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Abstract—In this paper, two array signal processing techniques
are combined with independent component analysis (ICA) to
enhance the performance of blind separation of acoustic signals
in a reflective environment. The first technique is the subspace
method which reduces the effect of room reflection when the
system is used in a room. Room reflection is one of the biggest
problems in blind source separation (BSS) in acoustic environ-
ments. The second technique is a method of solving permutation.
For employing the subspace method, ICA must be used in the
frequency domain, and precise permutation is necessary for all
frequencies. In this method, a physical property of the mixing
matrix, i.e., the coherency in adjacent frequencies, is utilized to
solve the permutation. The experiments in a meeting room showed
that the subspace method improved the rate of automatic speech
recognition from 50% to 68% and that the method of solving
permutation achieves performance that closely approaches that of
the correct permutation, differing by only 4% in recognition rate.

Index Terms—Array signal processing, blind signal separation,
independent component analysis, permutation, room reflection.

I. INTRODUCTION

I T IS indispensable to separate acoustic signals and to pick up
signals of interest for applications such as automatic speech

recognition (ASR) when they are used in a real environment.
The framework of blind source separation (BSS) based on inde-
pendent component analysis (ICA) is attractive since it can be
used to separate multiple signals without any previous knowl-
edge of the sound sources and sound environment such as the
configuration of microphones (e.g., [1]) that is necessary in con-
ventional microphone-array signal processing (e.g., [2]). How-
ever, when applying BSS to an acoustical mixture problem such
as a number of people talking in a room, the performance of the
BSS system is greatly reduced by the effect of the room reflec-
tions/reverberations and ambient noise [3].

One method of reducing the effect of room reflections is
to employ directional microphones in the BSS framework
[4]. In this method, however, the system cannot track the
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movement of the sound sources. Another way to reduce the
effect of room reflections is to employ an acoustic beamformer
such as delay-and-sum (DS) beamformer (e.g., [5]). However,
for designing the beamformer, an array response database
consisting of transfer functions from possible source locations
to microphones or, at least, the configuration of the micro-
phone-array is required. This information is not available in the
BSS framework.

The authors previously proposed an alternative approach, the
subspace method, for reducing the effect of room reflections and
ambient noise [6]. In this method, room reflections are separated
from direct components in the eigenvalue domain of the spatial
correlation matrix based on the spatial extent of the acoustic sig-
nals. Then, the eigenvectors corresponding to the eigenvalues of
the direct components are used as a filter which selects the sub-
space in which the direct components lie and discards the sub-
space filled with the energy of reflections. As described in this
paper, the subspace method works as a self-organizing beam-
former focusing on the target sources and does not require any
previous knowledge of the array or sound field. Therefore, the
subspace method can be used in the framework of BSS. This
is understood from the fact that the subspace method is a spe-
cial case of principal component analysis (PCA) with ,
where and denote the number of nodes (channels) of the
input and the output of PCA, respectively [7]. PCA is known
as a method of unsupervised learning which does not require
any previous knowledge. In this paper, a combined approach of
the subspace method and ICA is proposed. In this method, the
subspace method is utilized as a pre-processor of ICA which re-
duces room reflections in advance, the remaining direct sounds
then being separated by ICA.

For combining the subspace method with ICA, the fre-
quency-domain ICA [8], [9] must be employed, since the
subspace method works in the frequency-domain. The biggest
obstacle in the frequency-domain ICA is the permutation and
scaling problem. In the frequency-domain ICA, the input signal
is first transformed into the frequency domain by the Fourier
transform. By using this transformation, a convolutive mixture
problem is reduced to a complex but instantaneous mixture
problem. This instantaneous mixture problem is then solved
at each frequency independently. In usual instantaneous ICA,
arbitrary permutation and scaling of the output is allowed.
However, in the frequency-domain processing for a convolutive
mixture such as that employed in this paper, different permu-
tations at different frequencies lead to re-mixing of signals in
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the final output. Also, different scaling at different frequencies
leads to distortion of the frequency spectrum of the output
signal.

For the scaling problem, the method proposed by [9], in
which the separated output is filtered by the inverse of the
separation filter, shows good performance. On the other hand,
for the permutation problem, a method using the correlation
between the spectral envelope at different frequencies (denoted
as Inter-frequency Spectral Envelope Correlation (IFSEC),
hereafter in this paper. See Appendix I for a brief explanation.)
has been proposed [9], but has been reported to sometimes
fail when the input signals have similar envelopes [3]. In this
paper, a new approach for solving the permutation problem is
proposed. This method utilizes thecoherencyof the mixing
matrices in several adjacent frequencies and is thus denoted as
Inter-Frequency Coherency (IFC) in this paper.

This paper is organized as follows: In Section II, the model
of the sound environment treated in this paper is described. In
Section III, an outline of the proposed BSS system is presented.
Moreover, some portions of the system which were proposed in
the previous studies but which are necessary for understanding
the following sections are briefly described. In Section IV, the
subspace method for reducing room reflections is detailed. In
Section V, a new method for solving the permutation is pro-
posed. In Section VI, results of experiments using real data to
evaluate the proposed system are reported.

II. M ODEL OF SIGNAL

Let us consider the case when there aresound sources in
the environment. By observing this sound field with micro-
phones and taking the short-term Fourier transform (STFT) of
the microphone inputs, we obtain the input vector

(1)

Here, is STFT of the input signal in theth time frame
at the th microphone. The symbol denotes the transpose. In
this paper, the input signal is assumed to be modeled as

(2)

Matrix is termed the mixing matrix, its element,
, being the transfer function from theth source to the

th microphone as

(3)

The symbol is the magnitude of the transfer func-
tion. The symbol denotes the propagation time from the

th source to the th microphone. Vector consists of
the source spectra as , where

denotes the spectrum of theth source. The first term,
, expresses the directional components in .

On the other hand, the second term, , is a mixture of
less-directional components, which includes room reflections
and ambient noise.

TABLE I
OUTLINE OF THE ENTIRE BSS SYSTEM

Fig. 1. Proposed BSS filter network.

Fig. 2. Typical eigenvalue distribution.

Fig. 3. Relation of vectors.

III. BSS SYSTEM

A. Entire System

The flow of the proposed BSS system is summarized in
Table I, which lists each stage of the system, the obtained filter
matrices at each stage and the corresponding section in this
paper. A block diagram of the system is depicted in Fig. 1.



206 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 11, NO. 3, MAY 2003

Fig. 4. Rotation of the location vector. (a) Correct permutation and (b) incorrect permutation.

First, STFT of the multichannel input signal, , is ob-
tained with an appropriate time shift and window function. Once
STFT is obtained, the Fourier coefficients at each frequency are
treated as a complex time series. By doing this, the convolutive
mixture problem is reduced to a complex but instantaneous mix-
ture problem [9].

Next, the subspace method is applied to the input vector
to obtain the subspace filter . In this stage, room

reflections and ambient noise are reduced in advance of the
application of ICA. It should be noted that the node of the filter
network is reduced from to in this stage as depicted in
Fig. 1.

The instantaneous ICA is then applied to the output of the
subspace stage, to obtain the filter matrix . For
the sake of convenience, the product of and

(4)

is termed the separation filter, hereafter.
After obtaining this separation filter, the permutation and the

scaling problem must be solved. In this stage, the output of the
separation filter is processed with the permutation matrix
and the scaling matrix .

Finally, the filter matrices obtained in the above stages are
transformed into the time domain, and the input signal is pro-
cessed with this time-domain filter network.

B. ICA Algorithm

In this subsection, the ICA algorithm used in this paper is
briefly described. In this paper, the Infomax algorithm with
feed-forward architecture [10], [11] extended to complex data
[8] is used. In this stage, the input signal (the output of the
subspace filter) is processed with the filter matrix

as

(5)

The learning rule is written as

(6)

where the score function for the complex data is defined
as [12]

(7)

(8)

Fig. 5. Configuration of microphone array and sound sources.

TABLE II
PARAMETERS OFASR

TABLE III
PARAMETERS OF THEBSS SYSTEM

The symbol is the th element of the vector . The ma-
trix is an identity matrix. The symbol denotes the Hermi-
tian transpose. The constantis termed the learning rate. The
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Fig. 6. Eigenvalue distribution.

symbol is the gain constant for the nonlinear score function,
assuming that the magnitude of is normalized.

C. Scaling Problem

In [9], it was proposed that the scaling problem be solved by
filtering individual output of the separation filter by the inverse
of separately. In this paper, the pseudoinverse of ,
denoted as , is used instead of the inverse of since

is not square due to employment of the subspace method.
The th component of , is filtered by

separately as

(9)

where and
corresponds to the recovered signal of theth

source observed at theth microphone. The operation (9) is
equivalent to

(10)

where denotes the th element of . The
symbol denotes an arbitrary microphone number. Equation
(10) can be written in the matrix-vector notation as

(11)

where is a diagonal matrix

(12)

and .

D. Filtering

Using the matrices obtained above, the final filtering matrix
in the frequency domain can be written as

(13)

The filtering is conducted in the time domain to avoid time-
domain aliasing. The time domain filters are obtained as the
inverse Fourier transform of as

(14)

where IDFT operator denotes the inverse DFT. The symbols
and denote the th element of the fre-

quency domain filter and its time domain correspondence,
respectively. The symbol denotes the windowing function.
The multiplication by the windowing function is necessary for
guaranteeing convergence of the impulse response of the filters
in the time domain and avoiding time-domain aliasing.

IV. SUBSPACEMETHOD

A. Spatial Correlation Matrix

The spatial correlation matrix is defined as

(15)

Since the subspace method is conducted at each frequency in-
dependently, the frequency indexis omitted in this section for
the sake of simplicity in notation.

Assuming that and are uncorrelated, can be
written as

(16)

Matrix is the cross-spectrum matrix of the
sources . Matrix is the correlation ma-
trix of . When includes room reflections of ,
and are correlated and the above assumption does not hold.
However, when the window length of STFT is short and the time
interval between the direct sound and the reflection exceeds this
window length, this assumption holds to some extent in a prac-
tical sense. A typical example of this is that a consonant portion
of speech is overlapped by the reflections of a preceding vowel
portion.

B. Properties of the Subspace Method

By taking the generalized eigenvalue decomposition ofas
[13]

(17)
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Fig. 7. Directivity pattern obtained by the subspace method. (a), (b): Whole frequency range and (c), (d): a slice of (a) and (b) at 1200 and 2000 Hz.

we have the eigenvector matrix and the
eigenvalue matrix , where and

are the eigenvector and the eigenvalue, respectively. As
described in Section II, the noise includes the reflection/re-
verberation of the signals and, thus, the correlation matrix of
the noise, , cannot be observed separately. Therefore, in
this paper, is assumed. This assumption is equivalent
to the case in which the standard eigenvalue decomposition,

, is employed in the subspace method. In a
physical sense, this corresponds to the assumption thatis
spatially white (e.g., [5]).

Based on the structure of and the assumptions described
above, the eigenvalues and eigenvectors have the following
properties [6], [13], [14].

Property1) The energy of the directional signals is
concentrated on the dominant eigenvalues.

Property2) The energy of is equally spread over all
eigenvalues.

Property3) , where de-
notes the eigenvectors corresponding to thedominant
eigenvalues.

Property4) , where
denotes the eigen-

vectors corresponding to the other eigenvalues.

The notation denotes the space spanned by the
column vectors of , i.e.,

. The notation denotes the orthog-
onal complement of . The subspaces and
are termed signal subspace and noise subspace, respectively.
The vectors and become the
basis of the signal subspace and the noise subspace, respec-
tively. A typical eigenvalue distribution and the corresponding
energy distribution that reflects Properties 1 and 2 are depicted
in Fig. 2 ( and is assumed). The relation of
vectors that reflects Properties 3 and 4 is depicted in Fig. 3

and is assumed).

C. Subspace Filter

In the subspace method, the input signal is processed as

(18)
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Fig. 8. Relative spectra of direct sound/reflection at the input/output of the system. (a) Source #1, direct sound; (b) Source #2, direct sound; (c) Source #1,
reflection; and (d) Source #2, reflection. Regarding the output spectra (ICA and ICA+ SS), the spectra at the output channel #2 are shown. SS: subspace method.

where the subspace filter is defined as

(19)

where . The term is a normal-
ization factor, the same as that used in PCA [1]. The term
plays a main role in the subspace filter that reduces the energy
of in the noise subspace as described in Appendix II.

V. PERMUTATION

A. Structure of Mixing Matrix

When the mixing matrix has the form of the model
shown in (3), the th column vector (location vector of theth
source) in the mixing matrix at the frequencyand that at the
adjacent frequency are written as

...
...

(20)

Here, in (3) is assumed for the sake of sim-
plicity. From (20), it can be seen that the location vector is

which is rotated by the angle as depicted in Fig. 4(a).
Based on this relation (coherency) of the location vectors at the
adjacent frequencies, the relation of the mixing matrix can be
written as [15], [16]

(21)

where the matrix is the rotation matrix. When the
difference in frequency (frequency resolution of STFT) is
sufficiently small

(22)

and the angle between the location vectors atand , , is
small. Based on this, is expected to be the smallest for the
correct permutation as depicted in Fig. 4.

B. Method for Solving Permutation

Based on the above discussion, permutation is solved so that
the sum of the angles between the location vec-
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Fig. 9. Cross-talk suppression.

tors in the adjacent frequencies is minimized. An estimate of the
mixing matrix can be obtained as the pseudoinverse of the sep-
aration matrix [17] as

(23)

Let us denote the mixing matrix multiplied by the arbitrary per-
mutation matrix as

(24)

The permutation exchanges the row vectors of
(the column vectors of ). The column vectors of are
denoted as . The cosine of the
angle between the two vectors, and , is defined
as [18]

(25)

By using this, the permutation matrix is determined as

(26)

where the cost function is defined as

(27)

C. Confidence Measure

The above method assumes that the estimate of the mixing
matrix is a good approximation of the true mixing ma-
trix . However, at some frequencies, this assumption may
not hold due to the failure of ICA. Since the permutation at fre-
quency is determined based on only the information of the two
adjacent frequencies,and , and the permutation is solved it-
eratively with increasing frequency, once the permutation at the
certain frequency fails, the permutation in the succeeding fre-
quencies may also fail.

Fig. 10. Comparison of ASR rate for only ICA, ICA+ PCA and ICA+
Subspace. SS: Subspace.

To prevent this, the reference frequencyis extended to the
following frequency range:

for (28)

The cost function (27) is calculated at all frequencies in
this range. Let us denote the value of the cost function at

as . Next, a confidence measure
for is considered. When the largest value of the cost
function is close to with other permu-
tations, it may be difficult to determine which permutation is
correct, and the value of is not reliable. Based on this,
the following confidence measure is defined:

(29)

Here, denotes the set of all possible while denotes
without . The appropriate refer-
ence frequency is determined as with

(30)

The permutation is then solved using the information at this ref-
erence frequency as

(31)

VI. EXPERIMENT

A. Experimental Conditions

A signal separation experiment was conducted in an ordinary
meeting room with a reverberation time of 0.4 s. The configura-
tion of the sound sources (loudspeakers) and the microphones is
depicted in Fig. 5. A microphone array with , mounted on
a mobile robot (Nomad XR-4000), was used. The microphone
array was circular in shape with a diameter of 0.5 m. The im-
pulse responses from the sound sources to the microphones were
measured and then convolved with the source signal to generate
the input signal . For measuring the cross-talk and the
performance of the permutation, 50 pairs of Japanese sentences
were used. For measuring the ASR rate, 492 pairs of Japanese
words were used. As a speech recognizer, HTK software with
the phonetic model provided by Japanese Dictation Toolkit [19]
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Fig. 11. Theoretical value of the cost functionF (P; k) and the confidence measureC(k) for k = 1.

Fig. 12. Measured value of the cost functionF (P; k) and the confidence measureC(k) for k = 1.

was employed. The parameters of the ASR system are shown in
Table II. The parameters of the BSS system are summarized in
Table III.

B. Effect of Subspace Method

For constructing the subspace filter (19), the number of
sources, , is assumed to be known. The permutation in this
section is solved by using the cross correlation between the
output spectrogram and the source spectrogram (unknown in
real situation) as “correct permutation” for evaluating only
the effect of the subspace method. This method is denoted as
source-output correlation (SOC) hereafter.

Fig. 6 shows the eigenvalue distribution of . For the sake
of comparison, the eigenvalue distribution without reflection is
also shown. The eigenvalue distribution without reflection was
obtained by eliminating the reflections in the impulse response
using a window function. By comparing these, it can be seen that
the energy of the direct sound is concentrated on the two dom-
inant eigenvalues while the energy of the reflections is spread

over the other eigenvalues. Therefore, Properties 1-4 in Sec-
tion IV-B hold in a practical sense and the subspace method is
applicable. However, it should be noted that the eigenvalue dis-
tribution for the noise in Fig. 6 was not perfectly flat compared
with the ideal case depicted in Fig. 2. This is because the noise
is spatially colored to some extent and, thus the assumption,

, did not perfectly hold in the real situation. This mis-
match may result in the performance of the subspace filter being
lower compared with the case with the spatially white noise.

Fig. 7 shows the directivity pattern of the subspace filter.
From this figure, although it is not as clear as that of analyt-
ically designed beamformers, it can be seen that two acoustic
beams, which are complementary in channel 1 and 2, appear in
the directions of the sources, i.e., 0and 60 . From this, it is
understood that the subspace filter works as a self-organizing
beamformer.

Fig. 8 shows the spectra of the direct sound and the reflection
of Source #1 and #2 at the input/output of the system separately.
For ease of viewing, the spectra were normalized by their input
spectrum. For comparison, the case of BSS without the subspace
method (only ICA) is also shown. In this case, the number of
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Fig. 13. Permutation error forK = 1 andK = 5. In the vertical axis, “T” denotes the case when the permutation is the same as that of “correct permutation”
while “F” denotes the case when the permutation is different.

microphones is and the two microphones closest
to the sound sources were used. From Fig. 8(c) and (d), it can
be seen that the reflections were reduced by 10-15 dB by the
subspace method. On the other hand, Fig. 8(a) shows the effect
of cross-talk suppression by ICA.

Fig. 9 shows the overall cross-talk suppression for 50 pairs of
sentences shown in ascending order of total performance. The
total performance is a simple sum of the cross-talk suppression
of channel 1 and 2. From this figure, it can be seen that around
10-15 dB of overall cross-talk suppression for each channel was
obtained.

Fig. 10 shows the results of the automatic speech recogni-
tion test applied to the output of BSS. As can be seen from this
figure, the recognition rate was improved by around 18% by
employing the subspace method (denoted as ICASubspace)
compared to the case without the subspace method (only ICA).
For comparison, the case of ICAPCA was also tested. In this
case, the subspace filter, , was replaced by the
PCA filter, [1], in Fig. 1. The number of
microphones was in the same manner as that with only
ICA. The effect of PCA is only to orthogonalize the output of
PCA (input of ICA). On the other hand, in the case of ICA
Subspace, the subspace method has the effect of both orthog-
onalizing the output and reducing room reflections. Therefore,
from Fig. 10, it is considered that, in the 18% increase in ASR
rate, the effect of the orthogonalization accounts for around 5%
of the increase and the effect of the reflection reduction accounts
for the remaining 13% increase in ASR rate.

C. Permutation

Fig. 11(a) shows the theoretical value of the cost function
with for the model of the mixing matrix shown

in (3). In this figure, “Straight” corresponds to the case when
is unchanged, and “Cross” corresponds to the case when

the column vectors of are exchanged. For the model of
the mixing matrix, does not require any permutation. In

this case, therefore, Straight corresponds to the correct permuta-
tion, and Cross corresponds to the incorrect permutation. From
this figure, it can be seen that Straight shows the value close
to one for all frequencies while Cross shows a smaller value at
all frequencies except in the very low frequencies. The confi-
dence measure depicted in Fig. 11(b) shows high values
except at the very low frequencies. This means that the proposed
cost function can be used for solving permutation at all frequen-
cies except at the very low frequencies. The reason for Cross
showing a large value at the very low frequencies is that the
phase difference in the column vectors of is small at the
low frequencies.

Fig. 12(a) shows the cost function with ob-
tained from the trained filter network with real data. From
this figure, it can be seen that there are many vertical lines. These
vertical lines show that it is necessary to exchange the output at
those frequencies. In Fig. 12(b), it can be seen that the confi-
dence measure becomes low at some frequencies.

Fig. 13 shows the permutation error for and
. Permutation error is defined as the case when the result of

IFC differs from that of SOC (assumed as correct permutation).
When , permutation error “starts” at several frequencies
where is small and “propagates” toward the upper frequen-
cies. On the other hand, when , permutation error is al-
most completely corrected. This is due to the relations of ,

, being taken into account and the unreliable in-
formation being ignored by use of the confidence measure.

Fig. 14 shows the error rate. The input was 50 pairs of
Japanese sentences. It can be seen that the error rate was small
in the frequency range over 300 Hz (the region to the right of
the dotted vertical line). On the other hand, below 300 Hz, the
error rate increases. However, at these very low frequencies, the
performance of ICA is also reduced due to the phase difference
in being small, and the permutation sometimes becomes
meaningless.

Table IV shows a comparison of ASR rate when the permuta-
tion is solved by SOC and IFC. From this, the ASR rate reduced
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Fig. 14. Error rate in solving permutation. The error rate is plotted with “x”
below 300 Hz and with a solid line over 300 Hz.

TABLE IV
ASR RATE FOR DIFFERENTPERMUTATION METHODS[%]

by employing IFC is small (around 4%) compared with the error
rate for IFSEC reported in [3] (around 18%). In the application
of ASR, the contribution of the lower frequency component is
small due to the pre-emphasis [20]. Therefore, the permutation
error at very low frequencies is considered to be small.

VII. CONCLUSION

In this paper, an approach combining array processing and
ICA for the blind separation of acoustic signals in a reflective
environment was proposed. Two array processing techniques
were employed for pre- and post-processing of ICA.

As a pre-processor, the subspace method was employed to re-
duce the effect of room reflections. As shown in this paper, the
subspace method functions as a self-organizing beamformer fo-
cusing on the target sources and is suitable for the framework
of the blind separation. From the results of the experiments,
it was shown that the subspace method reduced the power of
the reflections by around 10 dB and improved the ASR rate by
around 18% for the array and the sound environment used in the
experiment.

The performance of the subspace method depends on both
the array configuration and the sound environment. Regarding
the array configuration, the subspace method is analogous to the
conventional DS beamformer since the subspace method has the
same noise reduction mechanism as that of the DS beamformer.
As for the sound environment, the directivity of reflections is as-
sumed to be small. This assumption holds when reflections are
coming from many directions and the coherency of the reflec-
tions between the microphones is reduced. The sound environ-
ment used in the experiment where the microphone array was
placed at some distance from the walls of the room meets this

condition. When there is a strong reflection with high directivity
such as when the microphone-array is placed close to a hard
wall, this assumption may not hold. In this case, some modifi-
cation may be required for the subspace method [21]. This case
must be treated in a future study.

As a post-processor, a new method for solving the permuta-
tion problem was proposed. This method utilizes the coherency
(continuity) of the mixing matrix at adjacent frequencies, a
physical property peculiar to acoustic problems. By employing
this method, the permutation error was reduced to 4% in terms
of the ASR rate. An advantage of this method is that, unlike
IFSEC, the performance of IFC is independent of source
spectra. Another advantage over IFSEC is that IFC does not
require a large memory space, such as that required for IFSEC,
to store the output spectrogram (see Appendix I), a desirable
feature for implementation in small-sized hardware such as
DSP (digital signal processor).

In this paper, the conventional ICA algorithm was employed
to combine the proposed pre- and post-array processing.
However, the recent progress of the ICA algorithm will lead to
the further improvement of the performance of the proposed
system.

APPENDIX I
IFSEC

As indicated in (25) and (27), the cost function of the pro-
posed method for solving permutation is written as

(32)

On the other hand, the cost function of IFSEC is written as

(33)

In IFSEC, this cost function is maximized in a manner similar
to that of the proposed method to solve the permutation. The
vector is the th column vector of the following matrix in a
manner similar to (24)

(34)

The matrix has the estimated spectral envelope (the
output of BSS smoothed by the moving-average) as a column
vector as

(35)

where

(36)

The symbol denotes the estimated spectral envelope at
the th channel, frequency, and the th time frame. The sym-
bols, , denote the period of spectrogram used for solving
the permutation.

As indicated in (32) and (33), the essential difference of the
proposed IFC and the conventional IFSEC is the vectors used
in their cost functions. The dimension of the vector in IFC is
always (8 in this paper), while that of IFSEC is dependent
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on the length of the spectrogram to be used for solving the per-
mutation. For example, when using 1 s of spectrogram with a
16-point frame shift, the dimension of the vector is 1000 for
IFSEC. From this, it can be known that the proposed IFC con-
sumes less memory space and computational load. It should be
noted that, for the sake of simplicity in explanation, IFSEC de-
scribed above was simplified. For further details, see [9].

APPENDIX II
AN ASPECT OF THESUBSPACE METHOD AS A

SELF-ORGANIZING BEAMFORMER

According to Properties 1 and 3, the directional component
can be expanded with the subset of the basis vectors,

, as

(37)

where is the projection coefficient of onto the basis
vector . On the other hand, due to Property 2, is expanded
using all the basis vectors, , as

(38)

where is a projection coefficient of onto the basis
vector . Equations (37) and (38) can be written in a matrix-
vector notation as

(39)

(40)

where and
. Equation (40) can be split as

(41)

where

(42)

(43)

and and
. From (42) and (43),

and . Applying the subspace
filter to these components in (39), (42) and (43) and using the
properties of the eigenvectors, and ,
we obtain

(44)

(45)

(46)

From these, it can be seen that, by applying the subspace filter,
the components in the signal subspace and are pre-
served while the component in the noise subspace is can-
celled. When the number of microphones is considerably
larger than that of the number of sources, it is expected that
a large portion of can be cancelled by this subspace filter.

On the other hand, the DS beamformer in the frequency do-
main that focuses on theth target source can be expressed as
[22]

(47)

where

(48)

For the sake of simplicity, it is assumed that
in (3). By using the vector notation, (48) can be

written as

(49)

where denotes theth column vector of . The denominator,
, is employed as a normalization factor. By extending (47)

and (49) so that the target sources are focused, the DS beam-
former becomes

(50)

where

(51)

Applying the DS beamformer to

(52)

This is because, due to Property 4, .
According to the above discussion, the subspace filterand

the DS beamformer have the same noise reduction mech-
anism, i.e., a mechanism which cancels the component in the
noise subspace, . The essential difference in the subspace
method and the DS beamformer is that, in the DS beamformer,
knowledge of the mixing matrix is required in the design of
the beamformer as shown in (51) while, in the subspace method,
no previous knowledge is required. In this sense, the subspace
filter can be considered as a self-organizing beamformer.
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