
Acquisition in Autoshaping

Sham Kakade Peter Dayan
Gatsby Computational Neuroscience Unit

17 Queen Square, London, England, WC1N 3AR.
sham@gatsby.ucl.ac.uk dayan@gatsby.ucl.ac.uk

Abstract

Quantitative data on the speed with which animals acquire behav-
ioral responses during classical conditioning experiments should
provide strong constraints on models of learning. However, most
models have simply ignored these data; the few that have attempt-
ed to address them have failed by at least an order of magnitude.
We discuss key data on the speed of acquisition, and show how to
account for them using a statistically sound model of learning, in
which differential reliabilities of stimuli play a crucial role.

1 Introduction

Conditioning experiments probe the ways that animals make predictions about
rewards and punishments and how those predictions are used to their advantage.
Substantial quantitative data are available as to how pigeons and rats acquire con-
ditioned responses during autoshaping, which is one of the simplest paradigms
of classical conditioning.4 These data are revealing about the statistical, and ulti-
mately also the neural, substrate underlying the ways that animals learn about the
causal texture of their environments.
In autoshaping experiments on pigeons, the birds acquire a peck response to a
lighted key associated (irrespective of their actions) with the delivery of food. One
attractive feature of autoshaping is that there is no need for separate ‘probe trials’
to assess the degree of association formed between the light and the food by the
animal — rather, the rate of key pecking during the light (and before the food) can
be used as a direct measure of this association. In particular, acquisition speeds are
often measured by the number of trials until a certain behavioral criterion is met,
such as pecking during the light on three out of four successive trials.4, 8, 10

As stressed persuasively by Gallistel & Gibbon4 (GG; forthcoming), the critical
feature of autoshaping is that there is substantial experimental evidence on how
acquisition speed depends on the three critical variables shown in figure 1A. The
first is I , the inter-trial interval; the second is T , the time during the trial for which
the light is presented; the third is the training schedule, 1=S, which is the fractional
number of deliveries per light — some birds were only partially reinforced.
Figure 1 makes three key points. First, figure 1B shows that the median number of
trials to the acquisition criterion depends on the ratio of I=T , and not on I and T
separately – experiments reported for the same I=T are actually performed with I
and T differing by more than an order of magnitude.4, 8 Second, figure 1B shows
convincingly that the number of reinforcements is approximately inversely pro-
portional to I=T — the relatively shorter presentation of light, the faster the learn-
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Figure 1: Autoshaping. A) Experimental paradigm. Top: the light is presented for T seconds everyC
seconds and is always followed by the delivery of food (filled circle). Bottom: the food is delivered with
probability 1=S = 1=2 per trial. In some cases I is stochastic, with the appropriate mean. B) Log-log
plot4 of the number of reinforcements to a given acquisition criterion versus the I=T ratio for S = 1.
The data are median acquisition times from 12 different laboratories. C) Log-log acquisition curves for
various I=T ratios and S values. The main graph shows trials versus S; the inset shows reinforcements
versus S. (1999).

ing. Third, figure 1C shows that partial reinforcement has almost no effect when
measured as a function of the number of reinforcements (rather than the number
of trials),4, 10 since although it takes S times as many trials to acquire, there are rein-
forcements on only 1=S trials. Changing S does not change the effective I=T when
measured as a function of reinforcements, so this result might actually be expected
on the basis of figure 1B, and we only consider S = 1 in this paper. Altogether, the
data show that:

n � 300 � T=I (1)

where n is the number of rewards to the acquisition criterion. Remarkably, these
effects seem to hold for over an order of magnitude in both I=T and S.
These quantitative data should be a most seductive target for statistically sound
models of learning. However, few models have even attempted to capture the
strong constraints they provide, and those that have attempted, all fail in critical
aspects. The best of them, rate estimation theory4 (RET), is closely related to the
Rescorla-Wagner13 (RW) model, and actually captures the proportionality in equa-
tion 1. However, as shown below, RET grossly overestimates the observed speed
of acquisition (underestimating the proportionality constant). Further, RET is de-
signed to account for the time at which a particular, standard, acquisition criterion
is met. Figure 2A shows that this is revealing only about the very early stages of
learning — RET is silent about the remainder of the learning curve.
We look at additional quantitative data on learning, which collectively suggest
that stimuli compete to predict the delivery of reward. Dayan & Long3 (DL) dis-
cussed various statistically inspired competitive models of classical conditioning,
concluding with one in which stimuli are differently reliable as predictors of re-
ward. However, DL ignored the data shown in figures 1 and 2, basing their anal-
ysis on conditioning paradigms in which I=T was not a factor. Figures 1 and 2
demand a more sophisticated statistical model — building such a model is the
focus of this paper.

2 Rate Estimation Theory

Gallistel & Gibbon4 (GG; forthcoming) are amongst the strongest proponents of the
quantitative relationships in figure 1. To account for them, GG suggest that animals
are estimating the rates of rewards — one, �l, for the rate associated with the light
and another, �b, for the rate associated with the background context. The context is
the ever-present environment which can itself gain associative value. The overall
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Figure 2: Additional Autoshaping Data. A) Acquisition of keypecking. The figure shows response
rate versus reinforcements.6 The acquisition criterion is satisfied at a relatively early time when the
response curve crosses the acquisition criterion line. B) The effects of prior context reinforcements on
subsequent acquisition speed. The data are taken from two experiments,1,2 with I=T = 6.

predicted reward rate while the light is on is �l +�b, and the rate without the light
is just �b.

The additive form of the model makes it similar to Rescorla-Wagner’s13 (RW) s-
tandard delta-rule model, for which the net prediction of the expected reward in a
trial is the sum of the associative values of each active predictor (in this case, the
context and light). If the rewards are modeled as being just present or absent, the
expected value for a reward is just its probability of occurrence. Instead, RET uses
rates, which are just probabilities per unit time.

GG4 formulated their model from a frequentist viewpoint. However, it is easier to
discuss a closely related Bayesian model which suffers from the same underlying
problem. Instead of using RW’s delta-rule for learning the rates, GG assume that
reinforcements come from a constant rate Poisson process, and make sound statis-
tical inferences about the rates given the data on the rewards. Using an improper
flat prior over the rates, we can write the joint distribution as:

P(�l�b j data) / P(n j �l�btltb) / (�l + �b)
ne�(�l+�b)tle��btb (2)

since all n rewards occur with the light, at rate �l + �b. Here, tl = nT is the total
time the light is on, and tb = nI is the total time the light is off.

GG take the further important step of relating the inferred rates �l and �b to the
decision of the animals to start responding (ie to satisfy the acquisition criterion).
GG suggest that acquisition should occur when the animals have strong evidence
that the fractional increase in the reward rate, whilst the light is on, is greater than
some threshold. More formally, acquisition should occur when:

P((�l + �b)=�b > � j n) = 1� � (3)

where � is the uncertainty threshold and � is slightly greater than one, reflect-
ing the fractional increase. The n that first satisfies equation 3 can be found by
integrating the joint probability in equation 2. It turns out that n / tl=tb, which
has the approximate, linear dependence on the ratio I=T (as in figure 1B), since
tl=tb = nT=nI = T=I . It also has no dependence on partial reinforcement, as
observed in figure 1C.

However, even with a very low uncertainty, � = 0:001, and a reasonable fractional
increase, � = 1:5, this model predicts that learning should be more than ten times
as fast as observed, since we get n � 20�T=I as opposed to the 300�T=I observed.
Equation 1 can only be satisfied by setting � between 10�20 and 10�50 (depending
on the precise values of I=T and �)! This spells problems for GG as a normative,
ideal detector model of learning — it cannot, for instance, be repaired with any
reasonable prior for the rates, as � drops drastically with n. In other circumstances,



though, Gallistel, Mark & King5 (forthcoming) have shown that animals can be
ideal detectors of changes in rates.
One hint of the flaw with GG is that simple manipulations to the context before
starting autoshaping (in particular extinction) can produce very rapid learning.2

More generally, the data show that acquisition speed is strongly controlled by pri-
or rewards being given only in the context (without the light present).2 Figure 2B
shows a parametric study of subsequent acquisition speeds during autoshaping as
a function of the number of rewards given only with the context. This effect cannot
simply be modeled by assuming a different prior distribution for the rates (which
does not fix the problem of the speed of acquisition in any case), since the rate at
which these prior context rewards were given has little effect on subsequent ac-
quisition speed for a given number of prior reinforcements.9 Note that the data in
figure 2B (ie equation 1) suggest that there were about thirty prior rewards in the
context — this is consistent with the experimental procedures used,8–10 although
prior experience was not a carefully controlled factor.

3 The Competitive Model

Five sets of constraints govern our new model. First, since animals can be ideal
detectors of rates in some circumstances,5 we only consider accounts under which
their acquisition of responding has a rational statistical basis. Second, the number
of reinforcements to acquisition must be n� 300 � T=I , as in equation 1. This re-
quires that the constant of proportionality should come from rational, not absurd,
uncertainties. Third, pecking rates after the acquisition criterion is satisfied should
also follow the form of figure 2A (in the end, we are preventing from a normative
account of this by a dearth of data). Fourth, the overall learning speed should be
strongly affected by the number of prior context rewards (figure 2B), but not by the
rate at which they were presented. That is, the context, as an established predic-
tor, regardless of the rate it predicts, should be able to substantially block learning
to a less established predictor. Finally, the asymptotic accuracy of rate estimates
should satisfy the substantial experimental data on the intrinsic uncertainty in the
predictions in the form of a quantitative account called scalar expectancy theory7

(SET).
In our model, as in DL, an independent prediction of the rate of reward delivery is
made on the basis of each stimulus that is present (!c, for the context; !l for the
light). These separate predictions are combined based on estimated reliabilities of
the predictions. Here, we present a heuristic version of a more rigorously specified
model.12

3.1 Rate Predictions

SET7 was originally developed to capture the nature of uncertainty in the way
that animals estimate time intervals. Its most important result is that the standard
deviation of an estimate is consistently proportional to the mean, even after an
asymptotic number of presentations of the interval. Since the estimated time to a
reward is just the inverse rate, asymptotic rate estimates might also be expected
to have constant coefficients of variation. Therefore, we constrain the standard
deviations of rate estimates not to drop below a multiple of their means. Evidence
suggests that this multiple is about 0:2.7 RET clearly does not satisfy this constraint
as the joint distribution (equation 2) becomes arbitrarily accurate over time.

Inspired by Sutton,14 we consider Kalman filter models for independent log-
predictions, log!c(m) and log!l(m), on trial m. The output models for the filters



specify the relationship between the predicted and observed rates. We use a simple
log-normal, LN , approximation (to an underlying truly Poisson model):

P(oc(m) j !c(m)) � LN (!c(m); v2c ) P(ol(m) j !l(m)) � LN (!l(m); v2l ) (4)

where o�(m) is the observed average reward whilst predictor � is present, so if a
reward occurs with the light in trial m, then ol(m) = 1=T and oc(m) = 1=C (where
C = T + I). The values of v2

�
can be determined, from the Poisson model, to be

v2c = v2l = 1.
The other part of the Kalman filter is a model of change in the world for the !’s:

log!c(m) = log!c(m� 1) + �c(m) �c(m) � N (0; (�(� + 1))�1) (5)

log!l(m) = log!l(m� 1) + �l(m) �l(m) � N (0; (�(� + 1))�1) (6)

We use log(rates) so that there is no inherent scale to change in the world. Here,
� is a constant chosen to satisfy the SET constraint, imposed as �� = b!�=

p
� at

asymptote. Notice that � acts as the effective number of rewards remembered,
which will be less than 30, to get the observed coefficient of variation above 0.2.
After observing the data from m trials, the posterior distributions for the predic-
tions will become approximately:

P(!c(m) j data) � N (1=C; �2c (m)) P(!l(m) j data) � N (1=T; �2l (m)) (7)

and, in about m = � trials, �c(m) ! (1=C)=
p
� and �l(m) ! (1=T )=

p
�. This

captures the fastest acquisition in figure 2, and also extinction.

3.2 Cooperative Mixture of Experts

The two predictions (equation 7) are combined using the factorial experts model of
Jacobs et al11 that was also used by DL. For this, during the presentation of the light
(and the context, of course), we consider that, independently, the relationships
between the actual reward rate r(m) and the outputs !l(m) and !c(m) of ‘experts’
associated with each stimulus are:

P(!l(m)jr(m)) � N (r(m); 1
�l(m) ) ; P(!c(m)jr(m)) � N (r(m); 1

�c(m) ) (8)

where �l(m)�1 and �c(m)�1 are inverse variances, or reliabilities for the stimuli.
These reliabilities reflect the belief as to how close !l(m) and !c(m) are to r(m).
The estimates are combined, giving

P(r(m) j !l(m); !c(m)) � N (br(m); (�l(m) + �c(m))�1)

br(m) = �l(m)!l(m) + (1� �l(m))!c(m) �l(m) = �l(m)=(�l(m) + �c(m))

The prediction of the reward rate without the light rc(m) is determined just by the
context value !c(m).
In this formulation, the context can block the light’s prediction if it is more reliable
(�c � �l), since �l � 0, making the mean br(m) � !c(m), and this blocking occurs
regardless of the context’s rate, !c(m). If �l slowly increases, then br(m)! !l slowly
as �l(m) ! 1. We expect this to model the post-acquisition part of the learning
shown in figure 2A.
A fully normative model of acquisition would come from a statistically correct ac-
count of how the reliabilities should change over time, which, in turn, would come
from a statistical model of the expectations the animal has of how predictabilities
change in the world. Unfortunately, the slow phase of learning in figure 2A, which
should provide the most useful data on these expectations, is almost ubiquitously
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Figure 3: Satisfaction of the Constraints. A) The fit to the behavioral response curve (figure 2B), using
equation 9 and �0 = 0:004. B) Possible acquisition curves showing br(m) versus m. The ! on the
criterion line denotes the range of 15 to 120 reinforcements that are indicated by figure 2B. The ��
curve is the same as in Fig 3A. The parameters displayed are values for �0 in multiples of �0 for the
center curve. C) A theoretical fit to the data using equation 11. Here, � = 5% and �0

p
�0 = 0:004.

ignored in experiments. We therefore make two assumptions about this, which are
chosen to fit the acquisition data, but whose normative underpinnings are unclear.
The first assumption, chosen to obtain the slow learning curve, is that:

�l(m) = tanh�0m (9)

Assuming that the strength of the behavioral response is approximately propor-
tional to r(m)� rc(m), which we will estimate by �l(m)(b!l(m)� b!c(m)), figure 3A
compares the rate of key pecking in the model with the data from figure 2A. Fig-
ure 3B shows the effect on the behavioral response of varying �0. Within just a half
an order magnitude of variation of �0, the acquisition speeds (judged at the criteri-
on line shown) due to between 1200 and 0 prior context rewards (figure 2B) can be
obtained. Note the slightly counter-intuitive explanation — the actual reward rate
associated with the light is established very quickly — slow learning comes from
slow changes in the importance paid to these rates.
We make a second assumption that the coefficient of variation of the context’s pre-
diction, from equation 8, does not change significantly for the early trials before
the acquisition criterion is met (it could change thereafter). This gives:

�c(m) � �0=b!c(m)2 for early m (10)

It is plausible that the context is not becoming a relatively worse ’expert’ for early
m, since no other predictor has yet proven more reliable.
Following GG’s suggestion, we model acquisition as occurring on trial m if
P(r(m) > rc(m)jdata) � 1 � �, ie if the animal has sound reasons to expect a
higher reward rate with the light. Integrating over the Kalman filter distributions
in equation 7 gives the distribution of r(m) � rc(m) for early m as

P(r(m)� rc(m) j data) � N ((tanh �0m)(1=T � 1=C); (�0C
2)�1)

where ��(m) has dropped out due to �l(m) being small at early m. Finding the
number of rewards, n, that satisfies the acquisition criterion gives:

n � �

�0
p
�0

T

I
(11)

where the factor of � depends on the uncertainty, �, used. Figure 3C shows the
theoretical fit to the data.

4 Discussion

Although a noble attempt, RET fails to satisfy the strong body of constraints under
which any acquisition model must labor. Under RET, the acquisition of respond-
ing cannot have a rational statistical basis, as the animal’s modeled uncertainty in



the association between light and reward at the time of acquisition is below 10�20.
Further, RET ignores constraints set forth by the data establishing SET and also
data on prior context manipulations. These latter data show that the context, re-
gardless of the rate it predicts, will substantially block learning to a less established
predictor. Additive models, such as RET, are unable to capture this effect.
We have suggested a model in which each stimulus is like an ‘expert’ that learns
independently about the world. Expert predictions can adapt quickly to changes
in contingencies, as they are based on a Kalman filter model, with variances chosen
to satisfy the constraint suggested by SET, and they can be combined based on their
reliabilities. We have demonstrated the model’s close fit to substantial experimental
data. In particular, the new model captures the I=T dependence of the number
of rewards to acquisition, with a constant of proportionality that reflects rational
statistical beliefs. The slow learning that occurs in some circumstances, is due to
a slow change in the reliabilities of predictors, not due to the rates being unable
to adapt quickly. Although we have not shown it here, the model is also able
to account for quantitative data as to the speed of extinction of the association
between the light and the reward.
The model leaves many directions for future study. In particular, we have not
specified a sound statistical basis for the changes in reliabilities given in equation-
s 9 and 10. Such a basis is key to understanding the slow phase of learning. Second,
we have not addressed data from more sophisticated conditioning paradigms. For
instance, overshadowing, in which multiple conditioned stimuli are similarly pre-
dictive of the reward, should be able to be incorporated into the model in a natural
way.
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