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Abstract

We present a new technique for time series analysis based on dy-
namic probabilistic networks. In this approach, the observed data
are modeled in terms of unobserved, mutually independent factors,
as in the recently introduced technique of Independent Factor Anal-
ysis (IFA). However, unlike in IFA, the factors are not i.i.d.; each
factor has its own temporal statistical characteristics. We derive a
family of EM algorithms that learn the structure of the underlying
factors and their relation to the data. These algorithms perform
source separation and noise reduction in an integrated manner, and
demonstrate superior performance compared to IFA.

1 Introduction

The technique of independent factor analysis (IFA) introduced in [1] provides a
tool for modeling L0-dim data in terms of L unobserved factors. These factors
are mutually independent and combine linearly with added noise to produce the
observed data. Mathematically, the model is de�ned by

yt = Hxt + ut ; (1)

where xt is the vector of factor activities at time t, yt is the data vector, H is the
L0 � L mixing matrix, and ut is the noise.

The origins of IFA lie in applied statistics on the one hand and in signal processing
on the other hand. Its statistics ancestor is ordinary factor analysis (FA), which as-
sumes Gaussian factors. In contrast, IFA allows each factor to have its own arbitrary
distribution, modeled semi-parametrically by a 1-dim mixture of Gaussians (MOG).
The MOG parameters, as well as the mixing matrix and noise covariance matrix,
are learned from the observed data by an expectation-maximization (EM) algorithm
derived in [1]. The signal processing ancestor of IFA is the independent component
analysis (ICA) method for blind source separation [2]{[6]. In ICA, the factors are
termed sources, and the task of blind source separation is to recover them from the
observed data with no knowledge of the mixing process. The sources in ICA have
non-Gaussian distributions, but unlike in IFA these distributions are usually �xed
by prior knowledge or have quite limited adaptability. More signi�cant restrictions



are that their number is set to the data dimensionality, i.e. L = L0 (`square mix-
ing'), the mixing matrix is assumed invertible, and the data are assumed noise-free
(ut = 0). In contrast, IFA allows any L;L0 (including more sources than sensors,
L > L0), as well as non-zero noise with unknown covariance. In addition, its use of
the 
exible MOG model often proves crucial for achieving successful separation [1].

Therefore, IFA generalizes and uni�es FA and ICA. Once the model has been
learned, it can be used for classi�cation (�tting an IFA model for each class), com-
pleting missing data, and so on. In the context of blind separation, an optimal
reconstruction of the sources xt from data is obtained [1] using a MAP estimator.

However, IFA and its ancestors su�er from the following shortcoming: They are
oblivious to temporal information since they do not attempt to model the temporal
statistics of the data (but see [4] for square, noise-free mixing). In other words, the
model learned would not be a�ected by permuting the time indices of fytg. This is
unfortunate since modeling the data as a time series would facilitate �ltering and
forecasting, as well as more accurate classi�cation. Moreover, for source separation
applications, learning temporal statistics would provide additional information on
the sources, leading to cleaner source reconstructions.

To see this, one may think of the problem of blind separation of noisy data in terms
of two components: source separation and noise reduction. A possible approach
might be the following two-stage procedure. First, perform noise reduction using,
e.g., Wiener �ltering. Second, perform source separation on the cleaned data us-
ing, e.g., an ICA algorithm. Notice that this procedure directly exploits temporal
(second-order) statistics of the data in the �rst stage to achieve stronger noise re-
duction. An alternative approach would be to exploit the temporal structure of
the data indirectly, by using a temporal source model. In the resulting single-stage
algorithm, the operations of source separation and noise reduction are coupled. This
is the approach taken in the present paper.

In the following, we present a new approach to the independent factor problem
based on dynamic probabilistic networks. In order to capture temporal statistical
properties of the observed data, we describe each source by a hidden Markov model
(HMM). The resulting dynamic model describes a multivariate time series in terms
of several independent sources, each having its own temporal characteristics. Section
2 presents an EM learning algorithm for the zero-noise case, and section 3 presents
an algorithm for the case of isotropic noise. The case of non-isotropic noise turns out
to be computationally intractable; section 4 provides an approximate EM algorithm
based on a variational approach.

Notation: The multivariable Gaussian density is denoted by G(z;�) =j 2�� j�1=2

exp(�zT��1z=2). We work with T -point time blocks denoted x1:T = fxtgTt=1
. The

ith coordinate of xt is x
i
t. For a function f , hf(x1:T )i denotes averaging over an

ensemble of x1:T blocks.

2 Zero Noise

The MOG source model employed in IFA [1] has the advantages that (i) it is capable
of approximating arbitrary densities, and (ii) it can be learned eÆciently from data
by EM. The Gaussians correspond to the hidden states of the sources, labeled by
s. Assume that at time t, source i is in state sit = s. Its signal xit is then generated
by sampling from a Gaussian distribution with mean �i

s and variance �is. In order
to capture temporal statistics of the data, we endow the sources with temporal
structure by introducing a transition matrix ais0s between the states. Focusing on



a time block t = 1; :::; T , the resulting probabilistic model is de�ned by

p(sit = s j sit�1
= s0) = ais0s ; p(si

0
= s) = �i

s ;

p(xit j sit = s) = G(xit � �i
s; �

i
s) ; p(y1:T ) =j detG jT p(x1:T ) ; (2)

where p(x1:T ) is the joint density of all sources x
i
t; i = 1; :::; L at all time points, and

the last equation follows from xt = Gyt with G =H�1 being the unmixing matrix.
As usual in the noise-free scenario (see [2]; section 7 of [1]), we are assuming that
the mixing matrix is square and invertible.

The graphical model for the observed density p(y1:T j W ) de�ned by (2) is
parametrized by W = fGij ; �

i
s; �

i
s; �

i
s; a

i
s0sg. This model describes each source as

a �rst-order HMM; it reduces to a time-independent model if ais0s = �i
s. Whereas

temporal structure can be described by other means, e.g. a moving-average [4] or
autoregressive [6] model, the HMM is advantageous since it models high-order tem-
poral statistics and facilitates EM learning. Omitting the derivation, maximization
with respect to Gij results in the incremental update rule

ÆG = �G� �
1

T

TX
t=1

�(xt)x
T
t G ; (3)

where �(xit) =
P

s 

i
t(s)(x

i
t � �i

s)=�
i
s, and the natural gradient [3] was used; � is an

appropriately chosen learning rate. For the source parameters we obtain the update
rules

�i
s =

P
t 


i
t(s)x

i
tP

t 

i
t(s)

; �is =

P
t 


i
t(s)(x

i
t � �i

s)
2P

t 

i
t(s)

; ais0s =

P
t �

i
t(s

0; s)P
t 


i
t�1

(s0)
; (4)

with the initial probabilities updated via �i
s = 
i

0
(s). We used the standard HMM

notation 
it(s) = p(sit = s j xi
1:T ), �

i
t(s

0; s) = p(sit�1
= s0; sit = s j xi

1:T ). These
posterior densities are computed in the E-step for each source, which is given in
terms of the data via xit =

P
j Gijy

j
t , using the forward-backward procedure [7].

The algorithm (3{4) may be used in several possible generalized EM schemes. An
eÆcient one is given by the following two-phase procedure: (i) freeze the source
parameters and learn the separating matrix G using (3); (ii) freeze G and learn the
source parameters using (4), then go back to (i) and repeat. Notice that the rule (3)
is similar to a natural gradient version of Bell and Sejnowski's ICA rule [2]; in fact,
the two coincide for time-independent sources where �(xi) = �@ log p(xi)=@xi. We
also recognize (4) as the Baum-Welch method. Hence, in phase (i) our algorithm
separates the sources using a generalized ICA rule, whereas in phase (ii) it learns
an HMM for each source.

Remark. Often one would like to model a given L0-variable time series in terms
of a smaller number L � L0 of factors. In the framework of our noise-free model
yt = Hxt, this can be achieved by applying the above algorithm to the L largest
principal components of the data; notice that if the data were indeed generated by L
factors, the remaining L0�L principal components would vanish. Equivalently, one
may apply the algorithm to the data directly, using a non-square L� L0 unmixing
matrix G.

Results. Figure 1 demonstrates the performance of the above method on a 4� 4
mixture of speech signals, which were passed through a non-linear function to mod-
ify their distributions. This mixture is inseparable to ICA because the source model
used by the latter does not �t the actual source densities (see discussion in [1]). We
also applied our dynamic network to a mixture of speech signals whose distributions



−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

p(x
)

−2 0 2

−3

−2

−1

0

1

2

3

x1

x2

HMM−ICA

−2 0 2

−3

−2

−1

0

1

2

3

x1

x2

ICA

Figure 1: Left: Two of the four source distributions. Middle: Outputs of the EM algo-
rithm (3{4) are nearly independent. Right: the outputs of ICA [2] are correlated.

were made Gaussian by an appropriate non-linear transformation. Since temporal
information is crucial for separation in this case (see [4],[6]), this mixture is in-
separable to ICA and IFA; however, the algorithm (3{4) accomplished separation
successfully.

3 Isotropic Noise

We now turn to the case of non-zero noise ut 6= 0. We assume that the noise is white
and has a zero-mean Gaussian distribution with covariance matrix �. In general,
this case is computationally intractable (see section 4). The reason is that the E-
step requires computing the posterior distribution p(s0:T ;x1:T j y1:T ) not only over
the source states (as in the zero-noise case) but also over the source signals, and
this posterior has a quite complicated structure. We now show that if we assume
isotropic noise, i.e. �ij = �Æij , as well as square invertible mixing as above, this
posterior simpli�es considerably, making learning and inference tractable. This is
done by adapting an idea suggested in [8] to our dynamic probabilistic network.

We start by pre-processing the data using a linear transformation that makes their
covariance matrix unity, i.e., hytyTt i = I (`sphering'). Here h�i denotes averaging
over T -point time blocks. From (1) it follows that HSHT = �0I, where S = hxtxTt i
is the diagonal covariance matrix of the sources, and �0 = 1� �. This, for a square
invertible H, implies that HTH is diagonal. In fact, since the unobserved sources
can be determined only to within a scaling factor, we can set the variance of each
source to unity and obtain the orthogonality property HTH = �0I. It can be shown
that the source posterior now factorizes into a product over the individual sources,
p(s0:T ;x1:T j y1:T ) =

Q
i p(s

i
0:T ; x

i
1:T j y1:T ), where

p(si
0:T ; x

i
1:T j y1:T ) /

"
TY

t=1

G(xit � �it; �
i
t) � vitp(sit j sit�1

)

#
vi
0
p(si

0
) : (5)

The means and variances at time t in (5), as well as the quantities vit, depend on

both the data yt and the states sit; in particular, �it = (
P

j Hjiy
j
t + ��i

s)=(�
0�s+ �)

and �i
t = ��is=(�

0�s + �), using s = sit; the expression for the vit are omitted. The
transition probabilities are the same as in (2). Hence, the posterior distribution
(5) e�ectively de�nes a new HMM for each source, with yt-dependent emission and
transition probabilities.

To derive the learning rule for H, we should �rst compute the conditional mean �xt
of the source signals at time t given the data. This can be done recursively using
(5) as in the forward-backward procedure. We then obtain

H =
p
�0C(CTC)�1=2 ; C =

1

T

TX
t=1

yt�x
T
t : (6)



This fractional form results from imposing the orthogonality constraint HTH = �0I
using Lagrange multipliers and can be computed via a diagonalization procedure.
The source parameters are computed using a learning rule (omitted) similar to the
noise-free rule (4). It is easy to derive a learning rule for the noise level � as well; in
fact, the ordinary FA rule would suÆce. We point out that, while this algorithm has
been derived for the case L = L0, it is perfectly well de�ned (though sub-optimal:
see below) for L � L0.

4 Non-Isotropic Noise

The general case of non-isotropic noise and non-square mixing is computationally
intractable. This is because the exact E-step requires summing over all possible
source con�gurations (s1t1 ; :::; s

L
tL) at all times t1; :::; tL = 1; :::; T . The intractability

problem stems from the fact that, while the sources are independent, the sources
conditioned on a data vector y1:T are correlated, resulting in a large number of
hidden con�gurations. This problem does not arise in the noise-free case, and can
be avoided in the case of isotropic noise and square mixing using the orthogonality
property; in both cases, the exact posterior over the sources factorizes.

The EM algorithm derived below is based on a variational approach. This approach
was introduced in [9] in the context of sigmoid belief networks, but constitutes a
general framework for ML learning in intractable probabilistic networks; it was
used in a HMM context in [10]. The idea is to use an approximate but tractable
posterior to place a lower bound on the likelihood, and optimize the parameters by
maximizing this bound.

A starting point for deriving a bound on the likelihood L is Neal and Hinton's [11]
formulation of the EM algorithm:

L = log p(y1:T ) �
TX
t=1

Eq log p(yt j xt) +
LX

i=1

Eq log p(s
i
0:T ; x

i
1:T )�Eq log q ; (7)

where Eq denotes averaging with respect to an arbitrary posterior density over the
hidden variables given the observed data, q = q(s0:T ;x1:T j y1:T ). Exact EM,
as shown in [11], is obtained by maximizing the bound (7) with respect to both
the posterior q (corresponding to the E-step) and the model parameters W (M-
step). However, the resulting q is the true but intractable posterior. In contrast, in
variational EM we choose a q that di�ers from the true posterior, but facilitates a
tractable E-step.

E-Step. We use q(s0:T ;x1:T j y1:T ) =
Q

i q(s
i
0:T j y1:T )

Q
t q(xt j y1:T ),

parametrized as

q(sit = s j sit�1
= s0;y1:T ) / �is;ta

i
s0s ; q(si

0
= s j y1:T ) / �is;t�

i
s ;

q(xt j y1:T ) = G(xt � �t;�t) : (8)

Thus, the variational transition probabilities in (8) are described by multiplying the
original ones ais0s by the parameters �is;t, subject to the normalization constraints.
The source signals xt at time t are jointly Gaussian with mean �t and covariance
�t. The means, covariances and transition probabilities are all time- and data-
dependent, i.e., �t = f(y1:T ; t) etc. This parametrization scheme is motivated by
the form of the posterior in (5); notice that the quantities �it; �

i
t; v

i
s;t there become

the variational parameters �it;�
ij
t ; �

i
s;t of (8). A related scheme was used in [10] in

a di�erent context. Since these parameters will be adapted independently of the
model parameters, the non-isotropic algorithm is expected to give superior results
compared to the isotropic one.
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Figure 2: Left: quality of the model parameter estimates. Right: quality of the source
reconstructions. (See text).

Of course, in the true posterior the xt are correlated, both temporally among them-
selves and with st, and the latter do not factorize. To best approximate it, the
variational parameters V = f�it;�ij

t ; �
i
s;tg are optimized to maximize the bound on

L, or equivalently to minimize the KL distance between q and the true posterior.
This requirement leads to the �xed point equations

�t = (HT��1H+Bt)
�1(HT��1yt + bt) ; �t = (HT��1H+Bt)

�1 ;

�is;t =
1

zit
exp

�
�1

2
log �is �

(�it � �i
s)
2 +�ii

t

2�is

�
; (9)

where Bij
t =

P
s[


i
t(s)=�

i
s]Æij , b

i
t =

P
s 


i
t(s)�

i
s=�

i
s, and the factors zit ensure nor-

malization. The HMM quantities 
it(s) are computed by the forward-backward
procedure using the variational transition probabilities (8). The variational param-
eters are determined by solving eqs. (9) iteratively for each block y1:T ; in practice,
we found that less then 20 iterations are usually required for convergence.

M-Step. The update rules for W are given for the mixing parameters by

H =

"X
t

yt�
T
t

#"X
t

(�t�
T
t +�t)

#
�1

; � =
1

T

X
t

(yty
T
t � yt�

T
t H

T ) ; (10)

and for the source parameters by

�i
s =

P
t 


i
t(s)�

i
tP

t 

i
t(s)

; �is =

P
t 


i
t(s)((�

i
t � �i

s)
2 +�ii

t )P
t 


i
t(s)

;

ais0s =

P
t �

i
t(s

0; s)P
t 


i
t�1

(s0)
; �i

s = 
i
0
(s) ; (11)

where the �it(s
0; s) are computed using the variational transition probabilities (8).

Notice that the learning rules for the source parameters have the Baum-Welch form,
in spite of the correlations between the conditioned sources. In our variational
approach, these correlations are hidden in V , as manifested by the fact that the
�xed point equations (9) couple the parameters V across time points (since 
it(s)
depends on �is;t=1:T ) and sources.

Source Reconstruction. From q(xt j y1:T ) (8), we observe that the MAP source
estimate is given by x̂t = �t(y1:T ), and depends on both W and V .

Results. The above algorithm is demonstrated on a source separation task in Fig-
ure 2. We used 6 speech signals, transformed by non-linearities to have arbitrary
one-point densities, and mixed by a random 8 � 6 matrix H0. Di�erent signal-
to-noise (SNR) levels were used. The error in the estimated H (left, solid line) is
quanti�ed by the size of the non-diagonal elements of (HTH)�1HTH0 relative to the



diagonal; the results obtained by IFA [1], which does not use temporal information,
are plotted for reference (dotted line). The mean squared error of the reconstructed
sources (right, solid line) and the corresponding IFA result (right, dashed line) are
also shown. The estimate and reconstruction errors of this algorithm are consis-
tently smaller than those of IFA, re
ecting the advantage of exploiting the temporal
structure of the data. Additional experiments with di�erent numbers of sources and
sensors gave similar results. Notice that this algorithm, unlike the previous two,
allows both L � L0 and L > L0. We also considered situations where the number of
sensors was smaller than the number of sources; the separation quality was good,
although, as expected, less so than in the opposite case.

5 Conclusion

An important issue that has not been addressed here is model selection. When ap-
plying our algorithms to an arbitrary dataset, the number of factors and of HMM
states for each factor should be determined. Whereas this could be done, in princi-
ple, using cross-validation, the required computational e�ort would be fairly large.
However, in a recent paper [12] we develop a new framework for Bayesian model
selection, as well as model averaging, in probabilistic networks. This framework,
termed Variational Bayes, proposes an EM-like algorithm which approximates full
posterior distributions over not only hidden variables but also parameters and model
structure, as well as predictive quantities, in an analytical manner. It is currently
being applied to the algorithms presented here with good preliminary results.

One �eld in which our approach may �nd important applications is speech technol-
ogy, where it suggests building more economical signal models based on combining
independent low-dimensional HMMs, rather than �tting a single complex HMM.
It may also contribute toward improving recognition performance in noisy, multi-
speaker, reverberant conditions which characterize real-world auditory scenes.
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