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INTRODUCTION

There is an apparent discrepancy in the rodent hippocampal literature, between the puta-
tive involvement of hippocampal principal neurons in navigation, and the limited naviga-
tional correlates of neuronal activity actually observed during electrophysiological record-
ing from these neurons. Consider a hippocampal place cell, so called because it fires
when the animal occupies a restricted portion of an environment, known as its place field
(O’Keefe and Dostrovsky, 1971; O’Keefe and Nadel, 1978). The cell’s spatial tuning sug-
gests a role in spatial learning, in agreement with hippocampal lesion studies (Morris et
al., 1982; Sutherland et al., 1983; Barnes, 1978; Nadel, 1971). However, the activity of the
cell, or even of a collection of such cells, simply individuates different locations – there is
no sense in which the firing of these cells tells the animal where it is, or where it ought to
go. More complex navigational activity has been suggested, such as the replaying of long-
range navigational sequences or possible navigational routes (eg Levy, 1996), but such
activity has not been observed across more than only a few place cells at a time, and is not
known to be predictive in nature (O’Keefe and Recce, 1993; Skaggs et al., 1996).

The paradox is this: how can place cells be important for navigation, but at the same time
not embody all the spatial information required to navigate from one place to another? To
put it another way, what might be the use for navigation of a group of cells whose firing
simply divides up an environment into place fields, rather than computing specific spatial
quantities like distance or direction to a goal? Two types of model of rodent navigation
have attempted to make use of place cells while not assuming hitherto unobserved prop-
erties of them. However, each of these types of model has encountered a fundamental
problem.

One type of model assumes that place cells provide the ideal representation for reward-
based learning. Thus when a rat encounters a goal such as hidden food in an environment,
some kind of reinforcement signal enables the place cell firing near the goal to be associ-
ated with the actions which the rat took immediately prior to attaining the goal (Burgess
et al, 1994; Brown and Sharp, 1995). The problem with this hypothesis is clear: there is
no simple way of dealing with the fact that most locations within an environment are
typically very far from the goal location (as measured by place fields). We shall call this
the distal reward problem. It has been dealt with in different ways – eg by postulating very
large place fields covering the entire environment, which have not been observed (Burgess
et al., 1994), or by making use of a memory trace, for which there is no evidence over the
kinds of distances required, and which in any case leads to a rather inefficient learning
algorithm (Brown and Sharp, 1995).

The second type of model assumes that place cells, while not providing by themselves
a map, do provide appropriate inputs to a mapping system, in which place cells become
associated with metric coordinates for locations within environments (Wan et al., 1994; Re-
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dish and Touretzky, 1996; Blum and Abbott, 1996; Gerstner and Abbott, 1997). A natural
basis for learning the coordinates in the first place is the self-motion (or “dead reckoning”)
information which an animal has available. The problem with this hypothesis is that self-
motion information, while suitably metric, is only relative in nature. Simply performing
path integration on this information runs into trouble as soon as the animal loses track
of its origin – as for example must happen during navigation tasks in which an animal is
picked up from the goal location at the end of one trial, and started again from an unpre-
dictable starting location. If the animal path integrates from each new starting position, it
will quickly acquire inconsistent coordinates over the environment as a whole. We shall
call this the problem of global consistency.

The motivation for the present work is the observation that a recently developed neural
network learning rule, temporal difference (TD) learning (Sutton, 1988), can solve both
the distal reward problem and the global consistency problem. Following Dayan (1991),
this paper investigates models of spatial learning in two navigational tasks, combining
TD learning with a place cell representation to learn about rewards and coordinates. We
pose the question: can TD learning bridge the computational gap between the observed
activity of place cells and the goal-directed navigational behaviour for which place cells
are thought to be important?

Temporal Difference Learning

Temporal Difference (TD) learning (Sutton, 1988; Barto, Sutton and Watkins, 1989; Bert-
sekas and Tsitsiklis, 1996; Sutton and Barto, 1998) is a form of error-driven learning used
in feed-forward neural networks in which input patterns (eg patterns of place cell activity)
are to be associated with output values (eg an expectation of how close the reward is), but
where additionally there is information to be had in the sequence in which input patterns
and output values present themselves.

Conventional error-driven learning rules (such as backpropagation) are usually referred
to as “supervised” because they use an error based on the difference between the network
output and a desired, or “teaching” value – therefore they require a “teaching” value all
the time. TD learning, by contrast, uses an error based on the difference between suc-
cessively occurring output values – a sensible strategy when one expects a consistent rela-
tionship between these values. For example, in this paper we consider the problem of a rat
trying to learn an expectation of reward that increases smoothly as the rat follows a path
towards a goal; irrespective of where the goal is, there should be a certain temporal gradi-
ent, or “temporal difference”, between values of this expectation at successive locations.
TD learning uses the reward information directly available at the goal to learn where the
greatest expectation of reward should be, but also uses the temporal gradient information
to learn appropriate expectations everywhere else.

The use of local consistency information makes TD learning not only temporally local
but also considerably more efficient than supervised learning alternatives. Consider one
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such alternative, the trace memory learning rule in Brown and Sharp (1995). A place cell
very far from the goal can learn an expectation of reward simply by maintaining a trace
memory of its activation which decays so slowly that when the animal gets to the platform,
a residual trace will remain. However this is inefficient because an animal’s paths will
be extremely variable during learning – without training, the animal sometimes gets to
the platform quickly and sometimes not – and the residual value of a particular place
cell’s trace will likewise be extremely variable from trial to trial. Unfortunately it is these
residual values that Brown and Sharp’s learning rule must average over. By contrast, TD
learning considers a generally less variable quantity – the difference between successive
estimates of the quantity being learned. Because of this, TD learning both converges faster
and produces better predictions than supervised learning (Sutton, 1988).

TD learning has provided a simple but powerful model of associative learning in classi-
cal conditioning, effectively extending the Rescorla-Wagner rule to the temporal domain
(Sutton and Barto, 1987). In particular, TD provides an explanation for second-order con-
ditioning, whereby a conditioned stimulus, or CS, that has acquired predictive value, can
itself condition another preceding CS. This process is similar to the dissemination of re-
ward information through an environment in a TD model of navigation: place cells, acting
as CSs, can become predictive of reward, even when they are not directly followed by re-
ward, but instead followed by other CSs, which have themselves become predictive of
reward. Furthermore, a neural basis for the involvement of TD learning in classical and
instrumental conditioning has recently been proposed, following the discovery in the pri-
mate ventral tegmental area of neurons whose firing during conditioning tasks is consis-
tent with the main error term which forms the basis for TD learning (Schultz et al., 1997;
Montague et al., 1996).

The Behaviour To Be Modelled

We have chosen to model two behavioural tasks that are known to be highly sensitive to
hippocampal lesions, and which are representative of the kind of navigational problems
for which TD learning used in conjunction with place cells might provide a solution.

Reference memory in the watermaze (RMW) involves placing rats into a circular tank of
water in which there is a hidden escape platform towards which they are highly moti-
vated to swim (Morris, 1981). The tank itself affords no local cues as to the position of the
platform, and the use of a different starting location on each trial renders useless the strat-
egy of replaying a series of motor commands that has worked previously. The rats must
learn to navigate to the platform location from any possible starting position. Normal rats
show more or less direct paths to the platform after 20 trials, as implied by their short
escape latencies (figure 1a, days 5 to 7). If the platform is then moved to a new location,
performance is disrupted and animals take several trials before they show direct paths to
the new platform location (figure 1a, days 8 and 9).

RMW has been modelled as an instance of conventional reward-based learning using
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Figure 1: The performance of rats on (a) reference memory (RMW), N=12, and (b) de-
layed matching-to-place (DMP), N=62. In both figures, escape latency (time taken to
reach the platform) is plotted across days (RMW task: 4 trials/day, fixed platform loca-
tion days 1-7; reversal to new platform location, days 8-9; DMP task: 4 trials/day, new
platform location each day). Note (i) asymptotic performance in RMW task, (ii) one-trial
learning in DMP task, (iii) difference in escape latency on second trial of day 8, between
the two tasks. Trial 1 performance differs from day to day, due to the platform position,
which was the same for all rats on any given day. It was observed that platforms nearer
the centre of the pool, or near to a starting position, were easier to find under random
search than others. Figure 1b is from Steele and Morris (1998); the data for Figure 1a
were obtained in the same apparatus and using the same methods as those described
for the DMP task by Steele and Morris (1998), excepting that: (1) the platform remained
in the same location across days, until moved to the opposite quadrant on Day 8; and (2)
the intertrial interval was always 15 sec.

place cells (Sharp and Brown, 1995). However, the task presents a distal reward prob-
lem. We examine a simple TD-learning based “actor-critic” model of learning (Barto et al.,
1983; Barto et al., 1989), in which a set of place cells is associated with a representation
of reward expectation, and also with a representation of action choice. Critically, the TD
learning rule is used to predict rewards.

Delayed matching-to-place (DMP) is a new protocol for the watermaze, though similar
tasks have been explored previously (Morris, 1983; Panakhova et al., 1984). As in RMW,
rats are given several trials per day to a platform that stays in the same location throughout
the day. The critical difference is that the platform is at a new and different location on
each day. For the first few days, normal rats show a gradual improvement within each
day in the time taken to reach the platform (see figure 1b, days 1 to 5). A different pattern
of escape latencies emerges by about day 6. Rats by then show ’one-trial learning’, that
is, near asymptotic navigational performance on the second trial of the day to a novel
platform position.

DMP is computationally more demanding than RMW. Unlike RMW, the new task involves
altering actions after only one trial of experience. It does not, however, only involve rapid
learning, as is demanded in a standard delayed match-to-sample task. DMP in the water-
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maze is a complex navigation task in which a whole sequence of navigational actions has
to be inferred from the single learning experience. This suggests a representation of space
that is goal-independent – where the spatial relationships between different locations are
learned and represented explicitly.

A metric coordinate system is a particularly parsimonious spatial representation which
can provide sufficient information for one-trial spatial inference in the watermaze. At-
tempts have been made to model coordinate learning in association with place cells, using
self-motion information (Wan et al., 1994; Redish and Touretzky, 1996). However, the
relative nature of self-motion information presents a global consistency problem. We in-
vestigate the use of TD learning to solve this problem by building a globally consistent
coordinate system based on place cells.

Plan Of The Paper

In this paper, we examine two kinds of spatial learning network – one reward based and
the other independent of rewards, based on metric self-motion information – and we in-
vestigate the use of TD learning in both networks. Models using both kinds of spatial in-
formation are described and then tested in simulated versions of both the RMW and DMP
tasks. The discussion highlights the role of place cells within the models, also covering
the relationship of the models to experimental data, and to other models of hippocam-
pally dependent navigation. Finally, a set of novel experimental predictions is presented.
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REWARD-BASED NAVIGATION

Modelling Hippocampal Place Cells

Following experimental data (Burgess et al., 1996), the activities of place cells are modelled
as Gaussian functions of location in the maze (figure 2a). If the rat is at position p, then
the activity of place cell i (1 � i � N ) is given by:

fi(p) = exp

 
�
kp� sik

2

2�2

!
(1)

where si is the location in space of the centre of cell i’s place field, and � is the breadth
of the field, equivalent to the radius of the circular contour where firing is 61% of the
maximal firing rate. We consider an ensemble of place cells with place fields distributed
in overlapping manner throughout the maze, each with width � = 0:16m.

Although clearly idealised, these place cells illustrate the limitations pointed out in the in-
troduction – they are not intrinsically informative about spatial or navigational quantities
such as distance or direction from a distant goal. However, such units form a basis func-
tion representation (eg Poggio and Girosi, 1990) of location. As such they would support
the representation and learning of functions which vary (usually smoothly) with location.
This paper explores this hypothesis – that hippocampal place cells play the limited but
nonetheless critical role of providing a particular representational substrate.

Learning Navigational Actions From Distal Reward

Consider a simulated animal in an environment with control of its own actions. At any
given time t, the animal is able to choose an action. Also at any given time t, the envi-
ronment provides the animal with a reward Rt. If the animal moves onto the platform
(a certain region of the environment) at time t, Rt = 1; otherwise Rt = 0. The difficult
problem is to learn correct actions given such a sparse reward signal.

To solve this problem we use an “actor-critic” architecture. A computational unit called
the actor continually produces actions taking a simulated animal around an environment.
While it does so, a second computational unit called the critic continually criticises the
actions taken. The actor adapts its action choices using the critic’s information. The critic
also adapts in the light of the changing actor. The critic’s role is as a go-between, between
the actions on one hand, and the reward information on the other, the latter being too
sparse and uninformative to criticise the actor directly.

Our implementation of the actor-critic has three parts (figure 2b): i) an input layer of place
cells, ii) a critic network that learns appropriate weights from the place cells to enable it to
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output information about the value of particular locations, and iii) an actor network that
learns appropriate weights from the place cells which enable it to represent the direction
in which the rat should swim at particular locations.
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Figure 2: The actor-critic system. (a) An example of a gaussian place field (x and y axes
represent location, z axis represents firing rate).(b) An input layer of such place cells
projects to the critic cell, C, whose output is used to evaluate behaviour. The place cells
also project to 8 action cells, which the actor uses to select between 8 possible directions
of movement from any given location.

The Critic

The critic has a single output cell, whose firing rate at a location p is given by a weighted
sum of the firing rates of place cell inputs fi(p):

C(p) =
X
i

wifi(p): (2)

where wi is the weight from place cell i.

The standard approach is for the critic to attempt to learn what is called a value function
over location, V (p), which is really an evaluation of the actions currently specified by the
actor. The value function is usually defined as, for any location p, the discounted total
future reward that is expected, on average, to accrue after occupying location p and then
following the actions currently specified by the actor. If p t is the location at time t, we may
define the value as:

V (pt) =
D
Rt + 
Rt+1 + 
2Rt+2 + :::

E
(3)

where 
 is a constant discounting factor, set such that 0 < 
 < 1, and h:i denotes the mean
over all trials. Three features can be noted about this quantity. First, if we call the time at
which each watermaze trial ends T (noting that the value of T will vary from trial to trial),
then, because this is the only time at which there is any reward, the value simplifies to:

V (pt) =
D

T�t

E
(4)

Second, because the constant discounting factor 
 is set such that 0 < 
 < 1, V (p t) is
a measure of the average time it takes to get to the platform from p. Third, V (p t) can
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actually suggest improvements to the actions of the actor – since an action which leads to
a large increase in value is guaranteed to take the animal closer to the platform. Therefore,
a good strategy for the actor is to try several actions at each location, with the aim of
choosing the action which involves the largest increase in value.

However, the value function is not given; the critic must learn it using TD learning, that is,
the weights wi must be adapted so that C(p) = V (p). TD works by enforcing consistency
between successive critic outputs. Specifically, from equation 3, the following relationship
holds between successively occurring values, V (p t) and V (pt+1):

V (pt) =< Rt > +
V (pt+1) (5)

If it were true that C(p) = V (p), then a similar relationship should hold between succes-
sively occurring critic outputs, C(pt) and C(pt+1):

C(pt) =< Rt > +
C(pt+1) (6)

TD uses the actual difference between the two sides of equation 6 as a prediction error, Æt,
which drives learning:

Æt = Rt + 
C(pt+1)� C(pt) (7)

using the instantaneous sampleRt in place of the desired average value< Rt >which is of
course unavailable. Note that the above equation is more complex than it need be – in fact,
Rt and C(pt+1) ought never to be both non-zero, since Rt = 1 only on the platform, and
at this point a trial ends, so V (pt+1) = 0. We therefore enforce this condition by making Æt

include either one term or the other, but never both. TD reduces the error by changing the
weights wi from those place cells that are active:

�wi / Ætfi(pt): (8)

Under various conditions on the learning rate and on the representation provided by the
place cells, this rule is bound to make C(p) converge to the value function V (p) as re-
quired. Following standard reinforcement learning practice, we use a fixed learning rate
to avoid slow learning. The price to be paid is residual error – however, the results show
that this error is insignificant.

The Actor

The actor is shown in figure 2a. For convenience, the rat is allowed to move in one of eight
possible directions at each time step (north, northeast, east etc.) and so the actor makes
use of eight action cells aj ; j = 1 : : : 8. Just as in equation 2, at position p the activity of
each action cell is

aj(p) =
X
i

qjifi(p)

where qij is the weight from place cell i to action cell j. This activity is interpreted as the
relative preference for swimming in the jth direction at location p: the actual swimming
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direction is chosen stochastically with probabilities p j related to these activities by:

pj =
exp(2aj)P
k exp(2ak)

(9)

Following the logic described above, the actor should try various actions at each location,
with the aim of choosing an action which produces the greatest increase in value. The
stochastic action choice ensures that many different actions are tried at similar locations.
To choose the best action, a signal is required from the critic about the change in value that
results from taking an action. It turns out that an appropriate signal is the same prediction
error Æt used in the learning of the value function. For example, consider what happens
when appropriate values have been learned that are consistent with the actions specified
by the actor throughout the environment, that is, when C(p) = V (p). At this point, the
currently specified actions should produce, on average, zero prediction error, ie Æ t = 0.
However, other actions will produce, on average, non-zero Æt. In particular, if Æt > 0, ie
V (pt) < 
V (pt+1), then the new action is a better one. If Æt < 0, the new action is a worse
one.

The actor weights qji are adapted according to:

�qji / Ætfi(pt)gj(t); (10)

where gj(t) = 1 if action j was chosen at time t, and gj(t) = 0 otherwise. This is a form
of Hebbian learning modified by Æt: the connection between a place cell and an action cell
is strengthened if (i.) they fire together, and (ii.) if what resulted from taking that action
at that place was an improvement in value. Likewise, the connection between a place cell
and an action cell is weakened if (i.) they fire together, and (ii.) if what resulted from
taking that action at that place was that the value got worse.

Learning Actor and Critic Simultaneously

So far two separate mechanisms have been described. First, a critic can develop a value
function, which serves as an evaluation of the current actions of the animal. However,
the method was presented as if the actor was constant ie as if the specified actions did
not change. Second, an actor can use the critic’s value function to improve the actions it
specifies. However, this was presented as if the value function was correct for the cur-
rent actions of the actor. Given that both mechanisms must work together, it has been
suggested that learning in the actor should proceed much more slowly than in the critic
(Witten, 1977).

In fact, the scheme is robust enough for learning to proceed quickly in both actor and
critic – thus the actor is being criticised by a critic which has not necessarily completely
learned the appropriate value function. The reason this “bootstrapping” can work is be-
cause learning in the critic is characterised by what might be called “graceful improve-
ment”: even when poorly learned, the critic’s value function can lead to improvements in
the actor eg near to the platform.

9



Theoretical guarantees are not available for this joint learning of the actor and the critic
(though they are for closely related algorithms). However, there is quite extensive empiri-
cal evidence, in addition to the results we present here, showing that it works well (Barto,
Sutton and Watkins, 1989).

Performance Of Reward-Based Navigation

Simulation procedures

We simulated the swimming behaviour of a rat in a 2m diameter circular watermaze,
which contained a 0:1m diameter escape platform. These parameters are the same as
those in (Steele and Morris, 1998). 493 place cells were distributed in an even and overlap-
ping manner throughout the maze, each with width � = 0:16m. The swimming speed of
the rat was constant at 0:3ms�1. The walls were treated as reflecting boundaries – the rat
‘bounced’ off. Any move into the platform area was counted as a move onto the platform.
Space was treated as a continuous variable, however, time was discretised into steps of
0:1s. Simulations with 0:01s bins produced similar results to those with the coarser dis-
cretisation, and so show that this discretisation does not produce artefacts.

In reality, a rat cannot choose a different direction at the fine-grained time steps of the tem-
porally discrete simulation. To model momentum, the direction the rat heads was given
by a mixture of control as specified by the actor, and the previous heading, in the ratio 1 : 3.
This restricts the turning curve of the rat, and is particularly important early on, when the
whole pool must be searched fairly quickly. One technical concern about momentum is
that it means that the path to the goal from a location is partly determined by the direc-
tion in which it was swimming when it arrived at that location. This disturbs the formal
theory, although simulations demonstrate that it does not prevent good performance by
the simulated rats.

Following the experimental protocols, each trial began at one of four starting locations
located at the north, south, east and west edges of the pool, and ended when either the rat
reached the platform, or a time-out of 120s was reached. For RMW, the platform remained
in the same location throughout the simulation. In DMP, the platform was moved to a
novel location after every four trials.

The learning rate parameters, which determine the constants of proportionality in equa-
tions 8 and 10, were optimised.

Simulation results

Figure 3 shows the gradual development of the value function. For the first few trials,
it is informative about only a small area close the platform location. Later in learning,
however, values have spread out to all parts of the environment. This enables appropriate
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Figure 3: Learning in the actor-critic system in RMW. For each trial, the value func-
tion V (p) is shown in the upper, three dimensional plot; to the lower left, the preferred
actions at various locations are shown (the length of each arrow is related to the proba-
bility that the particular action shown is taken by a logarithmic scale); to the lower right
is a sample path. Trial 2: after a timed-out first trial, the value function remains zero
everywhere, the actions point randomly in different directions, and a long and tortuous
path is taken to the platform. Trial 7: the value function being peaked in the north-east
quadrant of the pool, the preferred actions are correct for locations close to the plat-
form, but not for locations further away. Trial 22: the value function has spread across
the whole pool and the preferred actions are close to correct in most locations, and so
the actor takes a direct route to the platform.

actions to be learned, as is reflected in ever shorter paths to the platform.

The actor-critic model of figure 2 was applied firstly to the reference memory (RMW)
task. Figure 4a shows that the actor-critic captures learning in this task; path lengths reach
asymptotically low values as quickly as the latencies of rats shown in figure 1a. However,
when the platform is moved during the reversal phase of days 8 and 9, this model diverges
from the performance of rats.

Likewise, when applied to the delayed matching-to-place (DMP) task, the results are strik-
ingly different. Figure 4b demonstrates that the actor-critic component of the model fails
by itself to capture the performance of rats in DMP, because the value function that is
learned confounds spatial and reward information, and so neither the value function nor
the policy are flexible to changes in reward location. The model incorrectly predicts that
learning a new platform position is much slower because of interference from previous
days (figure 4)b.
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Figure 4: Performance of the actor-critic model. For each data point, the mean and stan-
dard error in the mean are obtained from 1000 simulation runs. (a) RMW task, in which
the platform occupies the same location. The actor-critic captures acquisition, produc-
ing direct paths after around 10 trials. For the last eight trials however (days 8 and 9),
the platform is moved to a different position (reversal), and the model fails to adapt
rapidly enough. This figure corresponds to figure 1a. (b) DMP task, in which the plat-
form remains in the same position within a day, but occupies a novel position on each
new day. The actor-critic model captures acquisition for for the four trials of day 1, for
which the task is indistinguishable from RMW. However, as a soon as the platform is
moved, the actor-critic not only fails to generalise to the new goal location, but suffers
from interference from the previous days’ goal locations. Rats suffer neither of these
limitations (figure 1b).

COORDINATE-BASED NAVIGATION

Learning Globally Consistent Coordinates From Self-Motion Information

The actor-critic is a general solution to the problem of navigating to a fixed goal location.
Nothing is assumed about the shape or topology of the environment, and short paths to
the goal would ultimately be learned even in the presence of complicated barriers. How-
ever, the actor-critic model fails by itself to capture the performance of rats in DMP for
two reasons. First, it incorrectly predicts that learning a new platform position is much
slower because of interference from previous days. Second, it provides no mechanism by
which the experience of previous days can provide any help with learning a new platform
position.

One trial learning by rats on DMP reveals that rats suffer neither of these limitations. Un-
der appropriate training conditions, rats can not only avoid interference between training
on successive days, but can also generalise from experience on early days to help perfor-
mance on later days. To make this clear in computational terms, consider trial 2 on day
6 of training (figure 1b). The starting position may be in an area of the environment not
explored on trial 1 of that day; nevertheless the rat swims immediately to the platform.
Clearly, knowledge from previous days is being used.

Our model of coordinate learning is based around the the observation that the computa-
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tions involved in the dead-reckoning abilities of animals could subserve an all-to-all navi-
gation system for open spaces like a watermaze, if only the dead-reckoning coordinates
could be made to be consistent across separate trials, ie tied to an allocentric representation
of the environment. In effect, we consider making a dead reckoning system hippocampal
dependent, that is, dependent on input from the place cell system, and show how such a
system can be used to account for one-trial learning in the DMP task.

Dead reckoning abilities have been documented in (at least) ants, bees, wasps, geese, ger-
bils, pigeons, rats and humans (Gallistel, 1990). These abilities assume the availability of
instantaneous estimates of the animal’s self-motion. Furthermore such information is as-
sumed to be integrated in order to calculate the direction back to the starting point. We
will make use of this self motion information, and the simple geometrical processing re-
quired to calculate a heading from the current position; however, we will not make use of
path integration. Instead, we use place cell responses and a predictive TD-based learning
rule to acquire a coordinate system in the maze which is defined allocentrically, that is,
independently of the animal’s point of origin.

It is hard to acquire an appropriate coordinate system using path integration information
alone because of the problem of consistency. When the rat is put in the maze in a new
place, there is no way of ensuring that the dead reckoning coordinates it assigns are au-
tomatically consistent with those it has assigned elsewhere in previous traversals of the
maze. The essential task for the model is learning this consistency (see also Wan et al.,
1994). Note that the problem of having a consistent report of head direction (implicitly
required in the model) is quite similar. However, head direction generalises over a much
greater spatial extent than does dead reckoning, and, in the experiments being modelled,
vestibular disorientation or other manipulations of the head direction system were not
used.

The problem for the rat is therefore to learn globally consistent coordinates based only on
local relative self-motion. The key observation is that for every move that the rat makes,
the difference between its estimates of coordinates at the ending and starting locations
should be exactly the relative self-motion during the move. This consistency condition
can be used as the basis for a TD learning rule for learning coordinates.

Figure 5 shows a simple model of learning and using coordinates. The coordinate system
consists of two networks, one which learns X coordinates (as X(p) =

P
iw

X
i fi(p)), and

one which learns Y coordinates (as Y (p) =
P

iw
Y
i fi(p)), both using inputs from place

cells which act in exactly the same way as in the actor-critic model, each producing a
firing rate fi(p) as a function of location p. The choice of X and Y coordinates, or even
just two orthogonal directions, is of course arbitrary – but the basic problem of making
coordinates consistent will exist whatever particular coordinate system is used. The X

and Y coordinates have been chosen for simplicity, and to illustrate clearly the learning
problem.

As the rat moves around, the weights fwX
i g and fwY

i g; i = 1; :::; N that define the coordi-
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Figure 5: The combined coordinate and actor-critic model incorporates both the actor-
critic system and a coordinate system. The coordinate system consists of three compo-
nents: i) a coordinate representation of current position made up of two cells X and Y ,
the firing of which is a function of place cell input; ii) a goal coordinate memory con-
sisting of two cells, X0 and Y 0, whose firing reflects the coordinate location of the last
place at which the platform was found; iii) a mechanism which computes the direction
in which to swim to get from the current position to the goal. The output direction from
the coordinate system is integrated with that from the actor-critic through the ‘abstract
action’, marked acoord which receives reinforcement depending on its performance.

nates are adjusted according to:

�wX
i / (�xt +X(pt+1)�X(pt))

tX
k=1

�t�kfi(pk) (11)

�wY
i / (�yt + Y (pt+1)� Y (pt))

tX
k=1

�t�kfi(pk) (12)

where �xt and �yt are the self-motion estimates in the x direction and y direction, respec-
tively. An interesting technical issue is the use of a more general form of the TD algorithm,
which leads to the sums on the right of equations 11 and 12. This form works by enforc-
ing consistency between coordinates not only across one timestep, but across many. The
parameter � determines to what extent more distant timesteps are also considered. The-
oretical arguments suggest that since the terms �x t and �yt are likely to be quite accu-
rate, distant timesteps are useful, therefore a high value of � should make learning fastest
(Watkins, 1989). Simulations confirmed this, and so we set � to 0:9.

Using Coordinates To Control Actions

In dead reckoning, an animal computes, from its current coordinate, a bearing back to
a point of origin. In the model, a coordinate controller computes, given its current allo-
centrically defined coordinate, a bearing to whatever other coordinate is of interest. This
requires performing a simple vector subtraction, which is just the same computation that
dead reckoning also requires (although we do not explicitly model the computation in
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neural or connectionist terms). The additional, non-trivial requirement for the general
coordinate system is some form of goal coordinate memory, a point we return to in the
discussion. At certain times, however, there will be no remembered goal coordinate – dur-
ing the first trial, and, on DMP, at every time the rat reaches the position where it thinks
the goal is, and finds it to be moved. When there is no goal coordinate in memory, we
make the coordinate controller specify random, exploratory actions.

When coordinates have been learned, a coordinate controller such as that described above
is potentially extremely useful; however, if coordinates are poorly learned, there are no
guarantees that the controller is at all useful. Early on, the controller will produce paths
which are not only indirect, but are even prone to catastrophic loops (see figure 7). The
ability of the controller to switch to random exploration can sometimes alleviate this prob-
lem, but even then is guaranteed to produce highly sub-optimal paths.

The solution adopted in this paper is to combine coordinate control with the actor-critic
architecture. One way to do this is shown in figure 5. Here, there is an additional action
cell, acoord, representing the rat’s preference for the swimming direction offered by the
coordinate system. This coordinate action can be chosen stochastically, in competition
with the normal actions, rather like Singh’s (1992) ‘abstract actions’. The coordinate action
is reinforced by the critic in exactly the same way as the other actions: when the coordinate
action is chosen, the weighting of the coordinate action cell is changed according to current
information from the critic. The only difference is that when there is no remembered goal
coordinate – and the controller is specifying random exploratory actions instead of actions
based on its coordinates – then the controller does not participate in learning ie a coord is
not updated. The intention is that coordinate control comes to be relied upon gradually,
as it gives increasingly accurate information about where both the animal and the goal are
located. Note that the coordinate system suggests appropriate actions without suggesting
values associated with these actions.

Performance Of The Combined Coordinate and Actor-Critic Model

Simulation methods

The combined model was tested in simulated versions of the RMW and DMP tasks, using
the same simulation environment as described for the actor-critic model. Learning rate
parameters (including those governing the constants of proportionality in equations 11
and 12 and equation 10 for the abstract action) were again optimised.

Simulation results

Figure 6a shows the development of the X and Y coordinates over days. Early on, eg day 2

trial 2, the coordinate surface is uneven. By day 6, it is relatively smooth. Note that the co-
ordinate learning system receives no direct information about how the coordinates should
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Figure 6: (a.) The X and Y coordinate functions develop gradually over days, at first
being quite uneven (eg day 2) but becoming quite smooth by day 6. (b.) Below each
coordinate figure are examples of preferred actions, and paths, for trial 2 of a simulated
run of DMP using the full model. On the second trial of day 2, performance is quite
poor. By day 6, one-trial learning is evident. (c.) The centering of the X coordinates,
as measured by the mean, does not drift by the time coordinates are smooth. This is
expected, since as the coordinates become consistent, all weight changes tend to zero.
(d.) The error in the X coordinates for the same simulation, measured as the variance for
each coordinate about its desired value relative to the mean. The error stabilises after
a few trials. (e.) As coordinates improve, the weighting of the coordinate-based action
increases. Thus the probability of taking the coordinate action, averaged over all time
points within a trial, and over all the trials of a day, is shown to increase.
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Trial 36 (last trial)Trial 4

Figure 7: The gradient of the coordinate functions. The gradient is a very sensitive
measure of smoothness. On trial 4, coordinates are still not at all smooth; navigation
based on these functions alone would be prone to catastrophic loops, ie would never
reach the platform. By comparison, the actor-critic scheme develops effective values
and actions for control by trial 4 (figure 3), and it is this control that allows the rat to
move through the environment, and so improve its coordinate functions. By trial 36,
coordinates are smoother and the gradients reflect the X and Y directions.

be centred. Three factors control the centering: the boundary of the arena, the prior setting
of the coordinate weights (in this case all were zero) and the position and prior value of
any absorbing area (in this case the platform). These factors are arbitrary, and one might
worry that the coordinates could drift over time and thereby invalidate coordinates that
have been remembered over long periods. Consider, for example, a rat that had learned
coordinates throughout a maze but was then confined for a period of time to a particu-
lar region of the maze. If the rat was later released, but coordinates had drifted in the
meantime, navigation within the maze as a whole would be affected. However, since the
expected value of the prediction error at time steps should be zero for any self-consistent
coordinate mapping, such a mapping should remain stable. This is demonstrated for a
single run: figures 6c and d show the mean value of coordinates �X evolving over trials,
indicating that there is little drift after the first few trials.

The difficulty in using the coordinates by themselves to specify actions is clear from the
nature of the gradient of these functions (figure 7). Early on in learning, the coordinate
functions are highly irregular, and a direction specified on the basis of these functions is
worse than simply sub-optimal, since catastrophic loops are possible. This difficulty mo-
tivates the combination of the coordinate control with the actor-critic, allowing the con-
ventional actions of the actor-critic to dominate early on, but enabling coordinate control
to come to dominate as its actions prove more reliable than the conventional ones. This
transfer of control happens rapidly during the DMP task (figure 6e).

Figure 8a shows the performance of the combined model in the RMW task. Like the actor-
critic model of the previous section, the combined coordinate and actor-critic model suc-
cessfully captures the acquisition of this task. Moreover, this model can also account for
the rapid learning to the novel platform during the reversal phase, as seen in figure 1a.
Figure 8b shows the performance of the combined model in the DMP task. Just as in
figure 1b, acquisition during early days is gradual, while by day 6, one-trial learning is
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Figure 8: Performance of the combined coordinate and actor-critic model. For each data
point, the mean and standard error in the mean are obtained from 1000 simulation runs.
(a) RMW task, in which the platform occupies the same location. The combined model
captures both acquisition, producing direct paths after around 10 trials, and reversal,
producing rapid adaptation to the change in platform position on day 8 (see figure 1a).
(b) DMP task, in which the platform remains in the same position within a day, but oc-
cupies a novel position on each new day. The combined model captures the acquisition
of one-trial learning – the improvement within each day is gradual early in training,
but becomes a one-trial improvement by day 6. The model provides a good match to the
data (figure 1).

evident in the difference in performance between trials 1 and 2.

DISCUSSION

Models of hippocampally dependent navigation have been presented that use place cells
as a representational substrate for learning three different representations of the environ-
ment. The simpler actor-critic model learns the temporal proximity of locations to a single
escape platform and also appropriate actions that get there quickly. By itself, the actor-
critic model captures the performance in RMW. However, its performance diverges from
that of rats the moment the platform is moved, failing to account for the good reversal
performance shown by rats, or for the even more striking one-trial learning in DMP. In
the second model, X and Y coordinates, a goal-independent representation of the en-
vironment, are learned, and this provides the flexibility necessary for DMP by allowing
navigation to arbitrary goals. The model combines coordinates with the actor-critic archi-
tecture and accounts for the performance of rats in the RMW task, including the reversal,
and in the DMP task.

The question posed at the beginning of the paper was: how might place cell activity be
useful for navigation, without containing all the spatial information necessary for navi-
gation? We have shown that place cells provide an excellent representation for learning
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the three representations of the environment: values, actions and coordinates. In the wa-
termaze, the overlap between adjacent model place fields supports generalisation because
nearby places have similar optimal values, coordinates and correct actions. The point is
particularly well illustrated by the performance of the actor-critic in the RMW task. Rein-
forcement learning methods such as the actor-critic are infamous for the large number of
training trials required for learning – most applications to even very simple tasks require
at least thousands of trials. With place cells as an input representation, the actor-critic
learns the RMW task in about 10 trials.

As well as considering a somewhat standard application of TD learning, the actor-critic,
we have also presented a novel application of TD learning in the form of a network that
learns consistent coordinates in an environment. This learning is found to be extremely
fast – with smooth coordinates acquired after about 16 trials. Moreover, the coordinates
learned are stable, despite being learned from relative information. The problem of con-
sistency is a general problem that must affect all navigating systems that make use of
self-motion information to build map-like representations. The solution presented here is
possible through the partnership of a statistically efficient learning algorithm, TD learning,
and a stable, allocentrically defined representation of the environment, such as hippocam-
pal place cells provide.

What do the models tell us about the spatial tasks themselves? First, since the actor-critic
component can capture the performance of rats in RMW, this task does not provide ev-
idence for a ‘cognitive map’ (O’Keefe and Nadel, 1978; Morris, 1982). The actor-critic is
not the first model to provide a non-mapping account of the task (Zipser, 1986; Wilkie and
Palfrey, 1987; Burgess et al., 1994; Brown and Sharp, 1995; Blum and Abbott, 1996). It is,
however, the first to incorporate a principled solution to the general control problem of
learning from distal reward, the critical component of which is the temporal difference
(TD) learning rule. A further feature of the actor-critic, not explored in this paper, is its
generality – nothing is assumed about the topology of the environment (beyond the struc-
ture implicit in the place cell representation), and so the actor-critic has the potential to
learn in more complex environments, such as environments with barriers.

Second, the coordinate model demonstrates that it may be dangerous to conclude, as in a
recent review of models of navigation by Trullier et al (1997), that metric navigation meth-
ods subsume topological navigation methods. The DMP task can be solved using metric
information supplied by the coordinate model, but this model knows very little about the
topological structure of the environment, and this is its principal weakness. Likewise other
demonstrations of navigational ability – such as execution of paths in the dark (Collett et
al., 1986) or the taking of short-cuts (Menzel, 1973; Gallistel, 1990) – provide evidence for
the use of metric information, but not necessarily for the learning or use of topological
information about environments. Few spatial tasks demand even coordinates, and a chal-
lenge for the future is to prove that rats use still more sophisticated (ie topologically richer)
representations of space.
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Our work contains many simplifications. A way by which the coordinate controller might
suggest a value to the critic was not included – and so the critic itself becomes inaccurate
as one-trial learning is established. However, this may be justified on the grounds of
parsimony: there is little evidence to constrain the choice of mechanism either for this, or
for the closely related issue of learning ‘set’, ie the information about the task that a rat
acquires as it finds the platform changing position each day. However, ‘set’ learning is
clearly not complete - on the first trial of each new day, normal rats continue to revisit the
position of the platform on the previous day, even though this always incorrect (Steele and
Morris, 1998). We have not addressed the problem of learning to navigate to goals in many
different environments, nor have we addressed the formation of place fields themselves,
or the possibility that place fields change during either task. Finally, the search strategy
of the simulated rats was based on a random walk, commencing at the starting point and
ending at the platform. A better strategy would be to search all areas of the pool more
uniformly, and this may indeed be what the experimental rats did. The key difference
between the two strategies lies in not returning to previously searched areas. In fact, the
actor-critic has the potential to learn such a strategy, if punishments are associated with
moves which do not take the rat onto the platform. In this case, novel areas will appear
more attractive than previously searched areas.

Relationship To Experimental Data

The Hippocampus

In the model, place cells in the hippocampus provide a representation of the current posi-
tion of the rat, ie its current state in the control task. This representation has almost ideal
properties for learning the actor and critic because nearby places, which will have similar
values, and require similar actions, are represented similarly by the place cell system. In-
terestingly, where this condition is violated, as for example in the case of nearby places on
opposite sides of a barrier, the place cell representation adapts accordingly: place fields
which cross barriers do not generally occur, and if a barrier is added to the environment
so as to split an extant place field, the field extinguishes ie the cell associated with the field
ceases to fire (Muller, Kubie and Ranck, 1987). The implication is that proximity is de-
fined by the task, not purely by space. Finally, activity dependent changes in place fields’
shape and centering have been observed (Mehta et al., 1997), and these can be interpreted
in terms of improving the state representation for use by learning systems like the actor-
critic (Dayan, 1993).

A straightforward generalisation from this role in navigation is that hippocampal neurons
provide a state space representation appropriate to whatever task is at hand, so that non-
spatial tasks might lead to non-location based representations of the environment. This
is supported by physiological evidence for the non-spatial tuning of rodent hippocampal
cells (Wiener, 1996; Eichenbaum, 1996) and of cells in primate hippocampus (O’Mara et al.,
1994), and is in line with a number of current theories of hippocampal function (McClel-
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land and Goddard, 1996; Rudy and Sutherland, 1995). This hypothesis is not at odds with
the possibility that animals learn specialised representations of the environment, like the
coordinates of the model, in order to solve particular problems. As suggested by various
theories, it is also quite possible that the representations are present in the hippocampus
for only a limited time, and are ultimately consolidated into the cortex.

In the model, weight changes due to navigational learning occur downstream of hip-
pocampal place cells. Consonant with this, Steele and Morris (1998) find that, after 9

days of pre-training on DMP, animals can, at short memory delays, continue to perform
one-trial learning to novel platform positions during pharmacological blockade of NMDA
receptors in the hippocampus. However, 9 days is long enough to learn a coordinate sys-
tem, and so the experiment of Steele and Morris does not distinguish between models in
which coordinate-like information is stored inside the hippocampus, and models in which
it is stored outside.

An interesting issue raised by the model concerns the explicit memory for the current
goal location, demanded by the coordinate model. Evidence exists suggesting that goal
memory may be a dissociable computational factor in navigation. Steele and Morris (1998)
find that, after 9 days of pre-training, animals in which hippocampal synaptic plasticity
has been blocked by an NMDA antagonist show a delay-dependent impairment during
DMP. That is, trial 2 performance in DMP is impaired if, and only if, the delay between
trials 1 and 2 is long (20 min or 2 h; short delay was 15 s). Within the framework of the
model, this delay corresponds to a selective disruption of the goal coordinate memory.
Moreover, the data suggests that the normal operation of this goal memory is dependent
on the normal operation of hippocampal NMDA receptors.

The Actor-Critic

The actor-critic is a general learning scheme that has been used to model phenomena in
classical and instrumental conditioning that are likely to be largely independent of the
hippocampal formation. For example, Montague et al. (1996) built an actor-critic model of
rewarded conditioning behaviour based on electrophysiological evidence on the activity
of cells in the dopamine system (Schultz et al, 1997). In the model, neurons in the ventral
tegmental area and the substantia nigra pars compacta report the prediction error term Æ t

in equation 7, and the dorsal striatum plays the role of the actor. Both areas receive outputs
from the CA1 hippocampal subfield, an area where place cells are found (Wiener, 1996).
However, little is currently known about the activity of these systems during navigation,
or how or where the values may be stored.

The Coordinates

There is no evidence as yet for the neural implementation of the coordinate representa-
tion. However, the phenomenon of dead-reckoning is well documented in many animals,
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and strongly suggests both that a coordinate representation of some sort exists, and that
neural mechanisms exist to perform simple vector subtraction. The particular X and Y

coordinate representation we have used is extremely simple – we have used it to demon-
strate clearly the problem of building globally consistent coordinates from relative self-
motion information, which will be present for any coordinate system. The key feature
of the model is to make the coordinate representation hippocampally dependent, in the
sense of relying upon information from place cells, and the model demonstrates both that
place cells provide an appropriate representation from which to learn coordinates, and
that, with the TD learning rule, coordinate learning can be extremely fast.

Relationship To Other Models

The two key issues separating models of navigation are, from a neural perspective, the
extent to which the hippocampus itself solves the navigation problem, and, from a com-
putational perspective, the generality of the suggested control scheme. Both actor-critic
and coordinate models use the hippocampus only for a representation of state (ie place).
The actor-critic is a completely general control mechanism, working in environments with
arbitrarily complicated shapes and reward contingencies, but is fairly inflexible. The coor-
dinate model is flexible, but specialised to navigation in a restricted class of environments.

Blum and Abbott’s (1996) model (see also Abbott and Blum, 1995; and Gerstner and Ab-
bott, 1997) is very closely related to dynamic programming, the control mechanism under-
lying TD rules. Their model proposes that place cells express a decodable population code
for position, and that subtle changes in the population code, due to the operation of tem-
porally asymmetric Hebbian synaptic plasticity between place cells in field CA3 while the
rat is swimming, can be interpreted as reporting at each location the average swimming
direction that takes the rat to the goal. This essentially performs one step of the dynamic
programming technique of policy improvement, starting from a random policy. However,
for general control problems, just one step of policy improvement is inadequate; even in
the RMW task which they modelled, it was necessary to include a reinforcement process
which modulated the Hebbian plasticity, in a manner similar to Brown and Sharp (1995).

Gerstner and Abbott (1997) extended Blum and Abbott’s (1996) model to the case of nav-
igation to multiple goal locations. In their model, the (remembered) position of the goal
modulates the activities of place cells, allowing the connections between the single set of
place cells that are active in an environment to store the swimming direction appropriate
to the multiple goals. Having learned synaptic weights appropriate for a few goals, nav-
igation to novel goals is possible by interpolation. The model might use this feature to
solve DMP, even in the face of the pharmacological blockade. However, there are various
counts against the model. First, the modulation of place cell activity by goal position is
not observed – indeed there is evidence against it (Speakman and O’Keefe, 1991). Second,
both versions of this model embed the whole problem for navigation in the hippocampus
proper, in the connections between CA3 cells. This is hard to reconcile with the results
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of Bannerman et al. (1995) and Saucier and Cain (1995) which suggest that plasticity in
this region may not be necessary to learn a watermaze task in a novel environment, where
place cell activity might be very different. Third, one of the key computational operations
in the models is population decoding of the position of the rat that is encoded in the ac-
tivities of the place cells. Calculating this requires knowledge of something equivalent to
coordinates in the environment, that is, a priori knowledge of the location (in some coor-
dinate system) of the centre of each place field. Some additional, unspecified scheme for
learning these coordinates consistently across the environment is essential.

Like the actor-critic system, Burgess et al. (1994) and Brown and Sharp (1995) suggest
schemes in which place cells play a much more limited role – just providing a reliable
code for space. Both papers consider an RMW-like task which presents a distal reward
problem. The models address this problem in different ways. Burgess et al. (1994) use
the output of place cells to construct subicular cells with extended place fields, which
in turn are used to learn postulated goal cells, which fire across the extent of an entire
environment, performing a job like the actor. Learning of the goal cells only happens when
the animal actually reaches the goal, but this is sufficient because the extended range of
the goal cells means, in effect, there is no longer a distal reward problem. If by some
means the firing of goal cells for different goals could be distinguished, it is possible the
model could also address the DMP task, by having a subicular cell for every possible goal.
However, the use of large firing field representations in this manner raises a number of
issues. First, if the subicular cells that fire when the animal is at the goal do not cover the
whole environment, there will be places for which the animal will not learn appropriate
actions. Second, the mechanism which generates large subicular fields can be expected
to learn more slowly than TD learning methods, since it attempts to produce a smooth,
monotonic function of distance in the subicular cells by essentially averaging over place
cell activity traces for each subicular cell (ie for each potential goal). Third, the model does
not use a general learning scheme for control, and so can only accomplish tasks such as
avoiding obstacles by making detours that are significantly larger than necessary and, in
certain circumstances, may not work at all. Brown and Sharp (1995) present a simpler
model in which place cells are associated with responses, and in which learning is gated
by reward. However, as noted in the introduction, the model relies on a trace-like learning
rule which is likely to be a very inefficient way of learning predictions compared to the
TD learning rule used in the actor-critic model. The model does, however, suffer the same
limitations as the actor-critic with respect to the learning of a DMP task.

The problems involved in learning a coordinate system have been addressed by Wan et al
(1994). In their model, coordinates are represented by an extra-hippocampal path integra-
tion module that operates more conventionally, representing coordinates with respect to
some current point of origin. Their model demonstrates how place cell firing might come
through learning to be independent of sensory information, at least for a short while, re-
lying instead on input from the path integrator. It also addresses the inverse problem
of what happens when the path integrator becomes invalid, as for example on each new
trial of a watermaze task, because the path integrator learns to set itself by the output of
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place cells. In a completely novel region, a new origin is selected and new coordinates
laid down. However, if previous experience is of value to the animal, it must return to
areas of the environment where place cells can correctly set the path integrator; so for ex-
ample trial 2 of a watermaze task could not produce any learning until a familiar area was
traversed, so throwing away potentially valuable experience, as well as constraining the
animal’s search. The TD-based model of this paper avoids both shortcomings by directly
tackling the problem of inconsistent coordinates.

Finally, a number of models are based on the quite different view of hippocampal func-
tion, that the hippocampus is directly involved in some forms of flexible processing, for
instance manipulating sequences of mnemonic or spatial information (Levy, 1996) or per-
forming complicated computations, as in the demonstration of transitive inference (Bun-
sey and Eichenbaum, 1996). Although direct experimental support for this view is lack-
ing, it is not possible, on the basis of current evidence, to rule it out. However, transitive
inference may be a case in point, because working out a global order from local rela-
tionships is a similar task to that of calculating globally consistent coordinates from local
dead-reckoning information. It is possible that the hippocampus computes the inference
directly; it is also possible that downstream systems make the computation, but rely on the
hippocampal representation to do so. With regard to navigation tasks, we have demon-
strated that although the observed activity of place cells appears limited, it makes sense
if used in the right system with the right learning rule. Indeed, according to the models
presented here, the very characteristics that make place cell activity seem so redundant
– namely localisation, directional independence and stability – contribute most to their
suitability within a navigational learning context.

Predictions Of The Model

On the basis of the model, the following three predictions can be made.

1. Placement trials should support DMP, once rats have acquired one-trial learning.
After a certain amount of training, rats should have a system that specifies the coor-
dinates of any location they occupy. This implies that, by this stage of learning, mere
placement on a platform in a novel position might be sufficient to allow asymptotic
performance of the next trial. This prediction would, however, depend on the learn-
ing set behaviour of the rats in terms of knowing the appropriate response, having
been just placed on a platform.

2. Rats for which hippocampal synaptic plasticity is blocked, but only after place
fields have been established in an environment, should be unimpaired in a RMW
task. The model suggests that the actor-critic is located outside of the hippocampal
formation, and just uses information from the place cells as a representation of state.
Therefore, provided the place cells have been established (eg during a latent learning
period of some sort), actor-critic learning should progress normally. The complica-
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tion again is learning set behaviour - if blocking plasticity prevented the animals
from learning the nature of the task, this too would have to be ensured during a
pre-training period.

3. If rats with blocked hippocampal plasticity could perform DMP (at short latencies
between trial one and two) once place fields have been established in an environ-
ment, but before a coordinate system has had time to develop, this would suggest
that the coordinate system is not located inside the hippocampus. The experiment
of Steele and Morris (1998) does not distinguish between a coordinate system located
within the hippocampus, and one located outside. A similar experiment, but with
AP5 applied at a much earlier time, might resolve the issue. However, the same
considerations apply as for prediction 2, in terms of establishing place fields, and
acquiring the learning set.

ACKNOWLEDGEMENTS

Funding for this work has come from the McDonnell-Pew foundation, an Edinburgh Uni-
versity Holdsworth Scholarship (DJF), an MRC Programme Grant (RGMM), NSF grant
IBN-9634339 (PD), the Surdna foundation (PD) and the Gatsby Charitable Foundation
(PD). Support also came from the University of Oxford McDonnell-Pew Centre for Cog-
nitive Neuroscience (DJF&RGMM). We thank Robert Steele for detailed discussions and
Richard Sutton, Matt Wilson, and two anonymous reviewers for comments. Opinions
expressed are those of the authors.

25



REFERENCES

Abbott LF, Blum KI. Functional significance of long-term potentiation for sequence learn-
ing and prediction. Cerebral Cortex 1995;6:406-416.

Bannerman DM, Good MA, Butcher SP, Ramsay M, Morris RGM. Distinct components of
spatial learning revealed by prior training and NMDA receptor blockade. Nature 1995;378:182-
186.

Barto AG, Sutton RS, Anderson CW. Neuronlike adaptive elements that can solve dif-
ficult learning control problems. IEEE Transactions on Systems, Man, and Cybernetics
1983;13:834-846.

Barto AG, Sutton RS, Watkins, CJCH. Learning and sequential decision making. in Gabriel
M, Moore J, ed.s Learning and Computational Neuroscience: Foundations of Adaptive
Networks. Cambridge, MA, MIT Press: Bradford Books, 1990.

Bertsekas DP, Tsitsiklis JN. Neuro-dynamic programming. Athena Scientific: Belmont,
MA., 1996.

Blum KI, Abbott LF. A model of spatial map formation in the hippocampus of the rat.
Neural Computation 1996;8:85-93.

Brown MA, Sharp PE. Simulation of spatial learning in the Morris water maze by a neural
network model of the hippocampal formation and nucleus accumbens. Hippocampus
1995;5:171-188.

Bunsey M, Eichenbaum H. Conservation of hippocampal memory function in rats and
humans. Nature 1996;379:255-257.

Burgess N, Recce M, O’Keefe J. A model of hippocampal function. Neural Networks
1994;7:1065-1081.

Collett TS, Cartwright A, Smith BA. Landmark learning and visuo-spatial memories in
gerbils. Journal of Comparative Physiology A 1986;158:835-851.

Dayan P. Navigating through temporal difference. in Lippmann RP et al, ed.s NIPS-3.
1991:464-470.

Dayan P. Improving generalisation for temporal difference learning: the successor repre-
sentation. Neural Computation 1993;5:613-624.

Eichenbaum H. Is the rat hippocampus just for “place”? Curr Opin Neurobiol 1996;6:187-
195.

Gallistel CR. The Organization of Learning. Cambridge, MA:MIT Press, 1990.

26



Gerstner W, Abbott LF. Need title. J Computational Neurosci 1996;4:79-94.

Levy WB. A sequence predicting CA3 is a flexible associator that learns and uses context
to solve hippocampal-like tasks. Hippocampus 1996;6:579-590.

McClelland JL, Goddard NH. Considerations arising from a complementary learning sys-
tems perspective on hippocampus and neocortex. Hippocampus 1996;6:654-665.

Mehta MR, McNaughton BL, Barnes CA, Suster MS, Weaver KL, Gerrard JL. Rapid changes
in the hippocampal population code during behavior: a case for hebbian learning in vivo.
Society for Neuroscience Abstract 1996;22:724.15

Menzel EW. Chimpanzee spatial memory organization. Science 1973;182:943-945.

Montague PR, Dayan P, Sejnowski TJ. A framework for mesencephalic dopamine systems
based on predictive Hebbian learning. J Neurosci 1996;16:1936-1947.

Morris RGM. Spatial localisation does not require the presence of local cues. Learning and
Motivation 1981;12:239-260.

Morris RGM. An attempt to dissociate spatial-mapping and working-memory theories of
hippocampal function. In Seifert W, ed, The Neurobiology of the Hippocampus. London:
Academic Press, 1983.

Morris RGM. Does the hippocampus play a disproportionate role in spatial memory? Dis-
cussions in Neuroscience 1990;6:39-45.

Morris RGM, Garrud P, Rawlins JNP, O’Keefe J. Place navigation impaired in rats with
hippocampal lesions. Nature 1982;297:681-683.

Muller RU, Kubie JL, Ranck JB. Spatial firing patterns of hippocampal complex-spike cells
in a fixed environment. J Neurosci 1987;7:1935-1950.

O’Keefe J, Burgess N. Geometrical determinants of the place fields of hippocampal neu-
rons. Nature 1996;381:425-428.

O’Keefe J, Dostrovsky J. The hippocampus as a spatial map: preliminary evidence from
unit activity in the freely moving rat. Brain Res 1971;34:171-175.

O’Keefe J, Nadel L. The hippocampus as a cognitive map. Clarendon, London 1978.

O’Keefe J, Recce ML. Phase relationship between hippocampal place cells and the EEG
theta rhythm. Hippocampus 1993;3:317-330.

O’Mara SM, Rolls ET, Berthoz A, Kesner RP. Neurons responding to whole-body motion
in the primate hippocampus. J Neurosci 1994;14:6511-6523.

Panakhova E, Buresova O, Bures J. Persistence of spatial memory in the Morris water maze
tank task. Int J Psychophysiology 1984;2:5-10.

27



Poggio T, Girosi F. Networks for approximation and learning. Proc. IEEE 1990;78:1481-
1497.

Rudy JW, Sutherland RJ. Configural association theory and the hippocampal formation:
an appraisal and reconfiguration. Hippocampus 1995;5:375-389.

Saucier D, Cain DP. Spatial learning without NMDA receptor dependent long-term poten-
tiation. Nature 1995;378:186-189.

Schultz W, Dayan P, Montague PR. A neural substrate of prediction and reward. Science
1997;275:1593-1599.

Singh SP. Reinforcement learning with a hierarchy of abstract models. In Proc of the Tenth
National Conf on Artificial Intelligence, 1992.

Skaggs WE, McNaughton BL, Wilson MA, Barnes CA. Theta phase precession in hip-
pocampal neuronal populations and the compression of temporal sequences. Hippocam-
pus 1996;6:149-172.

Speakman A, O’Keefe J. Hippocampal complex spike cells do not change their place fields
if the goal is moved within a cue controlled environment. European J Neurosci 1991;2:544-
555.

Steele RJ, Morris RGMM. Delay-dependent impairment of a matching-to-place task with
chronic and intrahippocampal infusion of the NMDA-antagonist D-AP5. Hippocampus,
in press.

Sutherland RJ, Whishaw IQ, Kolb B. A behavioural analysis of spatial localisation follow-
ing electrolytic, kainate or colchicine induced damage to the hippocampal formation in
the rat. Behav Brain Res 1983;7:133-153.

Sutton RS. Learning to predict by the methods of temporal difference learning. Machine
Learning 1988;3:9-44.

Sutton RS, Barto AG. Toward a modern theory of adaptive networks: expectation and
prediction. Psych Review 1981;88:135-170.

Sutton RS, Barto AG. A temporal-difference model of classical conditioning. Tech Report,
GTE Labs, TR87-509.2, 1987.

Taube JS. Head direction cells recorded in the anterior thalamic nuclei of freely moving
rats. J Neurosci 1995;15:70-86.

Trullier O, Wiener SI, Berthoz A, Meyer J. Biologically-based artificial navigation systems
- review and prospects. Progress in Neurobiology 1997;51(5):483-544.

Wan HS, Touretzky DS, Redish AD. Towards a computational theory of rat navigation.
In: Proc. 1993 Connectionist Models Summer School. Hillsdale, NJ: Lawrence Erlbaum
1993;11-19.

28



Watkins CJCH. Learning from delayed rewards. PhD thesis, Univ. Cambridge, 1989.

Wiener, SI. Spatial, behavioral and sensory correlates of hippocampal CA1 complex spike
cell activity: implications for information processing functions. Progress in Neurobiology
1996;49:335-361.

Wilkie DM, Palfrey R. A computer simulation model of rats’ place navigation in the Morris
water maze. Behavior Research Methods, Instruments and Computers 1987;19(4):400-403.

Wilson MA, McNaughton BL. Dynamics of the hippocampal ensemble code for space.
Science 1993;261:1055-1058.

Witten IH. An adaptive optimal controller for discrete-time Markov environments. Infor-
mation and Control 1977;34:286-295.

Zipser D. Biologically plausible models of place recognition and goal location. In Rumel-
hart DE, McClelland JL, ed.s Parallel Distributed Processing, Vol. 1. MIT Press, 1986; Chp
23.

29


