UCL Logo

Iain Murray

Department of Computer Science, University of Toronto, Canada


Wednesday 28 May 2008



Seminar Room B10 (Basement)

Alexandra House, 17 Queen Square, London, WC1N 3AR


Assessing high-dimensional latent variable models


Having built a probabilistic model, a natural question is:

"what probability does my model assign to the data?".

We might fit the model's parameters to avoid having to compute an intractable marginal likelihood. Even then, evaluating a test-set probability with fixed parameters can be difficult. I will discuss recent work on evaluating high-dimensional undirected graphical models and models with many latent variables. This allows direct comparisons of the probabilistic predictions made by graphical models with hundreds of thousands of parameters against simpler alternatives