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Abstract—This paper addresses the problem of multiple-input
multiple-output (MIMO) frequency nonselective channel estima-
tion. We develop a new method for multiple variable regression
estimation based on Support Vector Machines (SVMs): a
state-of-the-art technique within the machine learning community
for regression estimation. We show how this new method, which
we call M-SVR, can be efficiently applied. The proposed regres-
sion method is evaluated in a MIMO system under a channel
estimation scenario, showing its benefits in comparison to previous
proposals when nonlinearities are present in either the transmitter
or the receiver sides of the MIMO system.

Index Terms—Channel estimation, MIMO systems, multivariate
regression, support vector machine.

I. INTRODUCTION

THE aim for increasing capacity and quality of service in
wireless systems is drawing considerable attention toward

multiple-input multiple-output (MIMO) systems that exploit the
spatial dimension and the scattering properties of most radio
channels. Although noncoherent MIMO techniques have been
addressed [1], channel estimation and coherent techniques are
the way to achieve the capacity gain claimed. Thus, channel
compensation issues, including intersymbol interference (ISI)
and fading, have been addressed through different approaches
in several recent publications [2]–[6], either assuming perfect
channel estimation or data-aided or blind solutions.

Support vector machines (SVMs) are state-of-the-art tools for
linear and nonlinear input–output knowledge discovery [7], [8].
SVMs were first devised for binary classification problems [9],
and they were later extended for regression estimation problems
[10], [11], among others. Although the first schemes to solve
SVMs used quadratic programming, iterative reweighted least
square (IRWLS) solutions are generally faster [12], allow the
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University Carlos III de Madrid, A28911 Leganés-Madrid, Spain, and also
with the Gatsby Computational Neuroscience Unit, University College
London, London, WC1N 3AR U.K. (e-mail: fernando@tsc.uc3m.es; fer-
nando@gatsby.ucl.ac.uk).

Digital Object Identifier 10.1109/TSP.2004.831028

introduction of arbitrary cost functions in the SVM functional
[13], andare straightforward extensible to adaptive schemes [14].

Nonlinear channel compensation techniques [15]–[18] and,
particularly, SVM-based methods [19]–[22], have been under-
taken in previous works, in most cases addressing the channel
estimation problem within a single-input single-output (SISO)
perspective.

Previous data-aided solutions for channel estimation issues in
MIMO systems are mainly developed for flat fading channels
and are based either on maximum likelihood (ML) [5] or min-
imum mean square error (MMSE) [4] channel estimation. In this
paper, we propose a new data-aided solution that takes advan-
tage of the MIMO channel multidimensionality by means of a
regression tool, which has its roots in SVMs [7]. In the proposed
solution, two assumptions are made: No ISI is present in the
channel model, and fading is slow enough in order to consider
that the channel remains stationary during the estimation in-
terval. Any other consideration regarding the channel variability
would lead to an adaptive extension of the method, similar to the
one described for classification problems in [14]. In addition
to the previous assumptions, channel nonlinearities [21], [23]
might be considered either in transmission or reception. When
facing nonlinear problems, SVMs show their benefits.

Thus, we propose an IRWLS-based approach for the regres-
sion of multiple variables [SVM multiregressor (M-SVR)],
which is then applied to the data-aided MIMO channel esti-
mation problem. We show that the proposed technique gives
some advantages in nonlinear channels, regarding bit error
rate (BER) and complexity in comparison with a radial basis
function networks (RBFN) based approach and an unidimen-
sional support vector regressor (SVR), respectively. Still, when
applied to linear channels with white Gaussian noise, M-SVR
converges to the MMSE solution, which is optimal in this case.

The rest of the paper is organized as follows: Section II
addresses separately a general model for a MIMO system
with channel nonlinearities and nonlinear channel estimation
issues. Section III introduces the multidimensional regression
approach based on SVM. Section IV is devoted to some com-
puter experiments where MIMO channels with nonlinearities
in transmission or reception will be the studied scenarios in
order to provide a fair environment for comparison of nonlinear
methods. A linear channel model will also be considered to
compare M-SVR to the optimal MMSE solution. Finally, in
Section V, we conclude the paper with some discussion about
the obtained results and propose some lines for further work. In
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Fig. 1. MIMO system with n transmitting and n receiving antennas. The
channel is modeled with a matrix H of size n � n , where element h
corresponds to the attenuation between the jth transmitting and the ith receiving
antennas.

the Appendix, we give a proof of convergence for the proposed
algorithm.

II. NONLINEAR CHANNEL ESTIMATION FOR MIMO SYSTEMS

A. Nonlinear Channel Models

Nonlinearities might be present at the transmission-reception
chain at two points: in the front-end transmitter and receiver,
leading to an equivalent nonlinear channel model even if the
channel propagation model is linear. In previous works [21],
[23], channel nonlinearities have been considered in the study
of nonlinear channel estimation for single-input single-output
(SISO) systems. This nonlinear SISO model will be generalized
to a MIMO model, as detailed next.

The propagation channel model we focus in this paper is
based on a linear MIMO system with transmitting antennas
and receiving antennas. We use a matrix of independent
complex Gaussian coefficients to model the frequency nons-
elective Rayleigh channel in a baseband equivalent model (see
Fig. 1). The general hypothesis for channel coefficients is a set
of independent and identically distributed (i.i.d.) variables [24].
Complex white Gaussian noise is assumed in the channel, being
modeled through a noise vector of dimension .

Within this propagation model, and without loss of generality,
nonlinearities will be considered identically affecting either to
each transmitter or to each receiver module from the MIMO
system. Thus, both cases will be treated separately, leading to
two different channel models.

Assuming that is the information signal
in each time sample modeled by a quadrature phase shift keying
(QPSK) baseband equivalent, nonlinearities in transmission
lead to a system equation where transmitted symbols follow
the nonlinear rules in [21]:

...
...

(1)

The received symbols are linear mixtures of the transmitted
symbols by means of the linear channel propagation model of
the following system equation:

(2)

Within this first channel model with nonlinearities in trans-
mission, the reception procedure is considered all linear, and
this implies that .

The second channel proposed, with nonlinearities in recep-
tion, leads to a different channel model. Information symbols
are now transmitted and linearly mixed by means of the
following equation:

(3)

In this channel model, the nonlinearities modify the received
symbols as follows:

...
...

(4)

The two channel models proposed address two different prob-
lems in complexity. In the first channel model, at the receiver
end, there is a linear mixture of the transmitted symbols, even
though each of them is a nonlinear function of the information
symbols; noise considered here is Gaussian and white. On the
other hand, the second channel model leads to nonlinear mix-
tures of all the transmitted symbols at the receiver, and the noise
can no longer be considered Gaussian.

B. Nonlinear Techniques for Channel Estimation

The MIMO pilot-based channel estimation we consider in
this paper can be faced with many tools for data regression.
In general, the regression problem consists of estimating an
unknown function from some given occurrences

and and their corresponding targets
and . This way, a MIMO channel, for

transmitting and receiving antennas, can be simply
estimated from the regression of the received symbols
corresponding to each transmitted word in the pilot sequence.
Usually, some parametric form is assumed for the estimation

, and its parameters are adjusted according to some
selected criteria or cost function (for instance, the MSE).

The most widely used method for data-aided channel estima-
tion simply uses a linear combination of the components in ,
selecting the weight of each component in order to minimize the
quadratic error:

(5)

Although the MMSE method is optimal (and quite efficient if
short pilot sequences are used) for estimating linear channels
with additive Gaussian noise, its performance can be very poor
when either of these two hypothesis are not satisfied.

Some nonlinear techniques can also be found in the commu-
nications literature. In [15], an adaptive version of RBFNs is
used to estimate the time-variant channel of an orthogonal fre-
quency-division multiplexing (OFDM) system. RBFN imple-
ments a function of the form

(6)
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where is the number of nodes in the network, are
radial functions (i.e., their values only depend on the distance
between and a centroid or prototype ), and are the
weights assigned to each of these functions.

Different forms of the radial basis functions can be
used, but we will only consider the typical Gaussian RBF:

(7)

Once is selected, , , and are free parameters
that must be estimated from the training set. This phase usually
includes a minimization of the quadratic error using a gradient
scheme. In [15], a stochastic algorithm is used to provide the
network with adaption capabilities. It is also advisable to include
a regularization term to the cost function:

(8)

where is a regularizer [25] that penalizes large values in
, and is a parameter that controls the tradeoff between error

and smoothness of the solution.
RBFNs are powerful architectures that can approximate to

an arbitrary precision any function [25], [26]. Thus, we have
chosen them as a reference with which to compare the perfor-
mance of our proposal in this paper. We have used the excellent
implementation of RBFNs by Rätsch (see, for instance, [27]).

As we have previously stated, the MIMO channel estimation
problem can be solved with a collection of unidimensional
regressors. Therefore, as a second method to perform nonlinear
channel estimation, we will consider the case in which each of
these regressors is implemented using an SVR [28], which we
briefly describe in Section III.

Next, we will propose a new method for nonlinear channel
estimation relying on SVM technology. Instead of building a
different regressor for each variable in the receiver, it considers
all of them at the same time, which leads to simpler solutions
(whose complexity does not increase with the number of re-
ceiving antennas, ), while keeping the high performance of
SVM methods.

III. MULTIREGRESSION SVM

In this paper, we introduce a generalization of SVR to solve
the problem of regression estimation for multiple variables.
Thus, we refer to our proposal, which is based on a previous
contribution [29], as M-SVR. Here, M-SVR is considered for
discovering the dependencies between transmitted and received
signals in a MIMO system.

Although under a pure Gaussian perspective the estimation
of each component can be individually addressed without loss,
the use of a multidimensional regression tool will help to ex-
ploit the dependencies in the channel and will make each esti-
mate less vulnerable to the added noise. Treating all the channel
paths together will allow to accurately estimate each of them
when only scarce data is available, and the -insensitive cost
function, which will be introduced in short, will improve the
scheme robustness when different kinds of noise and nonlinear-
ities appear in the system.

As stated in Section II, the unidimensional regression esti-
mation problem is regarded as finding the mapping between an
incoming vector and an observable output from
a given set of i.i.d. samples . The standard SVR
[8], [28] solves this problem by finding the regressor and
that minimizes ,
where is a nonlinear transformation to a higher dimensional
space, which is also known as the feature space (
and ). The SVR can be solved using only inner prod-
ucts between , where we do not need to know the nonlinear
mapping; therefore, we only need to specify a kernel function

that has to fulfill Mercer Theorem
[8]. is known as the Vapnik -insensitive loss-function,
which is equal to 0 for and equal
to for .
The solution ( and ) is formed by a linear combination of the
training samples in the transformed space that presents an abso-
lute error equal or greater than .

In the case the observable output is a vector , we need
to solve a multidimensional regression estimation problem in
which we have to find a regressor and for
every output. We can directly generalize the one-dimensional
SVR to solve the multidimensional case, leading to the mini-
mization of

(9)

where , , and will be defined shortly.
The Vapnik -insensitive loss function can be extended to

multiple dimensions, but being based on an norm, it will
need to account for each dimension independently, which will
make the solution complexity grow linearly with the number of
dimensions. If, instead, we use a -based norm, all dimensions
can be considered in an unique restriction, yielding a single sup-
port vector for all dimensions. Therefore, we propose to use

(10)

which is a differentiable version of the loss function proposed
in [29]. In the above expression, ,

, , ,
and is a nonlinear transformation to the feature space.

For , this problem reduces to an independent regular-
ized kernel least square regression for each component, but for a
nonzero , the solution will take into account all outputs to con-
struct each individual regressor and will be able to obtain more
robust predictions. The price to be paid is that the resolution of
the proposed problem cannot be done straightforwardly, and we
will have to rely on an iterative procedure to obtain the desired
solution. We have devised a quasi-Newton approach in which
each iteration has at most the same computational complexity
as a least square procedure for each component. It is a weighted
least square problem, and the number of iterations needed to ob-
tain the final result is small, making the procedure only slightly
more computationally demanding than the least square regres-
sion for each component. Therefore, we refer to it as an IRWLS
procedure [12], [30].
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A. Resolution of M-SVR

Optimization problems are solved using iterative procedures
that rely in each iteration on the previous solution ( and ,
in our case) to obtain the following one, until the optimal solu-
tion is reached. To construct the IRWLS procedure, we modify
(9) using a first-order Taylor expansion of over the pre-
vious solution, leading to

(11)

where ,
, which presents the same value and

gradient as for and (i.e.,
and

). is a lower bound of
(i.e., , ) and

because is a first-order Taylor expansion
of a convex function.

Now, we are going to construct a quadratic approximation
from (11):

(12)

where

(13)

and is a sum of constant terms that do not depend either
on or , which also presents the same value and gradient
as for and . It can be seen that
(12) is a weighted least square problem in which the weights
depend on the previous solution, incorporating the knowledge of
all the components of each . To optimize (9), we will construct
a descending direction using the optimal solution of (12), and
then, we will compute the next step solution using a line search
algorithm [31]. The IRWLS procedure can be summarized in
the following steps.

1) Initialization: Set , , , and compute
and .

2) Compute the solution to (12), and label it as
and . Define a descending direction for (9) as

.

3) Obtain the next step solution

, computing the step size using a backtracking
algorithm.

4) Compute and , set , and go back to step
2 until convergence.

Before actually computing and , we would like to
explicitly say that is not a vector but a matrix. Each column
of is a descending direction for each regressor; therefore,
one should see it as an aggregate of descending directions for
each component to be estimated. The value of is computed
using a backtracking algorithm [31], in which we initially
set (the initial choice for will become apparent
in the proof of convergence given in Appendix) and check if

. If not, we multiply by
a positive constant less than one and repeat the procedure until
a decrease is achieved in the minimizing functional.

To obtain and , we need to solve the weighted least
square problem in (12), in which each component is decoupled.
Therefore, we can solve independently for each component by
equating to zero its gradient

(14)

(15)

which can be expressed as a linear system of equations:

(16)

where , ,
, and . It can be seen that the ma-

trix in the previous linear system does not depend on ; there-
fore, it will be identical for all components, and the difference
on the linear systems associated with each pair will be
due to the independent term in (16). Each column of and

will be constructed with the solutions of (16) for each .
It is usual to work with the feature space kernel (inner product

of the transformed vectors instead
of the whole nonlinear mapping [7]. We are going to make use
of the Representer Theorem [7], [32], which states that the best
solution, under fairly general conditions, to a learning problem
can be expressed as a linear combination of the training samples
in the feature space, i.e., . If we
replace this expression into (14) and (15), the linear system in
(16) can be expressed as follows:

(17)

where is known as the kernel matrix. The
line search algorithm can be readily expressed in terms of ,
as it was presented for .

We can now argue why a nonzero will take into account
all the outputs to construct each individual regressor. If

, for every sample, and (17) only depends on each
particular output through , but if , is a function of

, that is, the square error between every dimension of and
all the regressors. Consequently, M-SVR bounds together all the
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outputs when constructing each individual regressor. A proof of
convergence of the proposed algorithm is given in the Appendix.

Once the channel has been estimated (the have been com-
puted), we cannot calculate the channel directly because it is a
function of the nonlinear transformation , but for each new
vector , we can compute the th output as .
Now, if we define the matrix , the out-
puts can be computed as

where is a vector that contains the kernel of the input vector
and the training points.

IV. COMPUTER EXPERIMENTS

In this section, we present a number of computer experi-
ments to show the benefits of our M-SVR algorithm when used
in MIMO nonlinear channel estimation. We compare the per-
formance of the nonlinear and linear regression algorithms de-
scribed in Sections II-B and III for different channels, signal-to-
noise ratios (SNRs) measured at the receiver inputs, and training
sequence lengths.

The goal in the channel estimation problem is to obtain
a good approximation to the actual channel, modeling the
dependence between transmitted and received signals. With
the MMSE method, this relation is restricted to be linear, and
the channel estimate can be explicitly given. This holds for
the M-SVR and SVR methods with a linear kernel, but it is
no longer possible when using a nonlinear transformation to a
higher dimensional space (i.e., when applying other kernel that
is different from the linear one) because in this case, we are
only able to compute the kernels. The RBFN method operates
analogously to kernel regressors.

In pilot-aided channel estimation, it is necessary to use a
training sequence known a priori by both the transmitter and
receiver. Once the channel has been modeled, the expected re-
ceived vector without noise, corresponding to each possible
transmitted QPSK codeword , is calculated. During operation,
each received signal is decoded using the nearest neighbor cri-
terion.

We have used a Gaussian kernel for both SVR-based
methods:

where is a tunable hyperparameter. The hyperparameter
[see (9)], which controls the tradeoff between the regularization
term and the error reduction term, has been set to ,
which is a good compromise value in most cases. The remaining
parameter that sets the width of the insensitivity zone of the
regressor cost function is also tuned in the training phase.

Regarding the RBFN technique, we have used a Gaussian
function for . In this method, all and parame-
ters are optimized during the training phase. We have trained
networks with a number of centroids , that is 5%, 10%, and
20% of the training sequence length, keeping for each case the
best setting. We have checked that the performance degrades
if we increase the number of centroids above 20%, requiring,

in addition, a much heavier computational load. Regarding the
number of gradient descent algorithm iterations, 40 rounds are
enough for the algorithm to converge. Finally, we have also ex-
plored different values for the regularization constant . How-
ever, we found that no regularization is needed, except in the
case where the estimated channel is linear, for which we have
used . We think that the values of used in the sim-
ulations guarantee that the solution is not overfitted, except for
the linear channel, where the regressor needs to provide a linear
solution, and extra regularization is required.

In Sections IV-A–C, we present the simulation results for
MIMO systems ( , ) with the channels proposed
in Section II-A. The number of test words has been chosen to
assure that at most one erroneous bit occurs for each 100 bits
received, and all results have been averaged over 100 trials.

A. MIMO System with Nonlinearities in the Transmitter

We first present results when the nonlinearities between input
and output signals of the channel are introduced by the trans-
mitter equipment, due to, for example, amplifiers driven near
its saturation zone. The channel is the one described by (1) and
(2), with coefficients and [21].

M-SVR is able to parameterize nonlinearities effectively, as
it is seen in Fig. 2(a) and (b), and obtains lower BER than the
RBFN for variable SNR. The improvement of our method is
specially representative for short training lengths, although the
difference is only slightly reduced for the longest training sets.
The saturation point of the curves, for which the BER is no
longer improved, increases as the SNR grows. In any case, this
point is reached in first place by the M-SVR. For the sake of
clearness in the reading of the figure, we have split the results
in two plots, grouping in each one alternative SNRs.

We have also included the results for the SVR method, which
use an cost function, instead of the used by the M-SVR.
These results are in general slightly worse than the M-SVR so-
lution. In spite of the fact that SVR algorithm performance is
similar to the M-SVR method, its computational burden is much
more intensive. While M-SVR requires just a few iterations of
the IRWLS to converge (about five steps), SVR needs approx-
imately two orders of magnitude more iterations. Besides, the
complexity of SVR increases both with and the length of
the training sequence, whereas that of M-SVR does not depend
on .

B. MIMO System with Nonlinearities in the Receiver

For the test of channels with nonlinearities in the receiver,
which are in general harder to tackle, we have run simulations
for two scenarios.

First, coefficients of (3) and (4) are set to and
. In Fig. 3, we give BER curves versus pilot sequence

lengths. For this highly nonlinear channel, the estimate given
by the RBFN is clearly and consistently worse than the M-SVR
solution, which seems to model the problem more accurately.
The plotted curves correspond to an SNR of 10.5 dB; experi-
ments with other noise levels present a similar performance.

The second channel uses and . As shown in
Fig. 4(a) and (b), results in this case are similar to those obtained
in Section IV-A. However, they present a slightly higher BER
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Fig. 2. M-SVR, SVR, and RBFN BERs as a function of the length of the
training sequence used during the training phase; the curves depicted are
generated with (a) SNR= 4.5 and 10.5 dB and (b) SNR = 2 and 8 dB. The
nonlinearity phenomenon occurs in the transmitter, affecting then solely the
input signals. Improvement of the SVR-based methods is evident.

because this case has a higher grade of nonlinearity, as discussed
in Section II-A.

C. Linear MIMO System

Finally, we have carried out experiments for a linear channel
with added Gaussian noise in order to check how M-SVR per-
forms in comparison with MMSE, which is known to be optimal
in this case (see Fig. 5). The analytical expression for the linear
channel can be obtained by setting in any of
the previous nonlinear models. Results for both methods are al-
most identical, the slight advantage of MMSE being due to the
fact that M-SVR makes no a priori assumption about the lin-
earity of the channel. If we made use of this information, we
could employ a linear kernel instead. We have carried out ex-
periments (not included in the figures) that show that results ob-
tained by M-SVR with a linear kernel are identical to those of

Fig. 3. M-SVR and RBFN BERs as a function of the length of the training
sequence used during the training phase for a fixed SNR of 10.5 dB. The channel
presents a very high nonlinear behavior.

MMSE. Again, RBFN exhibits an increase in BER with respect
to M-SVR performance.

V. DISCUSSION AND FURTHER WORK

In this work, we have tackled channel estimation for MIMO
systems. We have presented a new multivariate regression al-
gorithm based on the machine learning state-of-the-art Support
Vector Machines to solve this problem. The M-SVR algorithm
takes advantage of the MIMO spatial diversity, and it is capable
of discovering the dependencies between the transmitted and re-
ceived signals. M-SVR can be used with nonlinear kernels, such
as the Gaussian kernel, in order to effectively address nonlinear
channel estimation.

The theoretical aspects of M-SVR are fully developed, and a
proofofitsconvergenceisgiven.M-SVRrequiresacomputational
load that is comparable with that of other well-known methods
such as the MMSE estimator. Moreover, M-SVR resolution lays
in the IRWLS algorithm, which can be easily modified to use dif-
ferent cost functions or to confer it adaptive properties.

Simulation examples have been used to test our method and
to favorably compare it with the standard SVR and to an RBFN
method, which is applied independently over each dimension,
employing nonlinear channel models. We have also compared
it with the optimal MMSE strategy for linear channel models,
yielding almost equivalent results.

Channels with ISI and the inclusion of decoding stages are
logical further research lines, as well as simulations with dif-
ferent kinds of noises or the implementation of specific kernels
suitable for MIMO communications. As mentioned before, the
introduction of other cost functions in the learning algorithm
and its modification into adaptive schemes for time-variant
channels are also interesting possibilities. Finally, we believe it
is relevant to mention that the proposed M-SVR algorithm can
be extended to other signal processing problems such as sample
imputation [33], device modeling [34] or chaotic systems [35],
among others.
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Fig. 4. M-SVR, SVR, and RBFN BERs as a function of the length of the pilot
sequence for (a) SNR = 4.5 and 10.5 dB and (b) SNR = 2 and 8 dB. In this
case, it is the receiver where the nonlinear effects appear in the system, affecting
the input signals, the channel, and the noise.

APPENDIX

M-SVR PROOF OF CONVERGENCE

To prove the convergence of the above algorithm, we can rely
on the Wolfe Conditions [31] that state the necessary and suffi-
cient conditions for a line search algorithm to find a stationary
point. As the proposed problem in (9) is convex, the unique sta-
tionary point is the global optimum. Therefore, the Wolfe con-
ditions that ensure the convergence of the algorithm are

(18)

(19)

for , where, in our case,
, and is a vector formed by all the

columns of written one after another in a column vector. The

Fig. 5. M-SVR, MMSE, and RBFN BER curves in a linear MIMO channel
for SNR ranging from 2 to 8 dB. MMSE solution is optimal in this case, and
M-SVR, with a nonlinear kernel, approximates it with reasonable accuracy.

first condition is also known as the strictly decreasing property
and the second as the sufficient decreasing property. As their
names show, they guarantee that in each step, we advance to-
ward the solution and that the taken step is sufficiently large to
reach the optimal solution with any required precision in a finite
number of steps. We will now prove that the proposed procedure
fulfills both conditions.

The first condition can be easily proved. We will set ,
and we need to show that . We
will first show that , which can
be readily seen because is constructed
as a convex combination of and and the optimal
solution for (12), , and . Therefore, being that the
problem in (12) is convex, for any , we will know
that . By construction,

, and we made the gradient of both equal; therefore,
for sufficiently small , the value of the function in
can be expressed by the first-order Taylor expansion around

; consequently, , and the
first condition will hold. There exists an for which

is less than and the backtracking
algorithm is devised for finding it.

Let us rewrite the second condition as follows so that the
proof can be more clearly explained:

(20)

where , and is the th column of ,

. After some algebraic manip-
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ulations, . We can now

manipulate the left side of (20) as follows:

(21)

Now we add and subtract for all and to (21) and, for
simplicity, we will drop the , leading to (22), shown at the
bottom of the page. We now add and subtract
and to (22), leading to

(23)

where we have defined

(24)

as in (11), but the first-order Taylor expansion
is made over the actual solution instead of the previous one.

is also a lower bound for for any
and . Therefore

(25)

where we have recovered the that we suppressed in (22).

(22)

(27)
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We can repeat the same procedure for the right-hand side of
(20), leading to

(26)

Now, we set , and we show that (25) minus (26) is
greater than zero to proof the sufficient decreasing property see
(27), shown at the bottom of the previous page. The second and
third terms are greater or equal than zero by construction be-
cause it is a convex function minus its first-order Taylor expan-
sion, and the first term is the norm of a vector; therefore, unless

, the condition will hold. If , the al-
gorithm has converged to the optimal solution. As is always
greater than zero, it does not play any role in the non-negativity
proof.

REFERENCES

[1] B. M. Hochwald and T. L. Marzetta, “Space-time modulation for un-
known fading,” in Proc. SPIE AeroSense Conf., Orlando, FL, Apr. 1999.

[2] C. Komninakis, C. Frauili, A. H. Sayed, and R. D. Wesel, “Multi-input
multi-output fading channel tracking and equalization using kalman es-
timation,” IEEE Trans. Signal Processing, vol. 50, pp. 1065–1075, May
2002.

[3] N. Al-Dhahir and A. H. Sayed, “The finite-length multi-input
multi-output MMSE-DFE,” IEEE Trans. Signal Processing, vol. 48,
pp. 2921–2936, Oct. 2000.

[4] J. Baltersee, G. Fock, and H. Meyr, “Achievable rate of MIMO channels
with data-aided channel estimation and perfect interleaving,” IEEE J.
Select. Areas Commun., vol. 19, pp. 2358–2368, Dec. 2001.

[5] Q. Sun, D. C. Cos, H. C. Huang, and A. Lozano, “Estimation of contin-
uous flat fading MIMO channels,” IEEE Trans. Wireless Commun., vol.
1, pp. 549–553, Oct. 2002.

[6] Y. Li and R. Liu, “Adaptive blind source separation and equalization for
multiple-input/multiple-output systems,” IEEE Trans. Inform. Theory,
vol. 44, pp. 2864–2876, Nov. 1998.

[7] B. Schölkopf and A. Smola, Learning With Kernels. Cambridge, MA:
MIT Press, 2001.

[8] V. N. Vapnik, Statistical Learning Theory. New York: Wiley, 1998.
[9] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for

optimal margin classifiers,” in Proc. 5th Annu. ACM Workshop COLT,
D. Haussler, Ed., Pittsburgh, PA, 1992, pp. 144–152.

[10] V. N. Vapnik, The Nature of Statistical Learning Theory. New York:
Springer-Verlag, 1995.

[11] V. N. Vapnik, S. Golowich, and A. Smola, “Support vector method for
function approximation, regression estimation, and signal processing,”
in Neural Information Processing Systems, M. Mozer, M. Jordan, and T.
Petsche, Eds. Cambridge, MA: MIT Press, 1997, pp. 169–184.

[12] F. Pérez-Cruz, P. L. Alarcón-Diana, A. Navia-Vázquez, and A. Artés-
Rodríguez, “Fast training of support vector classifiers,” in Neural In-
formation Processing Systems 13, T. Leen, T. Dietterich, and V. Tresp,
Eds. Cambridge, MA: MIT Press, 2000, pp. 734–740.

[13] F. Pérez-Cruz, A. Navia-Vázquez, A. R. Figueiras-Vidal, and A. Artés-
Rodríguez, “Empirical risk minimization for Support Vector Machines,”
IEEE Trans. Neural Networks, vol. 14, pp. 296–303, Mar. 2003.

[14] F. Pérez-Cruz and A. Artés-Rodríguez, “Adaptive SVC for nonlinear
channel equalization,” in Proc. EUSIPCO, Toulouse, France, Sept.
2002.

[15] X. Zhou and X. Wang, “Channel estimation for OFDM systems using
adaptive radial basis function networks,” IEEE Trans. Veh. Technol., vol.
52, pp. 48–59, Jan. 2003.

[16] M. Martone, “Wavelet-based separating kernels for array processing of
cellular DS/CDMA signals in fast fading,” IEEE Trans. Commun., vol.
48, pp. 979–995, June 2000.

[17] A. Sayeed and B. Aazhang, “Joint multipath-doppler diversity in mo-
bile wireless communications,” IEEE Trans. Veh. Technol., vol. 47, pp.
123–132, Jan. 1999.

[18] Y. Li and N. Sollenberger, “Adaptive antenna arrays for OFDM sys-
tems with cochannel interference,” IEEE Trans. Commun., vol. 47, pp.
217–229, Feb. 1999.

[19] S. Chen, S. Gunn, and C. J. Harris, “Decision feedback equalizer design
using Support Vector Machines,” in Proc. Inst. Elect. Eng., Vision, Image
Signal Process., vol. 147, 2000, pp. 213–219.

[20] S. Chen, A. Samingan, and L. Hanzo, “Support vector machine multiuser
receiver for DS-CDMA signals in multipath channels,” IEEE Trans.
Neural Networks, vol. 12, pp. 604–611, May 2001.

[21] D. J. Sebald and J. A. Bucklew, “Support Vector Machines techniques
for nonlinear equalization,” IEEE Trans. Signal Processing, vol. 48, pp.
3217–3226, Nov. 2000.

[22] S. Chakrabartty and G. Cauwenberghs, “Sequence estimation and
channel equalization using forward decoding kernel machines,” in
Proc. ICASSP, vol. 3, May 2002, pp. 2669–2672.

[23] S. Chen, G. J. Gibson, C. F. N. Cowan, and P. M. Grant, “Adaptative
equalization of finite nonlinear channels using multilayer perceptrons,”
in Signal Process., vol. 10, 1990, pp. 107–119.

[24] G. J. Foschini and M. J. Gans, “On limits of wireless communications
in a fading environment when using multiple antennas,” Wireless Pers.
Commun., vol. 6, pp. 311–335, Mar. 1998.

[25] S. Haykin, Neural Networks: A Comprehensive Foundation, Second
ed. Englewood Cliffs, NJ: Prentice-Hall, 1999.

[26] J. Park and I. W. Sandberg, “Universal approximation using radial basis
function networks,” Neural Comput., vol. 3, pp. 246–257, 1991.

[27] K.-R. Müller, A. Smola, G. Rätsch, B. Schölkopf, J. Kohlmorgen, and
V. N. Vapnik, “Predicting time series with Support Vector Machines,” in
Advances in Kernel Methods—Support Vector Learning, B. Schölkopf,
C. J. C. Burges, and A. J. Smola, Eds. Cambridge, MA: MIT Press,
1999, pp. 243–254.

[28] A. J. Smola and B. Schölkopf. (1998) A tutorial on support vector
regression, Tech. Rep. NC-TR-98-030. Royal Holloway College,
Univ. London, London, U.K.. [Online]. Available: ftp://www.neuro-
colt.com/pub/ neurocolt/~tech_reports/1998/98 030.ps.Z

[29] F. Pérez-Cruz, G. Camps, E. Soria, J. Pérez, A. R. Figueiras-Vidal, and
A. Artés-Rodríguez, “Multi-dimensional function approximation and re-
gression estimation,” in Proc. ICANN, Madrid, Spain, 2002.

[30] F. Pérez-Cruz, A. Navia-Vázquez, P. L. Alarcón-Diana, and A. Artés-
Rodríguez, “An IRWLS procedure for SVR,” in Proc. EUSIPCO, Tam-
pere, Finland, Sept. 2000.

[31] J. Nocedal and S. J. Wright, Numerical Optimization New York, 1999.
[32] G. S. Kimeldorf and G. Wahba, “Some results in Tchebycheffian spline

functions,” J. Math. Anal. Applicat., vol. 33, pp. 82–95, 1971.
[33] R. J. A. Little and D. B. Rubin, Statistical Analysis With Missing

Data. New York: Wiley, 1987.
[34] S. A. Maas and D. Neilson, “Modeling MESFET’s for intermodula-

tion analysis of mixers and amplifiers,” IEEE Trans. Microwave Theory
Techn., vol. 38, pp. 1964–1971, Dec. 1990.

[35] M. Lázaro, I. Santamaría, C. Pantaleón, J. Ibáñez, and L. Vielva, “A
regularized technique for the simultaneous reconstruction of a function
and its derivatives with application to nonlinear transistor modeling,”
Signal Process., vol. 83, no. 9, pp. 1859–1870, 2003.

Matilde Sánchez-Fernández (M’03) received the
Telecommunication Engineering and Ph.D. degrees
from the Universidad Politécnica de Madrid, Madrid,
Spain, in 1996 and 2001, respectively.

She has been an Assistant Professor at Universidad
Carlos III de Madrid since April 2000. Previously,
she worked for Telefónica, Madrid, as a Telecom-
munication Engineer. She performed research with
the Information and Telecommunication Technology
Center, Kansas University, Lawrence, and at Bell
Labs, Holmdel, NJ. Her current research interests

are dealing with MIMO techniques, turbo codes, mobile communications,
simulation and modeling of communication systems, and adaptive coding and
modulation.



SÁNCHEZ-FERNÁNDEZ et al.: SVM MULTIREGRESSION FOR NONLINEAR CHANNEL ESTIMATION 2307

Mario de-Prado-Cumplido (S’02) was born in
Madrid, Spain, in December 1977. He received the
M.Sc. degree in telecommunication engineering
from the Universidad Politécnica de Madrid in
2000. He is currently pursuing the Ph.D. degree
with the Universidad Carlos III de Madrid, where he
is doing research on machine learning algorithms,
feature selection, and probability density estimation
techniques and their application to biomedical
problems, with particular attention to cardiovascular
pathologies.

Jerónimo Arenas-García (S’00) was born in
Seville, Spain, in 1977. He received the Telecommu-
nication Engineer degree in 2000 from Universidad
Politécnica de Madrid, Madrid, Spain, where he
was ranked number 1 in the National Award to
graduation. He is currently pursuing the Ph.D.
degree at the Department of Signal Theory and
Communications, Universidad Carlos III de Madrid.

His present research interests are focused in the
fields of adaptive signal processing and machine
learning and their applications.

Fernando Pérez-Cruz (S’97–M’01) was born in
Sevilla, Spain, in 1973. He received the Telecom-
munication Engineering degree in 1996 from
the Universidad de Sevilla and the Ph.D. degree,
also in Telecommunication Engineering, from the
Universidad Politécnica de Madrid, Madrid, Spain,
in 2000.

He is an Associated Professor with the Department
of Signal Theory and Communication, Universidad
Carlos III de Madrid. He is currently on sabbatical at
the Gatsby Computational Neuroscience Unit, Uni-

versity College, London, U.K. His current interest lies in machine learning al-
gorithmic and theoretical developments and its application to signal processing
and financial data. He has authored over 40 contributions to international jour-
nals and conferences.


