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Abstract—in this paper, two array signal processing techniques movement of the sound sources. Another way to reduce the
are combined with independent component analysis (ICA) to effect of room reflections is to employ an acoustic beamformer
enhance the performance of blind separation of acoustic signals such as delay-and-sum (DS) beamformer (e.g., [5]). However
in a reflective environment. The first technique is the subspace L ' ) ’
method which reduces the effect of room reflection when the for d.esflgnlng the beamfo_rmer, an a”aY résponse datgbase
system is used in a room. Room reflection is one of the biggestConsisting of transfer functions from possible source locations
problems in blind source separation (BSS) in acoustic environ- to microphones or, at least, the configuration of the micro-
ments. The second technique is a method of solving permutation. phone-array is required. This information is not available in the
For employing the subspace method, ICA must be used in the BSS framework.

frequency domain, and precise permutation is necessary for all . .
frequencies. In this method, a physical property of the mixing The authors previously er’posed an alternative apprqach, the
matrix, i.e., the coherency in adjacent frequencies, is utilized to Subspace method, for reducing the effect of room reflections and
solve the permutation. The experiments in a meeting room showed ambient noise [6]. In this method, room reflections are separated
that the subspace method improved the rate of automatic speech from direct components in the eigenvalue domain of the spatial
recognition from 50% to 68% and that the method of solving ., relation matrix based on the spatial extent of the acoustic sig-
permutation achieves performance that closely approaches that of . . .
the correct permutation, differing by only 4% in recognition rate. nals. .Then, the eigenvectors correspo!ﬁdlng t‘? the eigenvalues of
the direct components are used as a filter which selects the sub-
space in which the direct components lie and discards the sub-
space filled with the energy of reflections. As described in this
paper, the subspace method works as a self-organizing beam-
[. INTRODUCTION former focusing on the target sources and does not require any

T ISindispensable to separate acoustic signals and to pickmﬁvious knowledge of the array or sound field. Therefore, thg
I signals of interest for applications such as automatic spectpSpace method can be used in the framework of BSS. This
recognition (ASR) when they are used in a real en\,ironme,ﬁ_understood.fro'm the fact that the supspace method is a spe-
The framework of blind source separation (BSS) based on indé@! case of principal component analysis (PCA) with>> D,
pendent component analysis (ICA) is attractive since it can B&€reM and D denote the number of nodes (channels) of the
used to separate multiple signals without any previous knowiPut and the output of PCA, respectively [7]. PCA is known
edge of the sound sources and sound environment such as?h@& method of unsupervised learing which does not require
configuration of microphones (e.g., [1]) that is necessary in coRY Previous knowledge. In this paper, a combined approach of
ventional microphone-array signal processing (e.g., [2]). Ho€ subspace method and ICA is proposed. In this method, the
ever, when applying BSS to an acoustical mixture problem sugiPspace method is utilized as a pre-processor of ICA which re-
as a number of people talking in a room, the performance of tfdces room reflections in advance, the remaining direct sounds
BSS system is greatly reduced by the effect of the room refldB€n being separated by ICA. _
tions/reverberations and ambient noise [3]. For combining the subspace method with ICA, the fre-

One method of reducing the effect of room reflections i@uency-domain ICA [8], [9] must be employed, since the
to employ directional microphones in the BSS frameworRUbspace method works in the frequency-domain. The biggest
[4]. In this method, however, the system cannot track tfbstacle in the frequency-domain ICA is the permutation and

scaling problem. In the frequency-domain ICA, the input signal

_ _ _ _is first transformed into the frequency domain by the Fourier
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the final output. Also, different scaling at different frequencies TABLE |
leads to distortion of the frequency spectrum of the output OUTLINE OF THE ENTIRE BSS SSTEM
signal. Operation Filter | Section

For the scaling problem, the method proposed by [9], in Matrix | in this paper
which the separated output is filtered by the inverse of the 1 Taking STFT of the input i
separation filter, shows good performance. On the other hand 2 Applying the subspace method WV
for the permutation problem, a method using the correlation izl‘l’gf the instantaneous mixture | U | IIL.B
between the spectral envelope at different frequencies (denote' 4 g jvins permutation P |V
as Inter-frequency Spectral Envelope Correlation (IFSEC), 5 glving scaling problem B! |1mLC
hereafter in this paper. See Appendix | for a brief explanation.) ¢ Filtering F LD

has been proposed [9], but has been reported to sometimes
fail when the input signals have similar envelopes [3]. In this

paper, a new approach for solving the permutation problem is Subspace Scaling
proposed. This method utilizes tle®herencyof the mixing Mixing ICA - Permutation
matrices in several adjacent frequencies and is thus denoted as : ~
Inter-Frequency Coherency (IFC) in this paper. A w U B, P

This paper is organized as follows: In Section Il, the model
of the sound environment treated in this paper is described. In

Section Ill, an outline of the proposed BSS system is presented. \. ‘/
Moreover, some portions of the system which were proposed in / \
W z 7 Z

the previous studies but which are necessary for understanding
the following sections are briefly described. In Section 1V, the ,
subspace method for reducing room reflections is detailed. In Y'x

Section V, a new method for solving the permutation is pro- '

posed. In Section VI, results of experiments using real data to Fig. 1. Proposed BSS filter network.
evaluate the proposed system are reported.

Il. MODEL OF SIGNAL Eigenvalue

Let us consider the case when there Brsound sources in
the environment. By observing this sound field with micro-
phones and taking the short-term Fourier transform (STFT) of
the microphone inputs, we obtain the input vector

. ©©.©

Directional Component
_ T

X(w7 f) - [Xl(w'/ t)? RS X]\J(wv f)] . (1) D Ambient Component

Here, X, (w, t) is STFT of the input signal in theth time frame Fig. 2. Typical eigenvalue distribution.

at themth microphone. The symbel denotes the transpose. In

this paper, the input signal is assumed to be modeled as

x(w, t) = A(w)s(w, t) + n(w, t). 2
Matrix A(w) is termed the mixing matrix, itén, n) element,

A, »(w), being the transfer function from theth source to the
mth microphone as

Am,n () = Hon,n ()77 ©)

The symbolH,, ,(w) is the magnitude of the transfer func- Fig. 3. Relation of vectors.
tion. The symbolr,, ,, denotes the propagation time from the

nth source to thenth microphone. Vectos(w, t) consists of . BSS SYSTEM
the source spectra as= [S1(w, t), ..., Sp(w, t)]T, where
Sn(w, t) denotes the spectrum of théh source. The first term,
A (w)s(w, t), expresses the directional components(w, t). The flow of the proposed BSS system is summarized in
On the other hand, the second temfw, t), is a mixture of Table I, which lists each stage of the system, the obtained filter
less-directional components, which includes room reflectionsatrices at each stage and the corresponding section in this
and ambient noise. paper. A block diagram of the system is depicted in Fig. 1.

A. Entire System
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Fig. 4. Rotation of the location vector. (a) Correct permutation and (b) incorrect permutation.

First, STFT of the multichannel input sign&l(w, t), is ob-

P

B »

tained with an appropriate time shift and window function. Once
STFT is obtained, the Fourier coefficients at each frequency are
treated as a complex time series. By doing this, the convolutive
mixture problem is reduced to a complex but instantaneous mix-
ture problem [9].

Next, the subspace method is applied to the input vector
x(w, t) to obtain the subspace filtdV (w). In this stage, room
reflections and ambient noise are reduced in advance of the
application of ICA. It should be noted that the node of the filter

4. 4m

8.7m

«-

S1

Zx

m

network is reduced frond/ to D in this stage as depicted in
Fig. 1.

The instantaneous ICA is then applied to the output of the
subspace stage,(w, ¢) to obtain the filter matrixXU(w). For
the sake of convenience, the producWf{w) andU(w)

B(w) = U(w)W(w) (4)

is termed the separation filter, hereafter. :

2.9m

After obtaining this separation filter, the permutation and the
scaling problem must be solved. In this stage, the output of the
separation filter is processed with the permutation ma®iix)
and the scaling matriB | (w).

Finally, the filter matrices obtained in the above stages are

Fig. 5. Configuration of microphone array and sound sources.

TABLE 1l

PARAMETERS OFASR

transformed into the time domain, and the input signal is pPrcRecognition Engine
cessed with this time-domain filter network. Model

Feature vector

B. ICA Algorithm
Training data

In this subsection, the ICA algorithm used in this paper i recognition Task
briefly described. In this paper, the Infomax algorithm with Noise robust technique

HTK Ver.3.0

HMM with continuous density

12th order MFCC + 12th order A MFCC
+ A log power

20,000 clean Japanese sentences

492 Japanese words

none

feed-forward architecture [10], [11] extended to complex data
[8] is used. In this stage, the input signal (the output of the

TABLE Il

subspace filter)y(w, t) is processed with the filter matrix
U(w) as

2(w, 1) = U(w)y(w, ). 5)
The learning rule is written as

U(w, t+1) = U(w, t)+n[I - o(z(w, t))z" (v, 1)] U(w, t)
(6)

where the score function for the complex dafe) is defined
as [12]

PARAMETERS OF THEBSS & STEM

Sampling frequency
Length of STFT

Shift of STFT

Window function
Learning rate,

Gain for score function, G

Number of microphones, M

Number of sources, D

Reference range in permutation, K’

16 kHz
512

16
hamming
0.0001
100

8

B

5

The symbok, is thedth element of the vectar(w, ¢). The ma-

p(z) =[p(21), -, (za), -, e(zp)]" @)
©(zq) =2tanh(G - Re(zq)) + 27 tanh(G - Tm(z4)). (8)

trix I is an identity matrix. The symbof! denotes the Hermi-
tian transpose. The constapts termed the learning rate. The



ASANO et al. COMBINED APPROACH OF ARRAY PROCESSING AND INDEPENDENT COMPONENT ANALYSIS 207

(a) Without Reflection (b) With Reflection
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Fig. 6. Eigenvalue distribution.

symbol@ is the gain constant for the nonlinear score functionvhere IDFT:] operator denotes the inverse DFT. The symbols
assuming that the magnitude pfw, ¢) is normalized. F, (w) andf, ., (7) denote thdn, m)th element of the fre-
quency domain filteF' (w) and its time domain correspondence,
respectively. The symbai(¢) denotes the windowing function.

In [9], it was proposed that the scaling problem be solved Byhe multiplication by the windowing function is necessary for
filtering individual output of the separation filter by the inversguaranteeing convergence of the impulse response of the filters
of B(w) separately. In this paper, the pseudoinvers86f), in the time domain and avoiding time-domain aliasing.
denoted aB(w) ™, is used instead of the inverseBfw) since
B(w) is not square due to employment of the subspace method. IV. SUBSPACEMETHOD

Thenth component of(w, t), 2, (w, t) is filtered byB(w)*
separately as

an(w, 1) = B@)[0, ..., 0, za(w, 1), 0, ..., 0] (9)

where z,(w, t) = [Fa(w,t), ..., Zarn(w, 1)) and R(w) = Elx(w, t)x"(w, t)]. (15)
Zm,n(w, t) corresponds to the recovered signal of thit

source observed at theth microphone. The operation (9) isSNce the subspace method is conducted at each frequency in-
equivalent to dependently, the frequency indexs omitted in this section for

the sake of simplicity in notation.
Zin(w, t) = B L zn(w, t) (10)  Assuming thats(#) and n(¢) are uncorrelatedR can be

where B;;,n denotes the(m, n)th element ofB(w)™. The written as
symbol denotes an arbitrary microphone number. Equation
(10) can be written in the matrix-vector notation as

C. Scaling Problem

A. Spatial Correlation Matrix
The spatial correlation matrix is defined as

R =AQAY + K. (16)

#(w, t) = Blz(w, t) (11) Matrix Q = E[s(t)sf(t)] is the cross-spectrum matrix of the

sourcess(t). Matrix K = E[n(¢)nfl ()] is the correlation ma-

trix of n(¢). Whenn(¢) includes room reflections af(t), s(¢)

B! (w) = diag[BZ |, ..., Bf ;] (12) andn(t) are correlated and the above assumption does not hold.
’ ’ However, when the window length of STFT is short and the time

interval between the direct sound and the reflection exceeds this

window length, this assumption holds to some extent in a prac-

tical sense. A typical example of this is that a consonant portion

Using the matrices obtained above, the final filtering matriys speech is overlapped by the reflections of a preceding vowel
in the frequency domain can be written as portion.

F(w) = P(w)B} (w)B(w). (13) :
o _ _ . ~ B. Properties of the Subspace Method
The filtering is conducted in the time domain to avoid time- B taking th lized ei lue d tioR G
domain aliasing. The time domain filters are obtained as tl['f y taking the generalized eigenvajue decomposition.@s

inverse Fourier transform & (w) as 3]

frn.m(i) = IDFT[F, m(w)]w(i) (14) R = KEAE™' (17)

whereB* (w) is aD x D diagonal matrix

andz(w, t) = [Zm.1, -, Zm, | .

D. Filtering
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Fig. 7. Directivity pattern obtained by the subspace method. (a), (b): Whole frequency range and (c), (d): a slice of (a) and (b) at 1200 and 2000 Hz.

we have the eigenvector matrR = [eq, ..., ey] and the  Property4) R(A) = R(E,)*, where
eigenvalue matrixA = diag(Aq, ..., Ay), Wheree,, and E, = [ep+1, ..., en] denotes the eigen-

Am are the eigenvector and the eigenvalue, respectively. As vectors corresponding to the othef — D eigenvalues.
described in Section Il, the nois€t) includes the reflection/re- The notation R(A) denotes the space spanned by the
verberation of the signals and, thus, the correlation matrix @jjumn vectors ofA = |[a;, ..., ap], ie., RA) =

the noise,K, cannot be observed separately. Therefore, W.n(a, ... ap). The notationR(E, )" denotes the orthog-

this paperK = I is assumed. This assumption is equivaleRjna| complement of}(E,,). The subspaceB(E,) andR(E,,)

to the case in which the standard eigenvalue decompositigfe termed signal subspace and noise subspace, respectively.

R = EAE-!, is_ employed in the subspace r_nethod._ In fhe vectors{ey, ..., ep} and{epy1, ..., ex} become the
physical sense, this corresponds to the assumptiomttais  pasis of the signal subspace and the noise subspace, respec-
spatially white (e.g., [5]). tively. A typical eigenvalue distribution and the corresponding

Based on the structure & and the assumptions describe@nergy distribution that reflects Properties 1 and 2 are depicted
above, the eigenvalues and eigenvectors have the foIIow'mg,:ig_ 2(M = 7andD = 3 is assumed). The relation of
properties [6], [13], [14]. vectors that reflects Properties 3 and 4 is depicted in Fig. 3

Propertyl) The energy of thB directional signals(t) is (M = 3 andD = 2 is assumed).

concentrated on th® dominant eigenvalues.
Property2) The energy afi(t) is equally spread over all ~ Subspace Filter

eigenvalues.
Property3) R(A) = R(E,), whereE, = [e, ..., ep] de- In the subspace method, the input sigrél) is processed as
notes the eigenvectors corresponding tofhéominant

eigenvalues. y(t) = Wx(¥) (18)



ASANO et al. COMBINED APPROACH OF ARRAY PROCESSING AND INDEPENDENT COMPONENT ANALYSIS 209

(A)Src.1,Direct

(B)Src.2,Direct

5 5
0
-5t -'
-10 g !
o i Q V!
B.-15F, B.-15¢ !
] o ]
£ 20/ £ 20t
o : a
-25 =25}
-30 =301 ~iput
-35} 35} --ICA
% — ICA+SS
—40 -40
0 2000 4000 6000 0 2000 4000 6000
Frequency [Hz] Frequency [Hz]
(C)Src.1,Reflection (D)Src.2,Reflection
5 - ; S ' ' g
_______________ 0
-5t
-10}
3 315}
] o
2 2 -20¢
e @
-25}
- - - Input =30p Input
35+ | - - ICA ‘ ] a5t | - - ICA
— ICA+SS — ICA+SS
-40 -40 -
0 2000 4000 6000 0 2000 4000 6000
Frequency [Hz] Frequency [Hz]

Fig. 8. Relative spectra of direct sound/reflection at the input/output of the system. (a) Source #1, direct sound; (b) Source #2, direct saund;#t) So
reflection; and (d) Source #2, reflection. Regarding the output spectra (ICA ang-IS8), the spectra at the output channel #2 are shown. SS: subspace method.

where the subspace filter is defined as Here, H,, ,(w) = 1in (3) is assumed for the sake of sim-

3 plicity. From (20), it can be seen that the location veatpw) is

W = AJ/2EH (19) s i
s s a, (wp) which is rotated by the angl, as depicted in Fig. 4(a).

whereA, = diag(\ Ap). The termA =2 is a normal- Based on this relation (coherency) of the location vectors at the
iz ation f;ctor the same as that used in Pé:A [1]. The tBY¥h adjacent frequencies, the relation of the mixing matrix can be
plays a main role in the subspace filter that reduces the enelgitten as [15], [16]
of n(t) in the noise subspace as described in Appendix II. A(w) = T(w, wo)A(wo) (21)

V. PERMUTATION where the matriXT'(w, wp) is the rotation matrix. When the
difference in frequencw (frequency resolution of STFT) is

A. Structure of Mixing Matrix sufficiently small

When the mixing matrixA (w) has the form of the model
shown in (3), thesth column vector (location vector of theh A(w) = A(wo), T(w, wo) =1 (22)
sogrce) in the mixing matrix at the frequerw)and that atthe 444 the angle between the location vectors andwy, 6,,, is
adjacent frequencyo = w — Aw are written as small. Based on thig),, is expected to be the smallest for the

e—IwTin e—i(w=Aw)Ty, correct permutation as depicted in Fig. 4.
ap(w) = : ; an(wo) = : - B. Method for Solving Permutation
e IwTMn eI (WAL Based on the above discussion, permutation is solved so that

(20) the sum of the angled;, ..., fp} between the location vec-
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To prevent this, the reference frequengyis extended to the
following frequency range:

Fig. 9. Cross-talk suppression.

tors in the adjacent frequencies is minimized. An estimate of the

mixing matrix can be obtained as the pseudoinverse of the sep-
aration matrixB(w) [17] as The cost function (27) is calculated at &l frequencies in

this range. Let us denote the value of the cost function at
(23) wp = w — k- Aw asF(P, k). Next, a confidence measure

for F(P, k) is considered. When the largest value of the cost
Let us denote the mixing matrix multiplied by the arbitrary peftynction max (P, k) is close toF' (P, k) with other permu-
mutation matrixP as tations, it may be difficult to determine which permutation is
correct, and the value df (P, k) is not reliable. Based on this,
the following confidence measure is defined:

Ck)= max [F(P, k)] —

wo=w—k-Aw, fork=1, ..., K. (28)

A(w) = Bt (w).

AT (w) =PAT(w). (24)
The permutatio A7 (w) exchanges the row vectors Af" (w)
(the column vectors oA (w)). The column vectors oA (w) are
denoted asA(w) = [ai(w), ..., ap(w)]. The cosine of the Here, 2 denotes the set of all possibie while ' denotes?

angles,, between the two vectors,, (w) anda, (wo), is defined - without P = arg maxpeq [F(P, k)]. The appropriate refer-

as [18] ence frequencyy is determined asy = w — k - Aw with

max [F(P, k). (29)

(30)

cos b, k= max C(k).

(25)

_ Al (w)a(w)
@) a2 (wo)ll

By using this, the permutation matrix is determined as

The permutation is then solved using the information at this ref-
erence frequency as

P =arg max F(P) (26) P =arg mlng(P, ). (31)

where the cost functiod’(P) is defined as

1 D
=— 0,.
DT;COS

VI. EXPERIMENT

27) A. Experimental Conditions
A signal separation experiment was conducted in an ordinary
meeting room with a reverberation time of 0.4 s. The configura-
tion of the sound sources (loudspeakers) and the microphonesis
depicted in Fig. 5. Amicrophone array wili = 8, mounted on
The above method assumes that the estimate of the mixagnobile robot (Nomad XR-4000), was used. The microphone
matrix A(w) is a good approximation of the true mixing ma-array was circular in shape with a diameter of 0.5 m. The im-
trix A (w). However, at some frequencies, this assumption maylse responses from the sound sources to the microphones were
not hold due to the failure of ICA. Since the permutation at freneasured and then convolved with the source signal to generate
guencyw is determined based on only the information of the twthe input signalk(w, ¢). For measuring the cross-talk and the
adjacent frequencies,andwg, and the permutation is solved it-performance of the permutation, 50 pairs of Japanese sentences
eratively with increasing frequency, once the permutation at there used. For measuring the ASR rate, 492 pairs of Japanese
certain frequency fails, the permutation in the succeeding fr@eords were used. As a speech recognizer, HTK software with
guencies may also fail. the phonetic model provided by Japanese Dictation Toolkit [19]

C. Confidence Measure
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Fig. 12. Measured value of the cost functiBP, k) and the confidence measuték) for k = 1.

was employed. The parameters of the ASR system are showiover the other eigenvalues. Therefore, Properties 1-4 in Sec-
Table Il. The parameters of the BSS system are summarizedion 1V-B hold in a practical sense and the subspace method is
Table Il

applicable. However, it should be noted that the eigenvalue dis-
tribution for the noise in Fig. 6 was not perfectly flat compared

with the ideal case depicted in Fig. 2. This is because the noise

B. Effect of Subspace Method is spatially colored to some extent and, thus the assumption,

. . K = 1, did not perfectly hold in the real situation. This mis-
For constructing the subspace filter (19), the number gfatch may resultin the performance of the subspace filter being

sources,D, is assumed to be known. The permutation in thigwer compared with the case with the spatially white noise.
section is solved by using the cross correlation between therig. 7 shows the directivity pattern of the subspace filter.
output spectrogram and the source spectrogram (unknownridm this figure, although it is not as clear as that of analyt-
real situation) as “correct permutation” for evaluating onlitally designed beamformers, it can be seen that two acoustic
the effect of the subspace method. This method is denotedsaaims, which are complementary in channel 1 and 2, appear in
source-output correlation (SOC) hereafter. the directions of the sources, i.e2 nd 60. From this, it is

Fig. 6 shows the eigenvalue distribution®{w). For the sake understood that the subspace filter works as a self-organizing
of comparison, the eigenvalue distribution without reflection iseamformer.
also shown. The eigenvalue distribution without reflection was Fig. 8 shows the spectra of the direct sound and the reflection
obtained by eliminating the reflections in the impulse responséSource #1 and #2 at the input/output of the system separately.
using a window function. By comparing these, it can be seen thair ease of viewing, the spectra were normalized by their input

the energy of the direct sound is concentrated on the two dospectrum. For comparison, the case of BSS without the subspace
inant eigenvalues while the energy of the reflections is spreadtthod (only ICA) is also shown. In this case, the number of
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(A) K=1 (B) K=5

Error Error

o

1060 2().00 3000 4000 5000 0 1000 2000 3000 4000 5000
Frequency [Hz] . Frequency [Hz]

Fig. 13. Permutation error fdk = 1 and K = 5. In the vertical axis, “T” denotes the case when the permutation is the same as that of “correct permutation”
while “F” denotes the case when the permutation is different.

microphones isf = 2(=D) and the two microphones closesthis case, therefore, Straight corresponds to the correct permuta-
to the sound sources were used. From Fig. 8(c) and (d), it déon, and Cross corresponds to the incorrect permutation. From
be seen that the reflections were reduced by 10-15 dB by tiés figure, it can be seen that Straight shows the value close
subspace method. On the other hand, Fig. 8(a) shows the effeatne for all frequencies while Cross shows a smaller value at
of cross-talk suppression by ICA. all frequencies except in the very low frequencies. The confi-

Fig. 9 shows the overall cross-talk suppression for 50 pairs@¢nce measur€'(1) depicted in Fig. 11(b) shows high values
sentences shown in ascending order of total performance. Exeept at the very low frequencies. This means that the proposed
total performance is a simple sum of the cross-talk suppressizost function can be used for solving permutation at all frequen-
of channel 1 and 2. From this figure, it can be seen that aroudigs except at the very low frequencies. The reason for Cross
10-15 dB of overall cross-talk suppression for each channel weg®wing a large value at the very low frequencies is that the
obtained. phase difference in the column vectorsdfw) is small at the

Fig. 10 shows the results of the automatic speech recoglow frequencies.
tion test applied to the output of BSS. As can be seen from thisFig. 12(a) shows the cost functidi(P, k) with £ = 1 ob-
figure, the recognition rate was improved by around 18% Hgined from the trained filter netwoiB(w) with real data. From
employing the subspace method (denoted as 4C8ubspace) this figure, it can be seen that there are many vertical lines. These
compared to the case without the subspace method (only IC#@rtical lines show that it is necessary to exchange the output at
For comparison, the case of ICAPCA was also tested. In thisthose frequencies. In Fig. 12(b), it can be seen that the confi-
case, the subspace filtdy = A;l/QEf, was replaced by the dence measur€(1) becomes low at some frequencies.
PCA filter, W pc4 = A~'/2E¥ [1], in Fig. 1. The number of  Fig. 13 shows the permutation error f&f = 1 and K =
microphones wad/ = 2 in the same manner as that with onlys. Permutation error is defined as the case when the result of
ICA. The effect of PCA is only to orthogonalize the output ofFC differs from that of SOC (assumed as correct permutation).
PCA (input of ICA). On the other hand, in the case of IGA WhenK = 1, permutation error “starts” at several frequencies
Subspace, the subspace method has the effect of both orthelgereC (1) is small and “propagates” toward the upper frequen-
onalizing the output and reducing room reflections. Thereforeies. On the other hand, whén = 5, permutation error is al-
from Fig. 10, it is considered that, in the 18% increase in ASRost completely corrected. This is due to the relation& @b),
rate, the effect of the orthogonalization accounts for around 5%, A (w—5Aw) being taken into account and the unreliable in-
of the increase and the effect of the reflection reduction accoufgmation being ignored by use of the confidence mea&\(fg.

for the remaining 13% increase in ASR rate. Fig. 14 shows the error rate. The input was 50 pairs of
Japanese sentences. It can be seen that the error rate was small

in the frequency range over 300 Hz (the region to the right of
the dotted vertical line). On the other hand, below 300 Hz, the
Fig. 11(a) shows the theoretical value of the cost functiarror rate increases. However, at these very low frequencies, the
F(P, k) with k = 1 for the model of the mixing matrix shown performance of ICA is also reduced due to the phase difference
in (3). In this figure, “Straight” corresponds to the case whein A (w) being small, and the permutation sometimes becomes
A (w) is unchanged, and “Cross” corresponds to the case whapaningless.
the column vectors oA (w) are exchanged. For the model of Table IV shows a comparison of ASR rate when the permuta-
the mixing matrix,A (w) does not require any permutation. Irtion is solved by SOC and IFC. From this, the ASR rate reduced

C. Permutation
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504~ ' ’ ' ' ' condition. When there is a strong reflection with high directivity
" such as when the microphone-array is placed close to a hard
x | wall, this assumption may not hold. In this case, some modifi-

: cation may be required for the subspace method [21]. This case
x: must be treated in a future study.
: As a post-processor, a new method for solving the permuta-
tion problem was proposed. This method utilizes the coherency
(continuity) of the mixing matrix at adjacent frequencies, a
physical property peculiar to acoustic problems. By employing
this method, the permutation error was reduced to 4% in terms
of the ASR rate. An advantage of this method is that, unlike
IFSEC, the performance of IFC is independent of source
spectra. Another advantage over IFSEC is that IFC does not
A require a large memory space, such as that required for IFSEC,
' ' ; - " to store the output spectrogram (see Appendix ), a desirable

3 feature for implementation in small-sized hardware such as
DSP (digital signal processor).
Fig. 14. Error rate in solving permutation. The error rate is plotted with “x” In this paper, the conventional ICA algorithm was employed
below 300 Hz and with a solid line over 300 Hz. to combine the proposed pre- and post-array processing.
However, the recent progress of the ICA algorithm will lead to

[4] »
o o
%

Error Rate [%)]
N
Q

10+

Frequency [kHz]

TABLE IV .
ASR RATE FOR DIFFERENT PERMUTATION METHODS [%] the further improvement of the performance of the proposed
system.
permutation Ch.1 | Ch.2
SOC(“correct”) | 68.5 | 67.5 APPENDIX |
IFC 64.4 | 63.8
difference -4.1 | -3.7 IFSEC

As indicated in (25) and (27), the cost function of the pro-

by employing IFC is small (around 4%) compared with the err&0Sed method for solving permutation is written as
rate for IFSEC reported in [3] (around 18%). In the application

of ASR, the contribution of the lower frequency component is =D Z ” || a|" uzo) i (32)
small due to the pre-emphasis [20]. Therefore, the permutation an(w an o
error at very low frequencies is considered to be small. On the other hand, the cost function of IFSEC is written as
VIl. CONCLUSION w)Zy (wo)
Frrspc(P) (33)
"D Z ||zn || [1Zn (wo)ll”

In this paper, an approach combining array processing and
ICA for the blind separation of acoustic signals in a reflectivin IFSEC, this cost function is maximized in a manner similar
environment was proposed. Two array processing techniqueshat of the proposed method to solve the permutation. The
were employed for pre- and post-processing of ICA. vectorz,, is thenth column vector of the following matrix in a

As a pre-processor, the subspace method was employed taignner similar to (24)
duce the effect of room reflections. As shown in this paper, the = A
subspace method functions as a self-organizing beamformer fo- Z" (w) =PZ (w). (34)

cusing on the target sources and is suitable for the framewqrke matrix Z7(w) has the estimated spectral envelope (the

of the blind Separation. From the results of the experimentﬁjtput of BSS smoothed by the moving_average) as a column
it was shown that the subspace method reduced the powekgétor as

the reflections by around 10 dB and improved the ASR rate by

around 18% for the array and the sound environment used in the Z=|z,...,2p] (35)
experiment.

The performance of the subspace method depends on bd
the array configuration and the sound environment. Regardmg B = (W, 1), - n(w, 12)]T (36)

the array configuration, the subspace method is analogous to the

conventional DS beamformer since the subspace method hasfthe symboE,, (w, t) denotes the estimated spectral envelope at
same noise reduction mechanism as that of the DS beamforntieenth channel, frequenay, and thefth time frame. The sym-

As for the sound environment, the directivity of reflections is adols, [t , 2], denote the period of spectrogram used for solving
sumed to be small. This assumption holds when reflections dine permutation.

coming from many directions and the coherency of the reflec- As indicated in (32) and (33), the essential difference of the
tions between the microphones is reduced. The sound envirpmeposed IFC and the conventional IFSEC is the vectors used
ment used in the experiment where the microphone array wagheir cost functions. The dimension of the vector in IFC is
placed at some distance from the walls of the room meets thisvays M (8 in this paper), while that of IFSEC is dependent
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on the length of the spectrogram to be used for solving the per-On the other hand, the DS beamformer in the frequency do-
mutation. For example, when using 1 s of spectrogram withnaain that focuses on theth target source can be expressed as
16-point frame shift, the dimension of the vector is 1000 fde2]

IFSEC. From this, it can be known that the proposed IFC con-

sumes less memory space and computational load. It should be yps(t) = Wpsx(t) (47)
noted that, for the sake of simplicity in explanation, IFSEC de-h
scribed above was simplified. For further details, see [9]. where
1. .
— _ [pI¥T1,n JOTM, n . 4
APPENDIX I WDs = 3 le v € ) (48)

AN ASPECT OF THESUBSPACE METHOD AS A

For the sake of simplicity, it is assumed thdt ,, = --- =
SELF-ORGANIZING BEAMFORMER ;

Hy,» = 1in (3). By using the vector notation, (48) can be
According to Properties 1 and 3, the directional componewfitten as

As(t) can be expanded with the subset of the basis vectors, all
{el, ey eD}, as Wps = aHr; (49)

As(t) = Z ai(be; (37) wherea,, denotes thath column vector ofA.. The denominator,
P aa,,, is employed as a normalization factor. By extending (47)

and (49) so that th® target sources are focused, the DS beam-
whereq;(t) is the projection coefficient aAs(¢) onto the basis former becomes

vectore;. On the other hand, due to Property?t) is expanded

using all the basis vectorse:, ..., ey}, as yps(t) = Wpsx(t) (50)
M where
n(t) =) filt)e; (38) AH
i=1 Wps = AFA (51)

where 3;(t) is a projection coefficient oh(¢) onto the basis _
vectore;. Equations (37) and (38) can be written in a matrixPPIYing the DS beamformeéW ps to n,, (1)
vector notation as AH

Wpsnn(t) =
As(t) = Eya(t) (39) ATTA
n(t) = EB(t) (40) This is be_cause, due to Prqpertyﬁ_ﬂ?En =0.

According to the above discussion, the subspace Weand
where a(t) = [ai(t),...,ap(®)]T and B(t) = the DS beamformeéW ps have the same noise reduction mech-
[B1(t), ..., Ba()]T. Equation (40) can be split as anism, i.e., a mechanism which cancels the component in the

noise subspace,, (t). The essential difference in the subspace
n(t) = ny(t) + n,(t) (41) method and the DS beamformer is that, in the DS beamformer,
knowledge of the mixing matriX is required in the design of

E.B,(t) =0. (52)

where the beamformer as shown in (51) while, in the subspace method,
n,(t) = E,B,(t) (42) o previous knowledge is required. In this sense, the subspace
° filter can be considered as a self-organizing beamformer.
n, (t) = BB, (t) (43) ganizing
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