
Using the Computing Resources at Gatsby

Dr John Pelan

October 5, 2012

Contents

1 Computational Facilities Overview 3
1.1 Compute Servers . 3

1.1.1 Batch Jobs . 3
1.1.2 Scratch Space . 3
1.1.3 Interconnects . 4

1.2 Compilers & Optimization . 4
1.3 Checkpointing . 4
1.4 Questions . 4

2 Filesystems, Quota and Backups 5
2.1 Considerations . 5
2.2 Local Filesystems . 5
2.3 Network Filesystems . 5
2.4 Special Files . 5
2.5 Disk Usage . 6
2.6 System Quota . 6

2.6.1 Users’ View of Disk Quotas . 6
2.6.2 Surviving When the Quota Limit Is Reached . 7

2.7 Backups . 7
2.7.1 Online Backup . 7
2.7.2 Tape Backup . 7
2.7.3 Files Omitted from Backups . 7

3 Compilers & Optimization 9
3.1 gcc . 9
3.2 PGI . 9
3.3 Parallel Matlab & MEX code . 9
3.4 NAG Libraries . 9
3.5 General Optimization . 9

4 Batch Processing 10
4.1 Initial Steps . 10
4.2 Essential Tips . 10
4.3 Commands . 11

1

4.4 Example Scripts . 11
4.5 Example Parameter Sweeps . 12

4.5.1 Parameter Sweep - Alternative . 12
4.6 Reservations . 13

1 Computational Facilities Overview

The Unit has a range of in-house computational facilities comprised of workstations and central compute servers. Every-
one is issued with a reasonably powerful workstation at their desk and these have at least eight x86 64 cores (normally
Intel Xeon) and a supplementary GPU device (Nvidia CUDA). Half the resources of each workstation - including the full
GPU if installed - are made available as a communal resource accessed by a batch processing system called PBS/Torque.

The central compute facilities are also accessed via the same batch mechanism. You are expected to use the resources
available on your workstation first before seeking them elsewhere. You should use the batch queue when your workstation
is fully loaded or where the resource requirements are exceeded (e.g. RAM).

If you think you will need additional resources (CPUs, disk-space etc.) please inform the IT Team as soon as you
are aware of this. Resources need to be planned for far in advance. and adding memory or disk-space is often not trivial,
involves down-time etc. Also, if you are running many jobs in parallel that require sustained disk or network bandwidth
you should inform the IT Team. At the very least, you should stagger the jobs or introduce random delays so that they are
not all reading and writing at the same time.

1.1 Compute Servers

This is a rough outline of the current facilities (although it may be out-of-date). Normally you do not need to worry about
specific machines, just create a batch job that requests the necessary resources and the system will run your job on the
most appropriate machine.

Machine Name CPU cores Type Memory (GB)
deckard 32 2.1 GHz AMD 6272 (Interlagos) 128
roy 32 2.1 GHz AMD 6272 (Interlagos) 128
rachael 32 2.1 GHz AMD 6272 (Interlagos) 128
pris 32 2.1 GHz AMD 6272 (Interlagos) 128
zhora 24 2.2 GHz AMD 6174 (Magny-Cours) 96

Table 1: Compute nodes with 10 GBe interconnect

Machine Name CPU cores Type Memory (GB) Nvidia CUDA card
leon 24 1.8 GHz AMD 6168 (Magny-Cours) 96 Tesla C2050
behemoth 48 2.4 GHz AMD 8131 (Istanbul) 256 Quadro FX 3800

Table 2: Compute nodes with CUDA compatible GPUs

1.1.1 Batch Jobs

You can use the PBS batch queue to distribute jobs amongst idle workstations. Please do not use alternative mechanisms
(e.g. logging in directly using ssh) unless strictly necessary as that will undermine the load-balancing. If you need
additional features please submit an enhancement request.

1.1.2 Scratch Space

The /nfs/data storage area can be regarded as temporary scratch space. Please keep this tidy and delete anything
that is no longer needed.

1.1.3 Interconnects

There are no dedicated interconnects for MPI use - however all five machines in Table 1 are interconnected using 10 GbE.

1.2 Compilers & Optimization

If your jobs take a long time, it is worth making some effort to optimize them. This might mean using the Matlab
compiler (mex) or coding part/all of your application in Fortran or possibly C. It is also worth investigating the compiler
flags. Please note that the Portland Group Compilers are capable of parallelizing C and Fortran programs.

See section 3 for more information on how to compile your code and use these flags.

1.3 Checkpointing

If your jobs run for long periods you should have some checkpointing mechanism (i.e. periodically saving the current
state) in case the job is interrupted by urgent system maintenance / failure etc. It is also useful to verify the output of such
jobs to ensure that it is in line with expectations.

1.4 Questions

• Why don’t you use Condor ? We evaluated a number of systems and PBS/Torque was the easiest to maintain at the
time. This is re-evaluated from time to time.

• What about external resources ? We do have access to a number of external resources at UCL and beyond. Please
contact the IT Team to establish your requirements.

Unix Path Windows Path Description
/ C: Root partition on a local drive
n/a My Documents Do not use!
/unsafe U: Short term file storage (days)

Unix Path Windows Path Description Backups? Highly Available?
/nfs/home* W: Home directories, for your most important files Yes Yes
/nfs/data* For data sets or other bulky, reproducable material No Yes

2 Filesystems, Quota and Backups

2.1 Considerations

Every computer has a local disk (one that is directly attached) for the purposes of storing the operating system and
applications. There are also network based filesystems - these are provided over the network from central fileservers but
can be accessed as if they were local.

Files stored on local disks should be considered at high risk because they are not protected or backed up in any way.
When workstations are replaced or upgraded the local disks are usually erased. In contrast, files stored on the central
servers have some level of protection - at the very least they are protected against the failure of a single disk.

It should be clear therefore that important files should not be stored on local filesystems. You are free to place copies
of important files there or use the local files as ’scratch’ space but always bear in mind that local files are ephemeral.
Many Linux distributions are arranged so that the /tmp is erased upon every boot.

Some systems are fully redundant, i.e. there is no single point of failure (SPOF) whereas other systems may fail
outright. Where there is a SPOF and that fails, it is unlikely that your files will be lost but they will not be available until
the system is repaired. This could take many working days, perhaps longer depending on the complexity of the system
involved and the support contract.

2.2 Local Filesystems

Do not store important files on the local filesystems.
Windows users should not store files on the desktop.

2.3 Network Filesystems

The following table outlines the network file systems;
As only the home directories are regularly backed-up, only these should be used for important files/data. Anything

that can be easily recreated or downloaded should be stored in the data filesystems. You are advised to assess your files
every 6 months with a view to clearing out old, unnecessary files particularly from the home directories.

Common files, for sharing amongst users, can be stored in /nfs/data[23] or /nfs/common.

2.4 Special Files

Please note that ”’core dump files”’ (core.[0-9]*) may be deleted from time to time so please rename them if you
want them retained.

2.5 Disk Usage

A report is generated every day outlining [http://www.gatsby.ucl.ac.uk/local/usage.txt Gatsby disk usage]. You can check
your own disk usage using the du command under Linux, e.g.

cd

du -sk

If an NFS filesystem exceeds 95% of its capacity, a message is sent to the top five users of that filesystem asking them
to consider reducing their usage.

2.6 System Quota

All filesystems have a finite size and there is a limit on the growth of each one imposed by the tape backup technology. The
main purpose of the imposition of quotas is to prevent runaway jobs filling that finite space and thus preventing normal
operations. Quota thus has to be set such that the allowed overhead is not so great that only a few users users could fill the
filesystem by themselves.

The implementation of quota in Gatsby is such that there is one limit on usage across all the main filesystems (ev-
erything prefixed /nfs/home. You should actively keep an eye on the amount of space you are consuming as a good
citizen.

quota -s

It will report something like this;

Filesystem blocks quota limit grace files quota limit grace

nfs-main:/gatsby/home1/users 12365M 40960M 51200M 90226 0 0

Blocks are 512 bytes in size. Your quota is shown in conjunction with a hard limit. You quota can be exceeded for
brief periods (about 7 days) but the limit figure cannot be exceeded. Typically the limit will only be a GB or two over
your normal quota but this depends on the overall amount of free space.

Please don’t be fooled by;

df -H

As the disk space is now aggregated it will report a very large number here (and the same number for all central
file-systems).

There is a quota report generated daily.

2.6.1 Users’ View of Disk Quotas

The quota command provides information on the quotas that have been set by the system administrators and current
usage. There are four numbers for each limit: current usage, soft limit (quota), hard limit, and time limit. The soft limit
is the number of 1K-blocks (or files) that the user is expected to remain below. The hard limit cannot be exceeded. If a
user’s usage reaches the hard limit, further requests for space (or attempts to create a file) fail with the ”Quota exceeded”
(EDQUOT) error.

When a user exceeds the soft limit, the timer is enabled. Any time the quota drops below the soft limits, the timer is
disabled. If the timer pops, the particular limit that has been exce eded is treated as if the hard limit has been reached, and
no more resources are allocated to the user. The only way to reset this condition, short of turning off limit enforcement
or increasing the limit, is to reduce usage below quota. Only the superuser (i.e. a sufficiently capable process) can set the
time limits and this is done on a per filesystem basis.

http://www.gatsby.ucl.ac.uk/local/usage.txt

daily.X Backup from X days ago
weekly.X Backup from X weeks ago (start of that week)
monthly.X Backups from X months ago (start of that month)

2.6.2 Surviving When the Quota Limit Is Reached

In most cases, the only way for a user to recover from over-quota conditions is to abort whatever activity is in progress on
the filesystem that has reached its limit, remove sufficient fi les to bring the limit back below quota, and retry the failed
program.

However, if a user is in the editor and a write fails because of an over quota situation, that is not a suitable course
of action. It is most likely that initially attempting to write the file has truncated its previous contents, so if the editor is
aborted without correctly writing the file, not only are the recent changes lost, but possibly much, or even all, of the co
ntents that previously existed.

There are several possible safe exits for a user caught in this situation. He can use the editor shell escape command to
examine his file space and remove surplus files. Alternatively , using sh, he can suspend the editor, remove some files,
then resume it. A third possibility is to write the file to some other filesystem (perhaps to a file on /tmp) where the user’s
quota has not been exceeded. Then after rectifying the quota situation, the file can be moved back to the filesystem it
belongs on.

2.7 Backups

Backups are copies of your files. They are made for two reasons;

1. To guard against accidental modification, corruption or deletion.

2. To guard against disk failure, fire, theft etc.

2.7.1 Online Backup

The first issue above is handled by the online backup system. It is a permanently online, disk backup system which
uses rsnapshot. Users can retrieve their own files without any administrator intervention. The files are stored under
/nfs/backup under directories which indicate when the snapshot was taken;

The timestamps will clearly indicate when the backup was taken. For obvious reasons the backups are read-only The
number of backups may vary depending on the available disk-space although it is hoped that the last seven (7) days will
always be present.

2.7.2 Tape Backup

The second issue is handled by a tape back-up system as the tapes can be physically removed from the Unit. Tape backups
are made at least once per month but no more frequently than once per week.

2.7.3 Files Omitted from Backups

The following patterns are used to exclude files from online and tape backups;

core.[0-9]*
.nfs*
.netscape/cache/

http://www.rsnapshot.org/

matlab_crash_dump.*
galeon/Cache/

*.slt/Cache/

.kde/share/thumbnails/

.kde/share/cache/

.kde/share/apps/

.mcop/trader-cache/

.metacity/sessions/

.gconf/%gconf-xml-backend.lock/

.gnome-smproxy-*
gnome-terminal-*
bars_input/

dir_knots/

3 Compilers & Optimization

3.1 gcc

The GNU compiler is installed on all Linux machines. You should use version 4 of the compiler - check with gcc -v.
If code is to be used only on one machine type you should specify this at compile time using -march=xxxx. This

allows the compiler to make strong assumptions about the processor and its available features to get better results. The
option -mtune=xxxx tunes for that processor but still allows other CPUs to be used - march implies mtune.

On the AMD Interlagos machines, for example, one can achieve good results with;

gcc -O2 -march=bdver1

But the resulting code is only good for those machines.

• AMD Developer Guide to Compiler Optimizations

3.2 PGI

We have two floating licenses for the Portland Group PGI Cluster Development Suite. They are installed under /opt/pgi
on most machines and are in 32-bit and 64-bit flavours. Please use the modules system to place the PGI compiler binaries
on your path.

module add pgi

The PGI suite includes the AMD Core Math Library (ACML) which are a full implementation of the BLAS and
LAPACK libraries, tuned for AMD processors.

• PGI Documentation

3.3 Parallel Matlab & MEX code

Matlab has a Parallel toolbox for programming explicit parallelism.
It is possible to compile your Matlab program as a standalone executable. This may result in a speed-up of your code.

It may also be possible to rewrite your Matlab code as Fortran 2008 and compile that instead.

3.4 NAG Libraries

We currently have the NAG library installed - both as a Matlab toolbox and for standalone PGI Fortran applications
(/opt/NAG).

• NAG libraries

3.5 General Optimization

If you are sweeping parameters but over the same data-set, it should be better to write parallel code (perhaps OpenMP)
so that the data-set can be held in common memory and each core sweeps over a subset thereof. This avoids memory
pressure and needing to load the same data-set multiple times on the same machine. You will see benefits of caching -
depending on memory access patterns.

http://www.pgroup.com/
http://www.pgroup.com/products/cdkindex.htm
http://developer.amd.com/acml.jsp
http://www.pgroup.com/resources/docs.htm
http://www.nag.co.uk/numeric/numerical_libraries.asp

4 Batch Processing

We use the PBS/Torque & Moab batch queuing system (from Adaptive Computing which distributes jobs across compute
nodes and idle workstations. Please do not defeat the queuing system by using alternative load-distribution mechanisms
or logging in directly.

Please remember that your jobs may be inadvertently killed if a workstation is switched off or suddenly fails. For jobs
that cannot be check-pointed or otherwise need reliability please direct your jobs to the central compute servers using the
directives specified below.

Every multi-core workstation should be included by default but the queuing system will only use up to five of those
cores (i.e. a load-level of 5.0). There is an upper CPU limit of 10 days of CPU time to catch runaway jobs - this should
be more than sufficient.

4.1 Initial Steps

A compute job is just an ordinary shell script which is comprised of the list of commands that will be executed. The
preferred shell is /bin/bash.

When you submit a job, the job’s standard output will go to a file in the current directory. You should get an e-mail
from the system if the job fails.

4.2 Essential Tips

• If you are running many jobs in parallel that require sustained disk or network bandwidth you should inform the IT
Team. At the very least, you should stagger the jobs or introduce random delays so that they are not all reading and
writing at the same time.

• Matlab users need to run in single-threaded mode - matlab -singleCompThread - to avoid using more CPUs
than allocated.

• Similarly, if you are using a multithreaded application you will need to set the number of available CPUs to the
number requested. Setting OMP NUM THREADS to the number of requested CPUs should suffice.

• The queues have maximum limits which cannot be exceeded. Default limits will be applied to all jobs that don’t
specify what their limits are. You should try to set these appropriately as they will enable the resources to be used
efficiently. It will also effect how your jobs are queued.

• The default limits are 1 CPU hr and 1GB of memory. Set your required limits using qstat options or via embedded
directives in the script.

\#PBS -l walltime=1:00:00

\#PBS -l pmem=2gb

• NB pmem is the memory limit for any one process within the job.

• Mex jobs (compiled standalone Matlab) do not consume licenses.

• Jobs should be launched from NFS directories and not local directories like /tmp

• If you are using the modules commands, please include the following preamble:

http://www.adaptivecomputing.com/

\#PBS -S /bin/bash

#

if [-f /etc/bash.bashrc]; then

. /etc/bash.bashrc

fi

#

• Requesting a GPU

#PBS -l gres=gpu:1

4.3 Commands

• Submit: qsub jobname

• Check status of your jobs: qstat

• Overview of systems as a whole: qstat -Q

More help can be obtained on the command-line from command --help or man command or via the online
manuals from Adaptive Computing.

4.4 Example Scripts

This is a test script.

#PBS -S /bin/sh

#

echo "Job execution host: " $HOSTNAME

echo "Shell: " $SHELL

echo "The host where the job was submitted: " $PBS_O_HOST

echo "The login name was used for submitting the job: " $PBS_O_LOGNAME

echo "Home directory: " $PBS_O_HOME

echo "Working directory: " $PBS_O_WORKDIR

echo "PBS environment: " $PBS_ENVIRONMENT

echo "Original queue: " $PBS_O_QUEUE

echo "Execution queue: " $PBS_QUEUE

echo "Job ID: " $PBS_JOBID

echo "Job name: " $PBS_JOBNAME

\#

A generic Matlab script

#PBS -S /bin/bash

#PBS -l pmem=1gb

#

echo "Job execution host: " $HOSTNAME

#

http://www.adaptivecomputing.com/support/documentation/
http://www.adaptivecomputing.com/support/documentation/

if [-f /etc/bash.bashrc]; then

. /etc/bash.bashrc

fi

#

#

module add matlab

matlab -nodisplay -singleCompThread -r "a = sum(rand([1,10000])); save a; exit;"

#

4.5 Example Parameter Sweeps

There are many ways of doing this and it will depend on the nature of your job. The easiest way is to use the built-in -t
array request function in qsub:

The array_request argument is an integer id or a range of integers. Multiple ids or id

ranges can be combined in a comma delimted list. Examples : -t 1-100 or -t 1,10,50-100

Each job will have PBS ARRAYID set to a unique value according to what was specified above:

#PBS -S /bin/bash

#PBS -l pmem=5gb

#

echo $PBS_ARRAYID

#

You can read the environment variable in Matlab using getenv(’PBS_ARRAYID’)

#

4.5.1 Parameter Sweep - Alternative

You can create a unique script for each job.

#!/bin/tcsh -f

#

foreach parameter (1 2 3 4 9 11 27 45 87 99)

#

A separate M file is created per parameter

#

cat > in.${parameter}.m << EOF

subject=$parameter

run_some_function_of_subject

EOF

#

A separate script (qsub job) is created per parameter

#

cat > script.${parameter} << EOF

#!/bin/tcsh -f

#

/opt/matlab-7.7.0/bin/matlab -singleCompThread -nodisplay -nosplash > out.${subject} < in.${subject}.m

EOF

#

Make the script executable (useful for testing)

#

chmod a+x script.${subject}

#

Submit the job

#

qsub script.${subject}

#

end

4.6 Reservations

You can reserve your own workstation by submitting a dummy job.

#PBS -l walltime=1:00:00

#PBS -l mem=2gb

#PBS -l pmem=2gb

#PBS -l nodes\section{1:ppn}4

#PBS -l host=flies

#

Reserve 4 CPUS and 2GB on flies for 1 hour

Just edit this file to suit your needs

#

sleep 3600

You can use this script to generate the reservation jobs (courtesy of Charles & John) ;

#!/bin/sh

usage:

reserve [<memory> [<cores> [<hours>]]]

memory defaults to 2gb

cores defaults to 4

hours defaults to 1

this reserves 2gb of memory, 4 cores for one hour on the current

machine.

mem=${1:-2gb}

cores=${2:-4}

hours=${3:-1}

seconds=$((hours*60*60))

trap ’rm $tmp’ INT QUIT TERM EXIT

tmp=‘mktemp‘

host=‘hostname‘

cat <<EOF >$tmp

#PBS -l walltime\section{$hours:00:00,mem}$mem,pmem\section{$pmem,nodes}1:ppn\section{$cores,host}$host

sleep $seconds

EOF

qsub $tmp

	Computational Facilities Overview
	 Compute Servers
	 Batch Jobs
	 Scratch Space
	 Interconnects

	 Compilers & Optimization
	 Checkpointing
	 Questions

	Filesystems, Quota and Backups
	 Considerations
	 Local Filesystems
	 Network Filesystems
	 Special Files
	 Disk Usage
	System Quota
	 Users' View of Disk Quotas
	 Surviving When the Quota Limit Is Reached

	 Backups
	 Online Backup
	 Tape Backup
	 Files Omitted from Backups

	Compilers & Optimization
	 gcc
	 PGI
	 Parallel Matlab & MEX code
	 NAG Libraries
	General Optimization

	Batch Processing
	 Initial Steps
	 Essential Tips
	 Commands
	 Example Scripts
	 Example Parameter Sweeps
	 Parameter Sweep - Alternative

	 Reservations

