UCL Logo

Sam Roweis
Department of Computer Science, University of Toronto, Canada


Wednesday 25 May 2005



Seminar Room B10 (Basement)

Alexandra House, 17 Queen Square, London, WC1N 3AR



Neighbourhood Components Analysis


Say you want to do K-Nearest Neighbour classification.  Besides selecting K, you also have to choose a distance function, in order to define "nearest".  I'll talk about a novel method for *learning* -- from the data itself -- a distance measure to be used in KNN classification. The learning algorithm, Neighbourhood Components Analysis (NCA) directly maximizes a stochastic variant of the leave-one-out KNN score on the training set. It can also learn a low-dimensional linear embedding of labeled data that can be used for data visualization and very fast classification in high dimensions. Of course, the resulting classification model is non-parametric, making no assumptions about the shape of the class distributions or the boundaries between them.  If time permits, I'll also talk about newer work on learning the same kind of distance metric for use inside a Gaussian Kernel SVM classifier.  (Joint work with Jacob Goldberger)


Associated paper: