do, therefore, is test, in the main text, 
the performance of a variety of network transformations. We find that, as with the two 
problems considered above, a quadratic nonlinearity with divisive normalization provides the 
best performance. 

The blicket task is a special case of the olfaction task in which there are only two 
odours, sA and sB and two odorants, o1 and o2.  The difference here is that the two odourants 
now correspond to the two observations.  For the first observation, both objects are placed 
upon the blicket detector and so w11=w12=1.  For the second experiment only object B is 
placed upon the detector and so w22=1 and w21=0.  Note the concentration nuisance 
parameters ck appear in this equation despite their absence in the generative model for the 
blicket detection task.  This is because that task had no notion of difficulty.  In this version, 
the ck are used to model talk difficulty by increasing or decreasing the probability that blicket 
detector will sound in the presence of a blicket.    

 

Statistical Verification   

In this section we assess the performance of the optimal networks derived above, and a set of 
suboptimal networks that have been proposed in the literature (described in detail below). 
The natural measure of performance is the KL distance between the true posterior and the 
posterior recovered by the network. Because this measure provides an upper bound on how 
much information is lost1, we normalize it by the true mutual information between the 
stimulus and response. We also add one additional twist: we compute this normalized ratio 
for each value of the gain, g, and then average. This normalized ratio, denoted ΔI(g)/I(g), is 
given by 
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where the brackets represent an average over the subscripted probability distribution. Bar 
plots in the main text report the average of this gain dependent measure over the prior on g 
(or c in the explaining away example), a quantity we denote ΔI/I; it is given by
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 (S88) 

 Note that equation (S88) is not the only possible measure of performance; an 
alternative is to separately average the numerator and denominator over gain, rather than 
averaging their ratio. That alternative, however, effectively suppresses information loss for 
low gain samples (since they tend to have low information), and this low information/low 
gain situations is precisely where we expect the probabilistic nature of the code to be most 
important. 

For the coordinate transformation and Kalman filter described above, we know both 
the network transformation and the associated posterior, so computing the right hand side of 

equation (S88) is simply a matter of computing, numerically, averages with respect to  p g . 

When we consider suboptimal networks, however, we don’t know the parameterization of the 
posterior, and typically we know only the form of the transformation from r to r′. 
Consequently, we have to find both the best estimate of the posterior, and the transformation, 
numerically. This is accomplished by assuming that the both the posterior and the 
transformation are in a parameterized class, and choose the parameters to minimizing ΔI/I.  

Specifically, for a suboptimal network that implements the transformation r′=fsub(r,Θ) 
where Θ is a set of parameter, we assume that the posterior associated with the network is 
given by  

       
2

| exp .
2sub sub sub sub sub

s
p s s

           
 

r = f r, a f r, b f r,  (S89) 

For olfaction and the blicket experiment, on the other hand, because the variables of interest 
are binary, we assume that

 

      | exp .sub sub subp s s     r = f r, a f r,  (S90) 

In both cases we choose the parameters Θ, asub and bsub to minimize ΔI/I, as defined in 
equation (S88). Note that the parameters of interest are asub·fsub(r,Θ) and bsub·fsub(r,Θ).  

 For the suboptimal networks we also introduce what we call specialized decoders – 
decoders that “know” the gain or gains. For these decoders, we allow asub and bsub in equation 
(S89) to depend on gain, g. We then choose asub(g), bsub(g) and   to minimize the KL 

distance between ( | , )truep s r g  and ( | )subp s r = f (r),g . In this case, the average over gain in 

the right hand side of equation (S87) is an average over the specialized decoders; that is, there 
is a different parameterization of the network posterior for each value of the gain. Note that 
many previous investigations2-4 which have claimed to have constructed networks that 
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implement Bayes optimal computations have not considered gain as a nuisance parameter. 
Thus, they have effectively used specialized decoders. Consequently, to maintain optimality, 
their networks must adjust their parameters whenever gain is altered, while our networks do 
not. 

 In what follows, we explicitly compute ΔI/I for the models described above, and for a 
set of suboptimal models. The format of the next several sections is as follows: 

1. We translate from s′, r′ and r (which are really placeholders; see the Introduction) to 
the variables of  interest. 

2. For a given ( | )p s s  we compute the true posterior ( | , )truep s r g  and, for the 

coordinate transformation and Kalman filter cases, we compute the optimal network 

transformation ( ) r f r . 

3. We provide details of the model (e.g., number of neurons, parameters of the model), 
and we specify the prior over the gain parameters, g. 

4. We give details of the suboptimal models. 

 

Linear coordinate transformations, 3 1 2.s s s   

1. Translating to the relevant variables. 

s′=s3, r′= r3, and r=(r1, r2). 

2. Posteriors. 

3 1 2( | , , )truep s r r g  is given by equation (S19) (note that it is independent of g). 3 1 2( | , , )p s r r g  is 

also given by equation (S19). This posterior, like the true one, is independent of g. 

3. Model details. 

We used 20 neurons in each input population, 20 neurons in the output population, and the 

preferred directions, 0
js  (see equation (S23)) ranged from -5 to 5 in steps of 10/19 and the 

width of the tuning curve was given by 2 1w  . The gain parameters, gi, were uniformly 

distributed between 1 and 15, corresponding to standard deviations ranging from 0.172 to 
0.666 (i.e., population activity generated with gain=1 produced a likelihood with width 0.666, 
on average). For the priors over s1 and s2, we used αp1= αp2=1. The stimulus dependent kernel 

for the output population was given by equations (S27)-(S29) with 2
3 1w  , 1 1 / 20  , 

2 10  and 3 1f  .      

4. Suboptimal models. 

We considered three suboptimal models: quadratic, linear threshold and linear. All three have 
the form 
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 13 2( , , ).ij ijr  r r  (S91) 

The difference between the models lies in the nonlinearity, 1 2( , , )ij r r . For the quadratic 

mapping, 

 1 1 22( , ) .ij i jr r r r  (S92) 

For the linear threshold model, 

 1 2 1 2( , , ). [ ] .ij i jr r    r r  (S93) 

where [·]+ is the linear threshold function, [x]+=max(0,x). For the linear model, 3 1 2[ ; ]r r r , 

where the bracket notation on the right hand side of this equation indicates a concatenation. 

In all three cases, the two quantities that make up the posterior, asub·fsub(r,θ) and 
bsub·fsub(r,Θ) are given by (dropping the “sub” subscript for clarity), 
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For the three models, jkA and jkB were chosen to minimize ΔI/I; for the threshold 

nonlinearity, we also optimized with respect to θ. The results are presented in Fig. 3b-c of the 
main text. We also verified that a nonlinear mapping was necessary by considering the set of 
all possible linear combinations of neural activity. 

 

Non-linear coordinate transformations (estimating hand position; see equation (S33)). 

1. Translating to the relevant variables. 

s′=s3, r′= r3, and r=(r1, r2). 

2. Posteriors. 

In this case, 3 1 2 1 2( | , , , )truep s g gr r , is obtained by numerical integration of the joint posterior 

1 1 2 1 22( , | , , , )truep s s g gr r  subject to the constraints defined by the coordinate transformation 

given in equation (S33). This joint distribution is defined by the likelihood function for 
population responses conditioned on s1 and s2. These population responses are generated 

from Poisson spiking neurons with circular Gaussian tuning curves, i.e. ( ))ij ijr Poisson f s( , 

where
 

   0( ) exp cos( ) 1 .j
j i is g sf K s   (S95) 
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3. Model details. 

We used 10 neurons in each input population. The preferred directions, 0
js , ranged from -π to 

π in steps of 2π/10. Concentration parameters Ki were set to 1. The gain parameters, gi, were 
uniformly distributed between 5 and 20, corresponding to standard deviations ranging from 
0.127 to 0.254 (i.e., population activity generated with gain=5 produced a likelihood with 

width 20.127 radians, on average). For the priors over s1 and s2, we used circular Gaussians 
with mode at zero and concentration parameters Kpi= 1, for i=1,2.   

4. Suboptimal models. 

Since none of the models we considered were optimal for this case, we considered four 
suboptimal models: quadratic, linear threshold, linear, quadratic with divisive normalization. 

All four have the same form as in equation (S91), 13 2( , , )ij ijr   r r . Once again, the 

difference between the models lies in the nonlinearity, 1 2( , , )ij r r . For the quadratic 

mapping, 1 2( , , )ij r r  is given by equation (S92); for the linear threshold model by equation 

(S93), and, as above, for the linear model, 2 1 21( , , ) [ ; ]r r r rφ , where again the notation 

indicates a concatenation. For the quadratic model with divisive normalization we used
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In all four cases the posterior was assumed to take the form of a circular Gaussian, i.e.  
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 (S97)

 

where   represents the parameters of the function 1 2( , , )ij r r . For the four models, jkA , 

jkB and were chosen via gradient descent to minimize ΔI/I. The results are presented in 

Fig. 3b-c of the main text. We also verified that a nonlinear mapping was necessary by 
considering the set of all possible linear combinations of neural activity. 

 

Kalman Filter (1D) 

1. Translating to the relevant variables. 

s′=s(t), r′=r(t) (equation (S55) with δt=10 ms), s=s(t- δt ) and r=rin(t). 

2. Posteriors. 
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There is no direct expression for the posterior distribution of s(t) given the input spike train. 
To find the true posterior, it is necessary to integrate equation (S48) to find ν(t), and then 
insert that into equation (S45). For the approximate posterior, it is necessary to integrate 
equation (S54), determine r(t) from equation (S55), and again insert that into equation (S45) 
in place of ν(t). 

3. Model details. 

We used 20 neurons in the input layer (the layer coding for rin) and 200 in the output layer 
(the layer coding for r). The activity in the input population was very sparse, with neurons 

firing at an average rate of 1.5 spikes per second.  Preferred stimuli, 0
is , for input neurons 

were evenly spaced on the interval -4 to 4 and the tuning width, 2
w , was set to 1.  To sample 

from the true posterior, we evolved the stochastic differential equation for s, equation (S35), 
and each millisecond we generated rin(t) from equation (S62). The model – equation (S54) – 
was run continuously for 2000 seconds, with a random value for the gain parameter (g(t) in 
equation (S62)) sampled from a uniform distribution on the interval from 0 to 20 every 250 
milliseconds. Each of these runs was then repeated 8000 times. The time step was 1 ms. The 

parameters of the drift diffusion process were 2 12sec
  and 11sec  . The parameter   

in equation (S56) was set to 400 and ν0 was set to 100. These values ensured that neurons in 
the output population fired at about 100 spikes per second.  

4. Suboptimal models. 

The suboptimal network was the linearized form of the optimal network, and corresponds 
roughly to that of (Huys 2006). To linearize, we replaced a ρ  with its average, which is the 

expected Fisher information. Specifically, denoting this average IF, we used
 

 
,F t g

I   νa  (S98) 

where the average is over both time and gain and ν in this expression evolves according to 
equation (S54); that is, IF is the expected precision of the true posterior. We then evolved the 
equation

 

 2 inLIN
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d
I

dt    W M r


    (S99) 

with M and W defined as in equation (S49). The posterior in this case is given by equation 
(S45) but with ρ replaced by ρLIN. Note that we did not re-express the linear rate model in 
terms an inhomogeneous Poisson process.   

 For the specialized decoders, we fixed gain to a single value rather than sampling it 
every 250 milliseconds. We then evolved equation (S99), but with a different IF for each 
gain, with its value selected to minimize information loss. 
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Olfaction 

1. Translating to the relevant variables. 

s′=s1, 
out
k r r , and r=(r1, r2, … ). 

2. Posteriors. 

( | )true kp s r is given by equation (S83). Because the true posterior is not an exponential family 

distribution, there is no clearly defined optimal model. For all models we used the posterior 
given in equation (S86). 

3. Model details. 

Each odor, si, was present with a probability of 1/2 and the associated concentrations, ci, were 
sampled uniformly on the interval 2 to 10. For simulations with four odors, the bold solid 
lines in Fig. S3 corresponded to a mixing weight of one while the grey lines corresponded to 
a random mixing matrix, wij, sampled uniformly from 0 to 1. The average over p(c) was 
accomplished by binning each ci into four equally sized bins and then computing percent 
information loss for each of the 256 resulting bins of the vector c. For the two odor/two 
odorant or blicket case, one odor gave rise to both odorants with mixing weight one, while 
the other odor gave rise to only one. Also, in this case, concentrations were sampled from the 
interval 1 to 5.  Each odorant was associated with a population of 10 neurons with mean 

firing rates given by ai i bif o f , where fai and fbi were randomly selected for each input 

neuron from a uniform distribution between 0 and 1. The network parameters (the Ajklm 
below) were learned via stochastic gradient descent on ΔI/I.    

4. Suboptimal models. 

All the models we consider have the form
 

 1 2
1, ( , ,..., )jklm

out i
k jklm

jklm

w  r r r  (S100) 

where rjl is the lth spike count in population j (and similarly for rkm). Note that we don’t need 

the individual components of 1ir ; we need only 11 a r  (see equation (S86)). The latter 

quantity is given by 

 21 1( , ,..., )jklm
out
k jklm

jklm

A    a r r r  (S101) 

where 

 1 .i
jklm i jklm

i

A a w  (S102) 

We considered 4 models. The first was quadratic with divisive normalization, for 
which
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This corresponds to equation (21) of the main text. The second was simply quadratic,
 

 1 2( , ,..., ) .jklm jl kmr r  r r  (S104) 

The third was threshold linear,
 

 1 2( , ,..., ) [ ] .jk l km ml jr r     r r  (S105) 

And the fourth was linear,
 

 1 2( , ,..., ) .jklm jlr  r r  (S106) 
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Simulations of 2D Kalman Filter for the Hand Tracking Task 

In this section we show how we created a neural network implementation of the inference 
algorithm used to model the behavioral experiment of Wolpert et al. (Ref. 5). In that 
experiment, Wolpert and colleagues modelled the responses of subjects performing a linear 
reaching movement in a virtual environment. In the task, the subjects were cued to move their 
hand to a specific location. Upon initiation of the movement the visual representation of the 
hand disappeared, leaving proprioception as the only source of sensory information about 
arm position. After a variable delay (0-2 seconds), a short tone was played, and subjects 
ended their movement. At that point, subjects were asked to estimate the position of their 
(now stationary) hand. 

The equations of motion describing this system are given by 
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 (S107) 

where m is the mass of the hand,  is the coefficient of friction, u(t) is the force applied by the 

muscles, and x and v  represent Gaussian white noise with (diagonal) covariance ηηΣ . In 

the notation of equation (S63), s=(x, v) and 
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Following Wolpert et al., for u(t) we use 

   ( ) 1 2 toneu t F t t     (S109) 

where F is a constant,  t  is the Heaviside function, and ttone is the time at which subjects 

apply the force needed to terminate the movement. The parameters we use in the model are  
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In addition to the equations which model the evolution of the underlying variables of 
interest (x and v in this case) we must also specify a model for the evidence. Wolpert et al. 
modelled the proproceptive evidence as noise corrupted measurements of the hidden 
variables,  
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where  x t  and  y t  are uncorrelated, Gaussian, and white, with variances given by
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Equations (S107)-(S112) are sufficient to fully specify a Kalman filter. Since the 
Kalman filter returns an efficient and unbiased estimate in these conditions, whereas in 
behavioural experiments subjects are biased5, Wolpert et al. found it necessary to generate 
observational evidence using one set of model parameters, but then implement a Kalman 
filter using a different set of parameters. In particular, Wolpert et al. assumed that humans 
overestimated the acceleration applied to the hand (they had an approximate internal model). 
Thus, they implemented a Kalman filter which assumed that the parameter   in equation 

(S107) was 1.4, rather than its actual value, which was 1. 

To replicate their results, we made the same assumption when building our network 
implementation of a Kalman filter. Specifically, we evolved equation (S73) for the rate ν with 
the parameters given in equations (S107)-(S112) but with β set to 1.4 (to provide a biased 
internal model). Unbiased evidence concerning hand position and velocity was provided by 
input spike trains, rin(t), which were generated by evolving the stochastic differential 
equations for x(t) and v(t) (equation (S107) with β set to 1, with the same realization of the 
noise as was used with β=1.4), and then simulating Poisson processes conditioned on these 
hidden variables. Specifically, for sample paths x(t) and v(t) from the numerical solution to 
equation (S107) with β set to 1, we generated ρin(t) from equations (S75) and (S76) with s1(t) 
replaced by x(t) and s2(t)  replaced by v(t).   

Finally, we had to insure that rin(t) corresponds to the noise model utilized by Wolpert 
et al. (equations (S111) and (S112)). To do that, we note that the time-evolution equations for 
a Kalman filter with continuous valued evidence (as in equation(S112)) is the same as 
equation (S68) except that the terms Iin and (I·μ)in are replaced by terms corresponding to the 
continuous evidence associated with equations (S111) and (S112). Examining equation (S68), 
and its counterpart, equation (S69), we see that this induces the following condition on rin(t),
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where the angle brackets indicate an average over sample paths of x(t) and v(t) generated 
from equation (S107) with β set to 1.  As with equation (S78), we let 
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The noise averages of in
xρ   and in

vρ  are equal to the firing rates, which are given by 

equation (S75) (with, as above, s1 replaced by x and s2 by v), and with tuning curves given by 

equation (S76). As with equation , we use 2
, , 1 /in in

x i v i wa a    and 0 2
, , /in in

x i v i i wb b s   . Putting 

this all together yields  
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When the preferred stimulus values, 0
is , are evenly spaced and concentrated around 

the typical values of the random variables x(t) and v(t), we can take the continuous limit to 
transform the sums over i to integrals to obtain
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where 0s  is the spacing between adjacent values of 0
is . Because 2

x  and 2
v  have the same 

numerical value, all four expressions in equation (S116) yield the same value for the gain,  
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We used 2
w =1/2 m2 and 0 8( 60.5) /120,  1,...,120is i i    (the latter implying that 

ˆ 8 /120s  ). Inserting these into equation (S116) yields g=198 Hz.  (For interested readers 
we also note that an appeal to Fisher Information in the input populations could also have 
been used to obtain this result).   

Bias and variance were computed by comparing the mean and variance produced by 

the biased network  1.4   that of the optimal Kalman filter, averaged over 20,000 sample 

paths. As in Wolpert et al. this was done for three forced feedback conditions corresponding 
to F={1.3, 1.5, 1.9}.   
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