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Ecole Polytechnique 91128 Palaiseau Cedex, France

Abstract

We study the emergence of synchronized burst activity in networks of
neurons with spike adaptation. We show that networks of tonically firing
adapting excitatory neurons can evolve to a state where the neuronsburst
in a synchronized manner. The mechanism leading to this burst activity
is analyzed in a network of integrate-and-fire neurons with spike adapta-
tion. The dependence of this state on the different network parameters is
investigated, and it is shown that this mechanism is robust against inho-
mogeneities, sparseness of the connectivity, and noise. In networks of two
populations, one excitatory and one inhibitory, we show that decreasing the
inhibitory feedback can cause the network to switch from a tonically active,
asynchronous state to the synchronized bursting state. Finally, we show that
the same mechanism also causes synchronized burst activity in networks of
more realistic conductance based model neurons.
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1 Introduction

The Central Nervous System (CNS) displays a wide spectrum of macroscopic,
spatially synchronized, rhythmic activity patterns, with frequencies ranging from
0:5Hz (� rhythm), to40�80Hz ( rhythm) and even up to200Hz (for a review
see Gray, 1994). Rhythmic activities in the brain can also differ by the strength,
i.e., by the amplitude of the cross-correlation (CC) peaks (properly normalized)
and the precision of the synchrony that can be characterized by the width of the
CC peaks. In many cases, for instance in the visual cortex during visual stim-
ulation, the CC peaks are narrow, i.e., action potentials of different neurons are
correlated across the time scale of the spikes. In other cases, in epileptic seizures
in the hippocampus (Silva et al. 1991, Flint and Connors 1996), or in slow corti-
cal rhythms (Steriade et al. 1993), for example, the synchrony which is observed
does not occur on a spike to spike basis, but rather on a longer time scale. In these
cases, spikes are not synchronized, but the firing rates of the neurons display syn-
chronous modulation, and the firing rate of the neurons can be substantially higher
than the frequency of the synchronized rhythmic activity pattern. The mecha-
nisms involved in the emergence of these rhythms remain a matter of debate. An
important issue is the respective contribution, in their emergence, of the cellular,
synaptic and architectonic properties.

Recent theoretical works have shown that synaptic excitation alone can hardly
explain the occurrence of synchrony of neural activity (Hansel et al., 1993, Ab-
bott and Van Vreeswijk, 1993, Van Vreeswijk et al., 1994, Hansel et al. 1995,
Gerstner, van Hemmen, and Cowan, 1996). This has lead to the suggestion that
inhibition plays an important role in neural synchrony (Hansel et al, 1993, Ab-
bott and Van Vreeswijk, 1994, Hansel et al., 1995, van Vreeswijk 1996). This
scenario and its robustness to heterogeneities in intrinsic properties of neurons, to
noise and to sparseness of the connectivity pattern has been investigated in detail
(White et al., 1997, Chow, 1998, Neltner et al., 1999, Golomb and Hansel, 1999).
Neltner et al. (1999) have shown that neural activity in heterogeneous networks
of inhibitory neurons can be synchronized at firing rates as large as150� 200Hz

provided that the connectivity of the network is large, the synaptic interactions and
the external inputs are sufficiently strong. This scenario which relies on a balanc-
ing between excitation and inhibition can be generalized to networks consisting of
two populations of neurons, one excitatory and the other inhibitory (Neltner et al.,
unpublished). Recent experimental studies in hippocampal slices (Jeffreys et al.,
1995); in which excitation has been blocked pharmacologically also support the
role of inhibition in neural synchrony. However, other experiments in hippocam-
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pal slices, with carbachol, show that when inhibition is blocked, synchronized
burst activity emerges. Modeling studies (Traub et al., 1992) show that the AHP
currents may play an important role in the emergence of this burst activity.

Bursting neuronal activity is also observed in the CNS under physiological
conditions. For a long time it has been known that the neurons in primary visual
cortex often fire bursts of action potentials (Hubel 1959). Evidence has been found
(Cattaeno et al., 1981) that the tuning curves to orientation of complex cells in V1
are more selective when computed only from the spikes fired in bursts than when
all of the spikes are included. More recent studies (DeBusk et al., 1997, Snider et
al., 1998) have also shown that a substantial fraction of the spikes fired by cortical
neurons during information processing, occurs during bursts, and have suggested
that these spikes play a crucial role in information processing in cortex.

Since slow potassium currents are wide-spread in neurons, it is important to
undetstand how they contribute to the shaping of the spatiotemporal patterns of
activity. Here we examine how rhythmic activity emerges in a network where
the excitatory neurons possess an AHP current responsible for spike adaptation.
We study, analytically and numerically, networks of neurons whose excitatory
population exhibit spike adaptation. We show that the positive feedback, due to
the excitatory synaptic interactions, and the negative and local feedback, due to the
spike adaptation, cooperate in the emergence of a collective state in which neurons
fire in bursts. These bursts are synchronized across the network but the individual
spikes are not. They result from a network effect, since in our model, neurons can
fire only tonically when isolated from the network. This state is robust against
noise, heterogeneity in the intrinsic properties of the neurons, and sparseness in
the connectivity pattern of the network.

The paper is organized as follows: In the next section we introduce the
integrate-and-fire (IF) model we study. The properties of the single excitatory
neuron dynamics of this model are described in section 3. In section 4, we study
networks that consist only of excitatory neurons. We study the phase diagram in
subsection 4.1. The mechanism and properties of the synchronized bursting state
are analyzed in the limit of slow adaptation in subsections 4.2 and 4.3, respec-
tively. The next subsection shows that the mechanism is robust to the introduction
of inhomogeneities, sparseness of the coupling and noise, and in section 4.5, net-
works with realistic adaptation time constants are considered. In section 5, we
discuss the effect of adding an inhibitory population.

It has been shown recently, that integrate-and-fire networks can differ substan-
tially in their collective behavior, from networks of neurons modeled in a more
realistic way in terms of ionic conductances. Given this, in section 6, we show by
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numerical simulations how the results we have obtained for IF networks extend to
networks with conductance based dynamics. Finally, we briefly discuss the main
results of this work.

2 Integrate-and-fire model network

The network model consists of two populations of integrate-and-fire (I&F) neu-
rons, one is excitatory (E) and the other is inhibitory (I). The excitatory population
shows spike adaptation, the inhibitory one does not. The pattern of connectivity
is characterized by a matrix,J��ij ; i; j = 1; :::; N , � = E; I: J��ij = 1, if neuron
j, in population� makes a synapse on the postsynaptic neuroni, from population
�, andJ��ij = 0 otherwise. For the sake of simplicity, we assume that all of the
synapses have the same strength and the same synaptic time constants. We neglect
propagation delays.

Each excitatory neuron,i, is characterized at time,t, by its membrane poten-
tial, V E

i
(t), by its adaptation current,AE

i
(t) and by the total synaptic current into

it, EE

i
(t). These quantities are following the dynamical equations:

�E
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If, at time t, V E

i
reaches 1, a spike occurs,V E

i
is instantaneously reset to 0 and

the adaptation current,AE

i
, is increased bygA=�A, i.e.,V E

i
(t+) = 0 andAi(t

+) =

Ai(t
�) + gA=�A.

Similarly, the activity of inhibitory neuron,i, is characterized by its membrane
potential,V I

i
, and by the total synaptic current into it,EI

i
(t). The membrane

potential satisfies

�I
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I

i
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= I
I

i
� V

I

i
+ E

I

i
(3)

supplemented with the reset condition,V
I

i
(t+) = 0, if the membrane potential of

inhibitory neuron,i, reached threshold at timet.
The external inputs into the excitatory and inhibitory neurons areI

E

i
andII

i
,

respectively. The membrane time constant for the inhibitory cells is�I (for sim-
plicity, we assume that all of the neurons in the same population have the same
membrane time constant). Note that we are not including the adaptation current
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in the dynamics of the inhibitory neurons in order to account for the fact that in
cortex, most of the inhibitory neurons do not display spike adaptation (Connors et
al., 1982, Connors and Gutnick, 1990, Ahmed et al., 1998).

For the excitatory neurons, we will assume a typical value for the membrane
time constant of�E = 10 msec. In the following, time will be measured normal-
ized to�E, so that�E will be omitted from the equations.

The synaptic currents,EE

i
andEI

i
, into excitatory and inhibitory cell,i, are

given respectively by:

E
�

i
=

X
�=E;I

X
j;k

1

�1� � �2�

J

��

ij g��

�
e

�(t�t
�
j;k

)=�1� � e

�(t�t
�
j;k

)=�2�

�
(4)

whereJ��ij is the connectivity matrix of the network,� = E; I, �1� and�2� are the
rise and decay times of the synapses projecting from population�, t�

jk
denotes the

kth time neuronj of population� fired an action potential, andg��, is the strength
of the synapses projecting from population� to population�. Note thatgEE and
gIE are positive, whilegEI andgII are negative. In most of the work we will use a
synaptic decay and rise times of�1;E = 3msec and�2;E = 1msec, �1;I = 6msec

and�2;I = 1 msec, respectively. Most of the paper deals with network with all-
to-all connectivity. In that case, the connectivity matrix isJ

��

ij = 1� �i;j��;� and
g�� = G��=N , where�i;j = 1 for i = j and�i;j = 0 otherwise, and similar for
��;�. We assume thatG�� is independent ofN .

For simplicity, we have assumed that the synapses and the adaptation are de-
scribed by currents rather than conductance changes. Describing these variables
by conductance changes does not qualitatively affect the result of our analysis.

In numerical simulations of the network, Eqns. (1-4) were integrated using a
second order Runge-Kutta method supplemented by a first order interpolation of
the firing time at threshold as explained in (Hansel et al., 1998, Shelley, 1999).
This algorithm is optimal for I&F neuronal networks and allows us to get reliable
results for time steps,�t, which are substantially large. The integration time step
is�t = 0:25 ms. Stability of the results was checked against varying the number
of time steps in the simulations and their size. When burst duration and interburst
interval were measured, we discarded the first few bursts to eliminate the effects
of the initial values and averaged these quantities over 10 to 20 bursts.
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Figure 1: A: Response of a single cell to current injection. At,t = 0, a constant current,
I0 = 1:1, is applied. Upper Panel: The neuron voltage. Spikes were added at the times neuron
when the voltage crosses the threshold,� = 1. Lower Panel: The adaptation current.B: The firing
frequency of the single model neuron withgA = 0:675 versus the constant applied current. The
rate is expressed in units of1=�m. With �m = 10 msec,R = 1 corresponds to a rate of 100 Hz.
Solid line: �A = 1, long dashed line:�A = 2, short dashed line:�A = 5, dotted line:�A =1.

3 Single neuron properties of the excitatory popula-
tion

Before we study the activity of the model network, we first describe the single cell
characteristics of the excitatory neurons in the presence of an external stimulus,
I0. In the single neuron study Figure 1A shows the response of a single cell to
constant input. Fort < 0, I0 = 0 andV (t) = A(t) = 0. At t = 0, a constant
current,I0 > 1, is turned on and the neuron starts firing. As the adaptation currents
build up, the firing rate diminishes. Eventually, the cell stabilizes in a periodic
firing state. It can be shown that the decrease of the instantaneous firing rate
towards its limit at large time is well approximated by an exponential relaxation.
Thus, the single model neurons are tonically firing adaptive neurons.

After a transient period, the cell fires periodically with period,T . Assume that
the cell fires at timet0. Immediately after the spike the adaptation current will
be at its maximum valueA0 and then decrease untill the next spike is fired. Thus
A(t+0 ) � A0. This implies thatA(t0+T

+) = A0. Therefore, just before the spike
at t0 + T , A is given by

A(t0 + T
�) = A0 � gA=�A: (5)

On the other hand, since the cell does not spike between timest = t0 and t =
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t0 + T , A(t0 + T
�) also satisfies

A(t0 + T
�) = A0e

�T=�A
: (6)

Therefore,A0 is given by

A0 =
gA

�A(1� e
�T=�A)

: (7)

Just after the spike at timet = t0, the membrane potential of the cell is reset
to 0,V (t+0 ) = 0. Between spikes,V satisfies

d

dt

V = I0 � V � A(t) (8)

with A(t) = A0e
�(t�t0)=�A . Consequently, for0 < t < T , V (t0 + t) is given by

V (t0 + t) = I0(1� e
�t)�

A0�A

�A � 1
(e�t=�A � e

�t): (9)

Since the cell fires again at timet0 + T , V (t0 + T
�) = 1, the periodT satisfies

I0(1� e
�T )�

gA

�A � 1

e
�T=�A � e

�T

1� e
�T=�A

= 1: (10)

Figure 1B shows the firing rate at large time,R = 1=T , for a single neuron
as a function of the input current,I0, for different values of the adaptation time
constant,�A. If the input is below threshold,I0 < 1, the cell does not fire. For
large input currents, such thatT � 1, we can use Eqn. (10) to approximate the
rate as

R =
1

1 + gA

(I0 � 1=2); (11)

independent of�A. Therefore, the rate varies linearly with the external input, as
is the case for the IF model without adaptation. The effect of the adaptation is to
divide the gain of the frequency-current curve by a factor that does not depend on
the adaptation time constant.

Just above the threshold the rate increases non-linearly with,I0. Using0 <

�I � I0 � 1 � 1, one finds from Eqn. (10) that, assuming�A > 1, the rate,R,
satisfies asymptotically in the limitT � �A:

R =
1

�A

�
� log (�I) + log

�
gA

�A + 1

��
�1

: (12)
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So, for any�A > 1, the rate has a�1= log(�I) dependence on the external input,
as is the case for IF neurons without adaptation. However, the prefactor here is1

�A
,

whereas when there is no adaptation, the prefactor is 1 (whengA ! 0 a crossover
occurs between the two behaviors).

If �A is very large, a third regime exists for1 � T � �A. In this limit, Eqn.
(10) can be written as

(I0 � gAR)
�
1� e

�1=R
�
= 1: (13)

Thus, for low rates,R� 1, the rate is approximately given by

R =
�I

gA

: (14)

In the limit �A ! 1, the logarithmic dependence ofR on �I becomes negli-
gible due to the small prefactor1=�A and Eqn. (14) extends up to the bifurcation
point. Therefore, in this limit, the transfer function starts linearly, with a slope
1=gA. The slope stays nearly constant as long ase

�1=R is negligible compared
to 1. For largerI0, the slope gradually decreases, and forI0 � 1 + gA, the rate
depends linearly onI0, but with a smaller slope1=(1 + gA). This is shown in
Figure 1B. It should be noted that in our simple model, the transfer function of
the neurons can be approximated by one semi-linear function over a large range
of frequencies only forgA � 1. While we finddR=dI0 = 1=gA near threshold,
for an input that gives a rateR = 1, corresponding to100 Hz, the slope changes
substantially todR=dI0 � 1=(gA + 0:9207).

4 One excitatory population with spike adaptation

4.1 The phase-diagram of the model

We now consider the case in which all of the inhibition has been blocked in the
model network, focusing on the behavior of the excitatory population. We first
consider the case where all of the neurons are identical, all-to-all coupled, with
GEE = gs, and receive the same external input,I0. The case of heterogeneous
and sparsely connected networks will be considered later (see section 4.4).

As we saw in the previous section, the single cells fire periodically if they
receive constant input. In an asynchronous state, (AS), the firing times of the neu-
rons, are evenly distributed, and the input to the cells is constant (up to fluctuations
of orderO(1=N)). This implies that in a large asynchronous network, the neurons

8



0

1

2

0

1

2

0 50 100 150

Vi

t

Figure 2:Voltage traces of two neurons in a network that is in the bursting state. Simulation was
started att = 0 with random initial conditions. Traces are shown after the transient activity has
died out. Parameters used:I0 = 1:1, gA = 0:4, �A = 150msec andgs = 0:675. Time is in units
of �m.

cannot fire in bursts. The stability of the asynchronous state can be determined
analytically (Van Vreeswijk, 1999). Here we will only mention the results of this
analysis.

There are two ways in which the AS can become unstable.

� For weak external input: When the input,I0, is just above the threshold,
the AS is stable if the synaptic coupling,gs, is sufficiently strong. Ifgs is
decreased, the AS becomes unstable through a normal Hopf bifurcation to a
synchronized state in which the cells continue to firetonically. In this state,
neural activity is synchronized on the spike to spike level. This instability is
similar to that in networks of IF neurons without adaptation (van Vreeswijk
1996).

� For strong external input: WhenI0 is sufficiently large and the adaptation,
gA, sufficiently strong, the asynchronous spiking state is stable for small
gs. Whengs is increased, the AS state is destabilized through an inverted
Hopf bifurcation. Past this bifurcation, the neurons fire inbursts as shown
in Fig. 2. In the following, we focus on this scenario. As we will see,
this synchronized state is characterized by a coherent neural activity on the
burst to burst level, where spikes are either not synchronized, or weakly
synchronized.
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Figure 3:Phase diagram of the integrate-and-fire network with adaptation. Dependence of the
final state of the network on�A (in units of �m) andgA is shown. Other parameters:I0 = 1:1,
gs = 0:675. AS: The neurons are spiking and the network activity is not synchronized; SB: The
neurons are bursting and the network activity is synchronized; AS+SB: In this region the network
displays bistability. Depending on the initial condition, the network settles into the asynchronous
spiking state or a synchronous bursting state.

A phase diagram of the network is shown in Fig. 3 as a function of�A and
gA. Here we have fixed the parametersI0 and gs at values for which the net-
work bursts for sufficiently largegA (second scenario above). There is a region of
bistability, in which the network state can evolve to a synchronized bursting state
or an asynchronous spiking state depending on the initial conditions. For very
slow adaptation the region of bistability is small, but it is considerable for faster
adaptation.

4.2 Mechanism of synchronized bursting in the limit �A !1

As mentioned above, the determination of the stability of the asynchronous state
is quite involved. For very slow adaptation however, it is relatively simple to
understand the bifurcation to that synchronized bursting state. To see this, let us
first recall some of the properties of connected networks of IF neurons without
adaptation.

Assuming that the neurons fire asynchronously, it is straightforward to show
(see Abbott and van Vreeswijk, 1993) that if the external input,I0, is sufficiently
large, neurons are firing at constant rate,R(I0), given by

(I0 + gsR)(1� e
�1=R) = 1: (15)
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Figure 4: The network without adaptation (gA = 0). Solid line: the critical value,Ic, of the
external current,I0, above which the asynchronous state is stable is plotted versus the synaptic
strength,gs. Dashed line: the minimum value,Imin, of the external current,I0, below which the
asynchronous state does not exist is plotted versus the synaptic strength,gs.

According to this equation, the minimal current,Imin, required for the neurons to
be active in the asynchronous state (AS) depends on the synaptic strengthgs. As
shown in Figure 4,Imin ranges fromImin = 0:5, for gs = 1, to Imin = 1, asgs
approaches 0.

Even if the AS state of a neuronal network exists, it is possible that the network
does not settle in this state, but in another state, in which the neuronal activity is
partially synchronized. For I&F networks, following (Abbott and van Vreeswijk,
1993), one finds that that there is a critical currentIc > Imin, above which the AS
is stable. This critical current depends ongs and the synaptic time constants,�1

and�2. Figure 4 shows the dependence ofIc ongs. For smallgs, the critical input
exceeds the firing threshold current,Ic > 1. In that case, the bifurcation atIc is
a normal Hopf bifurcation leading to a partially synchronized state, in which the
average rate of neurons is lower than in the (unstable) AS. This rate goes to 0 as
I0 approaches 1. This is shown graphically in Fig 5A.

Whengs is sufficiently large, the critical input is below the threshold current,
Ic < 1, see Fig 5B. The network goes through an inverted Hopf bifurcation as
I0 is reduced pastIc. For I0 < Ic, the only stable state is the quiescent state
(QS), in which the neurons are not firing. The network settles in this state. For
Ic < I0 < 1, there are two stable states, the AS and the QS. Presumably, there
exists also a third state, in which neuronal activity is partially synchronized, with
a firing rate which approaches the rate of the AS, whenI0 ! Ic, and approaches

11



0

0.1

0.2

0.3

0.4

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

R

I0

(A)

Ic 0

0.1

0.2

0.3

0.4

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4I0

R

(B)

Ic

Figure 5: The firing rate of the neurons in the network without adaptation (gA = 0) in the
asynchronous state is plotted versus the external current. Solid line: Stable solutions. Dashed
lines: Unstable solutions. The critical currentIc is indicated on the x-axes.A: gs = 0:3: The
asynchronous state is unstable below threshold current (I0 = 1). B: gs = 0:7: The asynchronous
state is stable in a range of the external current below threshold.

0, asI0 ! 1. However, one can conjecture that this state is unstable.
In the following, we consider thatgs is sufficiently large, so thatIc < 1. If I0 is

time dependent and decreases slowly (compared to the characteristic time scales
of the network dynamics) starting from above threshold, the network settles in the
AS. It remains there untilI0 reachesIc, where it abruptly switches to the QS. On
the other hand, ifI0 increases slowly from belowIc, the network remains in the
QS untilI0 reaches 1, a point at which the neurons start to fire again.

Let us now assume that the neurons display a very slow spike adaptation
(�A ! 1), and that at timet = 0 the adaptation and the membrane potential
are randomly distributed. Fort > 0, a constant suprathreshold stimulation is ap-
plied, i.e.,I0 > 1. Since�A is large, individual spikes increase the adaptation
currentAi only by a tiny amountgA=�A. Therefore after a transient period follow-
ing the stimulation,Ai(t) reflects the cumulative effect for all spikes of neuroni

that occurred, roughly, between timest � �A andt, the timing of these spikes on
a time-scale much smaller than�A can be neglected in the calculation ofAi. thus
we can write

�A

dAi

dt

= �Ai + gARi(t); (16)

whereRi(t) the rate of neuroni smoothed over some window with width much
less than�A. In this caseRi(t) is the rate of aI&F neuron without adaptation that
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receives an inputI0+gsE(t)�Ai. Thus the neurons that start out with the largest
Ai(0) will be the ones with the lowest rates. As a result their adaptation current
will decrease relative to neurons for whichAi(0) is smaller, so that after a time
which is large compared to�A the level of the adaptation current, and therefore
the rates, of all cells converges. Thus we can setAi = A andRi = R.

If A < I0�1 the network is in the AS, with the cells firing at a rateR(I0�A),
A obeys

�A

d

dt

A = �A+ gAR(I0 � A): (17)

For sufficiently largegA, A increases until it reachesAc = I0 � Ic, where the
activity of the network drops suddenly to zero, since the only stable state is the
QS. In the QS,A decreases, satisfying

�A

d

dt

A = �A: (18)

WhenA has decreased sufficiently (toA = I0� 1), the neurons will again start to
fire, rapidly evolving to the AS, andA increases again. Thus, the network switches
periodically from the AS to the QS. This is illustrated in Fig. 6. This bursting
mechanism requires that the adaptation current,A, has to continue to grow, as
long as the network is in the AS. Thus,gA has to satisfy

gA > gA;c �
I0 � Ic

R(Ic)
: (19)

If gA does not satisfy this constraint, the network reaches an equilibrium with
A = Ae = gAR(I0 � Ae), and the network settles in the AS state.

There is no simple way to determine analytically the behavior of the burst-
ing state for finite�A. However, numerical simulations confirm that this scenario
remains valid for adaptation currents with parameters in a physiological range
(Section 4.5). This analysis shows how synchronized bursts can emerge cooper-
atively from the combination of a strong excitatory feedback with slow and suf-
ficiently strong spike adaptation. In the next section, we study the properties of
these bursts.

4.3 Properties of the Bursting Network in the large �A limit

Equations (17) and (18) suggest that we can calculate the burst duration and the
inter-burst interval in the large�A limit. Indeed, according to Eqns. (17) and (18)
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Figure 6:Limit cycle behavior ofA in the large�A limit. If the network fires asynchronously,A
is driven togA R(I0 �A) (solid line). If this quantity is larger thanA (dashed line),A increases.
WhenA exceedsI0� Ic the network becomes quiescent andA is driven to 0. WhenA is less than
I0 � 1 the network jumps back to the asynchronous state.A and the rateR periodically traverse a
closed trajectory (thick solid line).

the burst duration,TB, and the inter-burst interval,TI , are given by

TB = �A

Z
I0�Ic

I0�1

dA

gAR(I0 � A)� A

; (20)

and

TI = �A

Z
I0�Ic

I0�1

dA

A

= �A log

�
I0 � Ic

I0 � 1

�
: (21)

Thus, both have a duration that is of order�A. However, there is a subtlety that
has to be taken into account. Between bursts, the synaptic feedback is negligible,
so that for all cells the membrane potentialVi satisfies

d

dt

Vi = I0 � Vi � A: (22)

This means that between bursts, the difference between the membrane potential
decreases. In fact, the standard deviation in potential,�V , given by

(�V )
2 = N

�1
X
i

V
2
i
�
 
N
�1
X
i

Vi

!2

(23)

satisfies between bursts
d

dt

�V = ��V ; (24)
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as can be seen from consideringd�2
V
=dt and using Eqn. (22). After the burst is

terminated,�V is of order 1. Therefore, at the end of the interburst period,�V is
of ordere�TI . For large�A, this is extremely small. This means that just before
the neurons start to fire again, they are very nearly synchronized. However, when
the burst has started, the cells are driven away from synchrony (since we have
assumed that the synaptic time constants and the synaptic strength are such that
excitatory interactions destabilize the synchrony of the network at the spike to
spike level.) For a nearly synchronized network, it can be shown that when the
network is again active,�V satisfies

�V (T + t) = �V (T )e
�t
; (25)

whereT is the time at which the network becomes active again. Here,� depends
non-trivially on the network parameters, but is of order 1. Eqn. (25) is valid as
long as�V (T + t) is small, for larger�V , the standard deviation in the membrane
potential grows slower, and it asymptotically goes to�V A, the value of�V in the
AS, where�V A is of order 1. Since�V (T ) is of ordere�TI , it will take at least a
time of orderTI=� (which is of order�A) before�V is of order 1 and the network
activity is appreciably desynchronized.

Since the burst duration is also of order�A, this implies that for a finite frac-
tion of the burst the network is appreciably away from the AS, even in the large
�A limit. Because, for a given level of external input, a network in a partially syn-
chronized state fires at a lower mean rate than in the asynchronous state, (see Fig.
5B), one expects that Eqn. (20) underestimates the duration of the burst, even in
the large�A limit. Unfortunately, there is no theoretical expression for the average
rate in a network that is partially synchronized. The increase in desynchronization
is also not well understood in this state, and it is not possible to take into account
the extremely high level of synchrony at the start of the burst, nor to obtain an
exact theoretical expression for the burst duration.

The interburst time interval should be correctly predicted from Eqn. (21).
This is because, while at the beginning of the burst the cells are nearly synchro-
nized, they fire completely asynchronously at the end of the burst, so the theory
in the previous section correctly predicts the state of the neurons when the burst
terminates. Since the inter-burst interval depends only on the value ofA at the ter-
mination of the burst, Eqn. (21) gives the correct value of the inter-burst interval,
even though burst duration is not predicted correctly by Eqn. (20).

Figure 7 shows the dependence ofTB=�A andTI=�A on the external input,
I0, for �A = 100. The quantitiesTB andTI were determined using numerical
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Figure 7:The interburst interval,TI , (solid line) and the intraburst duration,TB, (dashed line)
are plotted versus the external input,I0, in the large�A limit. Parameters are:gs = 0:675 and
gA = 0:6. Results from numerical simulations for�A = 100, are also plotted: pluses forTI ,
diamond forTE . Numerical integration of the dynamics was performed with a time step,�t =

0:025. The network consists ofN = 100 excitatory neurons. The synaptic time constant of the
synapses were: 0.1 for the rise time and 0.3 for the decay time. For each value of the current a
simulation was performed and stopped after 100 bursts have occurred and the burst duration and
interburst interval determined by averaging of all but the first 5 bursts.

simulations of a network ofN = 100 neurons. The values predicted by Eqns.
(20) and (21) are also shown. The burst duration is underestimated by Eqn. (20).
On the other hand, the values ofTI predicted by Eqn. (21) are in good quantitative
agreement with the simulations.

It is interesting to note that the switching between desynchronizing episodes
when the network is active and increasing synchrony during inactive episodes
that our model exhibit also shows up in other model networks, for example in
Li and Dayan’s EI network (Li and Dayan, 1999). In this model the network is
driven to inactivity by slowly activating inhibitory units, which are subsequently
slowly turned off. Though the mechanism by which their network ’bursts’ is very
different from ours, their model has, in some parameter regimes, a tendency to-
wards convergence of state variables during the quiescent period and while they
diverge when the network is active. This mimics the alternating con- and divergent
episodes for the voltages in our network.
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4.4 Robustness of the bursting mechanism

So far, we have considered a very idealized network, with all to all coupling, iden-
tical neurons, and where each neuron receives the same noiseless external input.
Here we show that the mechanism for network bursting described in the previous
section is robust to heterogeneities, sparseness of the connectivity, and noise.

Heterogeneities: We consider a network in which the neurons receive heteroge-
neous external inputs:Ii = I0 + �Ii, i = 1; :::; N (with

P
i �Ii = 0). Other types

of heterogeneities, e.g., in the membrane time constant or in the threshold, can be
treated similarly.

The limit of weak level of heterogeneities,�I � N
�1
P

i(�Ii)
2 � 1, can be

studied analytically, as shown in Appendix A. We find that in the presence of

heterogeneous input, it takes a time of the order of� log

��
1� e

�TI=�A

�2
�
2
I

�
=�

before the asynchronous state is reached. So, as long as� log(�2
I
) is large com-

pared to�A, it takes a negligible fraction of the burst duration before the cells
fire asynchronously. For large�A, the inhomogeneity,�I , can be extremely small,
so that its effect onR(I0) andIc can be neglected. Consequently, Eqns. (20) and
(21) will predictTB andTI correctly in the limit where�A is large,�I small, while
� log(�2

I
)� �A. However, an extremely large�A is required to check numerically

the crossover between the two limits.
For a finite level of heterogeneities, the approximation of Appendix A does

not hold. However, one can also generalize the large�A approximation of Section
5 to this case. Indeed, in the large�A limit, the adaptation,Ai, of neuroni satisfies
the self-consistent equations:

�A

dAi

dt

= �Ai + gAr(I0 + �Ii + gsR� Ai); (26)

wherer(I) = 1= log[I=(I � 1)] for I > 1, andr(I) = 0 otherwise, whileR has
to be determined self-consistently from

R =
1

N

i=NX
i=1

r(I0 + �Ii + gsR� Ai): (27)

This set of equations can be studied numerically. We have evaluated this sys-
tem of equations withN = 100, for gs = 0:6; gA = 0:675; I0 = 1:1. We have
found that the network continues to show synchronous bursting activity even for
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Figure 8:The firing rate in a heterogeneous network in the large�A limit, after the transient has
died out in a network with 100 neurons. Solid line: Mean rateR, dashed line: Rate for neuron
with inputIi = I0 � �, dotted line: Rate for neuron with inputIi = I0 + �. Parameters:I0 = 1:1,
gs = 0:6, gA = 0:675, � = 0:3.

values of� as large as� = 0:3, that is with input currentsIi ranging fromIi = 0:8

to Ii = 1:4. Therefore the bursting state is extremely robust to heterogeneities.
This is shown in Fig. 8. This figure shows the time course of firing rate

for the neuron with the largest external input as well as that for the neuron with
the smallest input. While the onset of the bursts and the burst duration of these
cells are very different, and the firing rates during the bursts vary substantially,
both cells still show very clear burst activity. Cells with intermediate inputs show
firing rates that are between these two extremes.

If � is increased beyond 0.4 the network settles in the AS. In the intermediate
region,0:3 < � < 0:4, solving the equations is difficult and extremely time con-
suming due to numerical problems. We were not able to characterize fully where
and how the transition to the AS occurs.

Sparse connectivity: We consider here the case of a network of neurons which
are partially and randomly connected. We assume that the synaptic weights,Jij,
are chosen as independent random variables, namely,Jij = gs=M (i 6= j), with
probabilityM=N andJij = 0 otherwise (Jii = 0 for all i). On average a neuron
receives input fromM other cells, so that the mean input into a cell isgsR. Due to
the randomness of the connectivity, the cells do not all exactly receiveM inputs.
WhenN << M << 1, cells receive input from approximatelyM �

p
M other

cells. The main effect of this is that in the asynchronous state different cells re-
ceive a constant feedback input which fluctuates spatially. Therefore, the neurons
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will have different firing rates and levels of adaptation. This can be captured in
the large�A limit by describing the system in a coarse-grain time approximation
where adaptationAi of neuroni satisfies

�A

dAi

dt

= �Ai + gAr(I0 + gsRxi � Ai) (28)

The functionr(I) is defined as above andxi = Mi=M , whereMi is the num-
ber of inputs celli receives. These differential equations have to be solved self-
consistently together with

R =

Z
dx�(x)r(I0 + gsRx� Ai); (29)

where� is the distribution ofxi = Mi=M . In the largeM limit, this distribution
will approach a narrowly peaked Gaussian with mean 1, and standard deviation
1=M , and thus, the firing rates and adaptation will closely resemble that of a net-
work wherexi = 1 for all i. Therefore, as long asM is sufficiently large, the
network will show bursting behavior when a corresponding all-to-all coupled net-
work does, irrespective of how smallM=N is. However, for sufficiently smallM ,
M < Mc, bursting will be destroyed by the spatial fluctuations in connectivity.
For instance, solving numerically Eqn. (28,29) withgA = 0:8 andgs = 0:675,
using the Gaussian approximation for�(x), we find thatMc < 10.

Noise: We consider a network in which the inputIi(t) is given by

Ii(t) = I0 + �i(t) (30)

where the Gaussian white noise satisfies< �i(t) >= 0 and< �i(t)�j(t
0) >=

�
2
�ij�(t� t

0).
When gA = 0, in the AS, the neurons receive a total input with mean

I0 + gsR(I0) and uncorrelated fluctuations with standard deviation,�. For such a
network it can be shown (Tuckwell, 1988) that the rateR satisfies

R =
�

p
2�

"Z
x+

x
�

dxe
x2=2

H(x)

#
�1

: (31)

Herex
�
= (I0� gsR)=�, andH(x) is the complementary error-functionH(x) =R

1

x
dx e

�x
2
=2
=

p
2�. Equation (31) can be solved numerically for given�. If � is

not very large, the rateR as a function ofI0 will have two stable branches. On
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one branch, which extends fromI0 = �1 to I0 = I1 � 1, the rateR is very low.
We will denote this solution withR

�
(I0). It corresponds to the quiescent state in

the absence of noise. The second branch, on which the rate is substantial, extends
from I0 = I2 < I1 to I0 = 1. This solution we will denote byR+(I0) Below
threshold,I0 < 1, it corresponds to the self-sustained asynchronous state of the
noiseless case. Stability analysis of the asynchronous state is non-trivial, but it
can be shown that the first branch is always stable, while the second is also stable,
provided that the noise is not to weak and the synaptic feedback is sufficiently
strong.

Now consider the effect of adaptation. We assume that�A >> 1 and that
gA > 0 satisfies:

I0 � I2

R+(I2)
< gA <

I0 � I1

R
�
(I1)

: (32)

As the noisy external input with a meanI0 > 1 is turned on, the network will start
to fire with rateR+(I0) and the adaptation will grow fromA = 0 satisfying

�A

dA

dt

= �A + gAR+(I0 � A): (33)

The adaptation grows until it reachesA = I0 � I2. At this point, the rate drops to
a much lower rate,R

�
(I2), and the adaptation will decrease obeying

�A

dA

dt

= �A + gAR�(I0 � A); (34)

until the adaptation has reachedI0 � I1, at which point the rate rapidly jumps to
R+(I1). At this point,A starts to grow again, satisfying Eqn. (33), etc.

It should be clear that the mechanism for bursting, both in the noisy and in
the noiseless cases are similar. The only difference between the two cases is that
in the noisy case,gA cannot be too large (see Eqn. 32). However, in practice this
upper limit for gA is unrealistically large ifI0 is not very close to the threshold
current.

4.5 Realistic Adaptation Time Constants

So far we have studied the dynamics of the network in the large�A limit. In fact,
only for very large�A, on the order of 1000, the ratiosTB=�A andTI=�A approach
the large�A limit (result not shown). If we assume a membrane time constant,�m,
of 10 msec, this means that only for adaptation time constants on the order of 10
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seconds or larger does the theory predictTB andTI correctly. Clearly, realistic
time constants for the adaptation are much smaller.

Thus, the theory does not give the right value forTB andTI when a realistic
�A is used. Nevertheless, we can ask whether Eqns. (20) and (21) do at least give
a qualitatively correct dependence of these two quantity on the different network
parameters. In other words, we will check whether the theory allows us to under-
stand how changing the network parameters changes the burst duration and the
inter-burst interval.

Adaptation properties: In figure 9A, the time average burst duration and in-
terburst interval are displayed as a function of�A, for gA = 0:6, gs = 0:85 and
I0 = 1:1. Both quantities increase roughly linearly with�A. However, as should
be expected, the simulation results differ from the analytical estimate from the
large�A limit theory, Eqn. (20) and (21).

Equation (21) implies that the interburst interval is independent ofgA, while
Eqn. (20) shows that the burst duration diverges asgA approaches some critical
value,gA;c. ForgA much larger thangA;c, TB decreases as1=gA. In Fig. 9B, we
show the dependence ofTB andTI ongA, in the large�A limit and from numerical
simulations for�A = 10. Notice that these results have been obtained for moder-
ately large values ofgA, andgs, they are in excellent qualitative agreement with
the analytical predictions. This is to be expected, since in our theoretical approach
we do not assume weak coupling or adaptation. It should be noted noted however
that there seems to be some extra structure, particularly in the interburst interval,
which the large�A limit does not capture.
Synaptic coupling strength: According to our analysis of the bursting mecha-
nism, there is a minimal value ofgs, gs;c, for which Ic = 1. This means that if
gs < gs;c neurons are not firing bursts. Forgs just abovegs;c, Ic is slightly larger
than 1, so, according to Eqns. (20) and (21),TB andTI should be small. Increas-
ing gs decreasesIc, and thus, according to Eqn. (21),TI will increase. This also
tends to increaseTB. However, increasinggs also increasesR(I), which tends to
decreaseTB. If gs is close togs;c the increase inIc has the strongest effect and one
expects thatTB increases withgs. By contrast, whengs approaches its maximum
value,gs = 1 (in the large�A limit), Ic approaches slowly its minimum value,
Ic = 0:5. But here, the rate,R(I), increases very rapidly withgs (R(I)!1 for
gs ! 1). Thus for sufficiently largegs, the increase in the firing rate,R, is the
dominant factor. Therefore, for largegs, TB decreases withgs. As gs approaches
1,TB approaches 0.

As is also shown in Fig. 9C, for�A = 100, the prediction of the theory is
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Figure 9:Results from numerical simulations of a network withN = 200 excitatory neurons.
Synaptic rise time:�1 = 0:1; Synaptic decay time:�2 = 0:3. A: TB andTI (in units of �m)
versus�A. Solid line: theoretical value ofTB from large�A limit, dashed line: theoretical value
of TI from large�A limit, diamonds:TB in simulation, pluses:TI in simulation. Parameters:
I0 = 1:1, gs = 0:85, gA = 0:6. B: TB=�A andTI=�A versusgA. Solid line: theoretical value of
TB=�A, dashed line: theoretical value ofTI=�A, diamonds:TB=�A in simulation with�A = 10,
pluses:TI=�A in simulation with�A = 10. Parameters:I0 = 1:1, gs = 0:85. C: TB=�A and
TI=�A versusgs. Solid line: theoretical value ofTB=�A, dashed line: theoretical value ofTI=�A,
diamonds:TB=�A in simulation with�A = 10, pluses:TI=�A in simulation with�A = 10,
squares:TB=�A in simulation with�A = 100, crosses:TI=�A in simulation with�A = 100.
Parameters:I0 = 1:1, gA = 0:6.
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confirmed. However, if�A is too small, e.g.,�A = 10, our numerical simulations
show a very different behavior forTB as a function ofgs. Indeed, for this value of
�A, the burst duration,TB, does not decrease asgs approaches 1, unlike in the large
�A limit. The firing rate during the burst also stays finite in this limit, contrary to
what one expects from the large�A limit. This difference is due to the fact that in
the theoretical treatment of the large�A limit, we assumed that the time needed to
settle in the AS was negligible, not only compared to�A, but also compared toTB
andTI . When the excitatory coupling approachesgs = 1, this is no longer valid,
since in this limitTB becomes small. Thus, the discrepancy between theory and
simulation for�A which is too small is to be expected.
Synaptic coupling strength: We have also checked, using numerical simula-
tions, that for realistic adaptation time constant, the bursting state is robust to
heterogeneities and sparseness using numerical simulations. Our results were in
agreement with the conclusions of the large�A theory. For instance, for the pa-
rameters of Section 4.4, and�A = 10, the network settles in a bursting state for�

as large as 0.3.

5 Two Populations

Up to this point, we have analyzed the collective bursting state which emerges in a
network of excitatory neurons with spike adaptation, when the synaptic feedback
is sufficiently strong. Based on numerical simulations, we have also shown that
these states are robust to noise, heterogeneities of intrinsic neuronal properties,
and to sparseness of the connectivity. In this section, we study what happens
to this bursting state when a second population, consisting of inhibitory neurons
without spike adaptation, interacts with this excitatory population.

Several experimental and numerical studies have shown (Silva et al., 1991,
Flint and Connors, 1996) that if, in cortical slices, the feedback from inhibitory
neurons is blocked, the activity of the circuit can change from tonically active to
synchronized burst activity. An interesting question is whether or not our model
can account for this change in activity. To investigate this, we consider a network
that consists of two populations of neurons, one excitatory and one inhibitory.

The large �A limit: As in the one population network, the system becomes much
simpler to analyze in the limit�A ! 1. In this limit, the system will show
activity with spike to spike synchrony. However, if the properties of the neurons
are sufficiently inhomogeneous, the connectivity is sparse, andgII is sufficiently
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small, then the network will evolve to an asynchronous state. In this case one can,
similarly to the one population model, reduce the system to a system described by

�A

dA

dt

= �A + gARE(A) (35)

Where the rate,RE(A), has to be determined self-consistently from

RE = f(IE0 +GEERE +GIIRI � A) (36)

RI = f(II0 +GIERE +GIIRI)=�I ; (37)

wheref(I) = [log(I=(I � 1))]�1. Sincef(I) is a non-trivial function ofI,
there is no explicit solution to this set of equations. Nevertheless, ifI

I

0 > 1,
the firing rate of the inhibitory population,RI , can be approximated byRI =

(II0 +GIERE � 1=2)=(�I �GII). In this case,RE satisfies

RE = f

 
I
E

0 +GEI

I
I

0 � 1=2

(�I �GII)
� A+

"
GEE +

GEIGIE

(�I �GII)

#
RE

!
: (38)

This shows that the net effect of adding the inhibitory population is to reduce
the external input into the excitatory neurons fromI0 = I

E

0 to I

eff

0 = I
E

0 +

GEI(I
I

0 � 1=2)=(�I �GII), and decreasing the synaptic strength of the excitatory
to excitatory connections fromgs = GEE to geff

s
= GEE +GEIGIE=(�I �GII).

(Recall thatGEI is negative.)
Now consider the situation where, in the single population,gs andI0 are suf-

ficiently large, so that this single population would evolve to the bursting state.
Then, the inhibitory network feedback can reduce the effective external input,
I

eff

0 , and coupling,geff
s

, sufficiently, to stabilize the tonically firing state, pro-
vided thatGEI andGIE are sufficiently large. Thus, in such a network the neurons
fire tonically. However, chemically blocking the gabaergic synapses, i.e., setting
GEI to zero, will result in synchronized burst activity of the excitatory population.

6 Conductance-based Networks with Adaptation

In this section, we show that the results we have established for IF network models
can be generalized in the framework of conductance-based neuronal networks.
These models take into account in a more plausible way the biophysics underlying
action potential firing but they do not yield to analytical study, even in the limit
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of slow adaptation. Therefore, our study of these models relies only on numerical
simulations.

The neurons obey the following dynamical equations:

C

dVi(t)

dt

= gL(EL � Vi(t))� I
active

i
(t) (39)

+ I

app

i (t) + I

syn

i (t); (i = 1; : : : ; N)

whereVi(t) is the membrane potential of thei-th cell at timet,C is its capacitance,
gL is the leak conductance andEL is the reversal potential of the leak current.
The leak conductance,gL, represents the purely passive contribution to the cell’s
input conductance, and is independent ofVi andt. In addition to the leak current,
the cell has active ionic currents with Hodgkin-Huxley type kinetics (Tuckwell
1988), the total sum of which is denoted asI

active

i
(t) in Eqn. (39). They lead to

a repetitive firing of action potentials if the cell is sufficiently depolarized. An
externally injected current is denoted asI

app. The synaptic coupling between the
cells gives rise to a synaptic current,I

syn, which is modeled as

I

syn

i (t) =
NX
j=1

gij(t)(Ej � Vi(t)) (40)

wheregij(t) is the synaptic conductance triggered by the action potentials of the
presynapticj-th cell, andEj is the reversal potential of the synapses made by
neuronj.

The synaptic conductance is assumed to consist of a linear sum of contri-
butions from each of the presynaptic action potentials. The detailed dynamical
equations are given in Appendix B.

The neurons in the network receive an external input from a set of neurons
which fire spikes at random with a Poisson distribution. The effect of this external
input is represented in Eqn. (39) by the currentI

stim

i
(t). This current depend on

the average rate of the input neurons, on the peak conductance and the time con-
stants of their synapses as explained in Appendix B.

One excitatory population: We first consider the limit where all of the inhibitory
interactions are blocked. If the excitation is weak, the network settles into an asyn-
chronous state. This is shown in Fig. 10A. Increasing the synaptic strength, leads
to synchronized burst states in a very similar way to what we have found for the
IF network. The spikes within the bursts are not synchronized, see Fig. 10B.
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Figure 10:A: Activity of two cells in a population of weakly coupled excitatory conductance
based neurons. The neurons fire tonically in an asynchronous state. Coupling strength:GEE =

0:2mS=cm2. The network consists ofN = 200 all-to-all coupled neurons. The external input has
an average firing rate,f0 = 1300 Hz, and a conductance,G0 = 0:03 mS=cm2. The parameters
of the single neuron dynamics and of the synapses are given in Appendix B.B: Activity of two
neurons in a strongly coupled population of excitatory conductance based neurons. Coupling
strength:GEE = 0:6mS=cm2. Same parameters as in A. The neurons fire in synchronized bursts
without spike to spike synchrony.

We have also studied the dependence of the interburst duration and of the intra-
burst duration as a function of�A andgA. The results are shown in Fig. 11 and
are qualitatively similar to what we have found for the IF network (compare with
Figs. 9A, 9B). Finally, we have studied the average synaptic contact per neuron
required for the collective bursting state to emerge. This number is on the order
of 5 to 10, as for the I& F network.

Two population network: We now consider the two population conductance
based neuronal network. For the sake of simplicity, we assume that the dynam-
ics of the inhibitory population involve the same currents as the excitatory one,
except that the adaptation current is suppressed. The maximal conductances of
the synapses that neurons in population� are making on neurons in population�
(�; � = E; I) is denoted by:G��. The connectivity of the neurons inside each
population and between them are sparse: the number of synaptic inputs fluctuates
from neuron to neuron with an average ofM = 100 synaptic inputs. In the fol-
lowing, we fix all the parameters of the network and we discuss the dependence of
the network state on the inhibitory conductancesGII andGEI. We have checked
the behavior of the network for other parameter sets and we have found that these
results are qualitatively generic for a broad range of parameters, provided that the
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Figure 11:A: TB andTI versus�A. Pluses:TB , Crosses:TI . GEE = 0:6 mS=cm2; f0 =

2600 Hz; G0 = 0:015mS=cm2; gA = 5 mS=cm2. Other parameters as in Appendix B.B: TB
andTI versusgA. Pluses:TB, Crosses:TI . �A = 60msec; other parameters as in A.

adaptation strength is sufficient.
Fig. 12 displays the coherence of the network as a function ofGEI andGII .

When the inhibition is sufficiently weak, withGEI andGII both small, the system
settles into a highly synchronous bursting state. By increasingGEI, keepingGII

fixed and not too large, the network remains in a bursting state, but the level of
coherence of the network decreases, while the length of the bursts decreases as
well as the average firing rate of the excitatory population. At the same time, the
firing rate of the inhibitory population increases. Eventually, ifGEI is above a
critical value the network becomes asynchronous and the neurons are not firing
bursts of spikes any more. This critical value increases withGII . Note also that
for fixed GEI, the degree of synchrony decreases withGII . This is due to the
fact, that decreasing the inhibition between the inhibitory neurons, decreases the
effective gain of the network (see Eqn. (37)).

7 Conclusion

Our study deals with stimulated and supra-threshold strongly interacting neurons.
The case of subthreshold excitatory neurons with adaptation has recently been
addressed by Golomb and Amitai (1996). Synchrony of weakly interacting supra-
threshold excitatory neurons with spike adaptation has been investigated by Crook
et al (1996). The mechanisms for synchrony they have studied differ essentially
from the one we have investigated here which involves strong excitatory feed-
back. A mechanism involving a cooperation of strong excitation and with slow
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Figure 12:Coherence� againstGII andGEI . The network consists ofNE = 800 excitatory
andNI = 800 inhibitory sparsely connected. Each neuron receives in average 89 inputs excitatory
and 89 inputs inhibitory.GEE = 0:8 mS=cm2, GIE = 0:8 mS=cm2, gA = 8 mS=cm2, �A =

60msec. The rate of the external input on the excitatory (resp. inhibitory) population is336 Hz

(resp.140Hz). The conductance of the external input is0:105mS=cm2 on both populations. All
other parameters are as indicated in Appendix B.

ionic current has been investigated recently by Butera et al. for the generation
of respiratory rhythm (Butera et al., 1999). Latham et al. consider a network of
intrinsically active neurons with spike adaptation which exhibits a bursting mech-
anism similar to ours (Latham et al. 1999).

We have examined a simple scenario that can lead to rhythmic and stable col-
lective patterns of neural activity. We have shown that states characterized by
synchronization and slow bursting emerge naturally from a cooperation between
excitatory feedback and firing adaptation. In these states, neurons fire bursts which
are synchronized, but the spikes within the bursts are not. The bursting this sys-
tem exhibits is anetwork effect, since the neurons cannot fire periodic bursts on
their own. It relies on the fact that an excitatory network can display a region of
bistability and on a slow process which drags the neurons back and forth in and
out of this bistable region. This mechanism is very similar to those that have been
proposed for single neuron bursting (Rinzel and Ermentrout, 1998).

This synchronized bursting is a general phenomenon. As we have shown, it oc-
curs for the I&F network as well as for more biophysically plausible conductance-
based neuronal models. In both classes of models, the synchronized bursting
states have similar properties. It is also extremely robust to heterogeneity, sparse-
ness of the connectivity, and noise. This is in contrast to mechanisms of spike
synchrony in excitatory or inhibitory networks (White et al., 1998, Neltner et al.,
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1999, Golomb and Hansel, 1999).
We have dissected analytically the mechanism of this phenomenon in a net-

work of one population of excitatory I&F neurons, assuming slow adaptation
(�A ! 1). In this limit, a simple equation can be written to relate the time
evolution of the adaptation current of the neurons and their firing rate. Another
assumption of our analysis is that without adaptation the network settles into ei-
ther an asynchronous state, when this state is stable, or into a quiescent state when
the former is unstable. Under this assumption the dynamics of the excitatory net-
works can be reduced to a “rate model” in which the dynamics of the neurons
are characterized by a rate variable which corresponds to the adaptation current.
This is in contrast to other types of rate models in which the dynamical quan-
tity corresponds to a population activity (Wilson and Cowan, 1972, Ginzburg and
Sompolinsky, 1994) or to synaptic conductances (Ermentrout, 1994, Shriki et al,
1999). Another difference with rate models introduced previously, is that in our
case, rate equations have to be supplemented with the stability condition of the
asynchronous state of the full spiking model. This approach should be contrasted
to the one taken in Latham et al. 1999, where the population activities are de-
scribed by Wilson and Cowan equations. This is equivalent to our approach under
the assumption that if the AS is always stable if it exists. Also note that in order
to derive Eqns.(18,17), we have also assumed that the synaptic time constant is
fast. If one assumes that the synaptic time constants are large, of the same order
of magnitude than the adaptation time constant, one finds more complicated rate
dynamics equations. They involve two coupled “rate variables”. One corresponds
to the adaptation current and the other to the synaptic current.

Relying on numerical simulations, we have investigated the network dynamics
for finite values of�A. Our results show that quantitative agreement between sim-
ulations and our large�A theory requires very large and unrealistic values of�A.
However, for reasonable values of�A, we have found good qualitative agreement.
One of the discrepancies between the theory and the simulations is due to the fact
that, even in the large�A limit, there is always a small but finite fraction of the
burst in which the spikes are synchronized across the network. Adding a small
amount of heterogeneities changes the picture. Indeed, in this limit, the fraction
of the burst during which the spikes remain synchronized during a burst goes to0

when�A diverges. Therefore, there is a cross-over between the limit of no hetero-
geneities and the limit�A ! 1. However, an extremely large�A is required to
see this cross-over in numerical simulations.

We have also shown how the effect of adding an inhibitory population can be
understood in the large�A limit. We have seen that, recurrent inhibition reduces
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the effective excitatory feedback and the external current, and that this reduction
depends on the strength of the inhibition between the inhibitory neurons. This can
be sufficient to settle the network in an asynchronously firing state, even if the
network without inhibition would evolve to the synchronized bursting state. This
explains how chemically blocking the inhibitory feedback can change the activity
pattern of the network from asynchronous tonically firing to synchronized bursts
(Silva et al., 1991, Connors et al., 1996). The same effects can be observed in
networks with realistic adaptation time constants. The fact that inhibition destroys
the bursting state has to be opposed to the synchronizing effect of inhibition in
spike to spike synchrony (Hansel et al. 1993, Van Vreeswijk et al. 1994, Hansel
et al. 1995).

The pattern of firing of the neurons in the synchronous bursting state is rem-
iniscent of epileptic population bursting. A mechanism proposed to explain the
emergence of population bursting in the hippocampus involves excitatory cou-
pling between neurons which are able to fire bursts on their own (Traub, 1992,
Pinsky and Rinzel, 1994). Our study shows that very similar collective states can
be achieved with non-bursting neurons. Since adaptation currents display a wide
spectrum of time constants ranging from tens to hundreds of msec, this leads very
naturally to rhythmic activity over a wide range of frequencies.

In this paper, we have focused on networks with random connectivity, as ob-
served, e.g., in the hippocampus. Although it is still a matter of debate, this type
of architecture is probably also relevant for modeling the dynamics of motor corti-
cal areas. The somatosensory and the visual cortex are organized differently. The
connectivity pattern in these area is highly correlated with the functional proper-
ties of the neurons. In the primary visual cortex, for instance, the probability of
connection between two neurons decreases with the difference of their preferred
orientation. In networks with this type of architecture, collective bursting can also
occur. However, if the inhibition in the network is sufficiently strong, the collec-
tive and synchronous bursting state can be destabilized and replaced by a traveling
pulse state, as has recently been shown (Hansel and Sompolinsky, 1998).

It is worth noting that the mechanism described here is not the only one can
induce burst activity in a network that consists of neurons that fire tonically if they
are isolated and injected with a constant current. In a recent paper (O’Donovan et
al., 1998) it was shown that excitatory networks of neurons with synaptic adap-
tation can also bifurcate to a bursting state. These bursts can have a similar time
scale as the bursts in our network. It would be interesting to see how an interplay
of these two mechanisms affect the network activity.
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8 Appendix A: Bursts properties in weakly hetero-
geneous network

In this appendix, we study how a weak level of heterogeneities in the external
input affects the synchronized bursting state of the excitatory I&F network. The
equation for the membrane potential of neuroni is:

d

dt

Vi = �Vi � Ai + Ii + gsE; (A.1)

whereIi = I0 + �Ii, with N
�1
P

i �Ii = 0. If the inhomogeneities�Ii are small,
�(I) � N

�1
P

i(�Ii)
2 � 1, we can expand around the solution with homoge-

neous input. It can be shown thatIc will shift by a small amount,�Ic that is of the
order of�(I). We will assume that�(I) is small enough, so that this shift inIc
can be ignored.

We will now show that under these conditions the burst duration and inter-
burst interval satisfy Eqns. (20) and (21) to leading order.

We assume that the network has reached a state where the average rate,R,
varies periodically, and thatR > 0 for 0 < t < TB, while R = 0 for TB <

t < TB + TI . Thus, we have to show in this case that level of synchronization is
small enough at the beginning of the burst, so that the time it takes to reach the
asynchronous state is negligible compared toTB in the large�A limit. Writing
Ri(t) = R(t)+ �Ri(t) andAi(t) = A(t)+ �Ai(t), we find that when the network
fires asynchronously,

1

R + �Ri

=

Z 1

0

dV

I0 + gsR � A� V + �Ii � �Ai

: (A.2)

Or, to leading order,
�Ri(t) = (�Ii � �Ai(t))G(t); (A.3)
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with G(t) = R
2(t)

R 1
0 dV=(I0 + gsR(t) � A(t) � V )2. Here,R(t) andA(t) are

the solutions for the rate and adaptation currents derived in section 5. Thus,�Ai

satisfies

�A

d�Ai

dt

=

(
��Ai + gA(�Ii � �Ai)G(t) for 0 < t < TB

��Ai for TB < t < TB + TI ;

(A.4)

and
�Ai(0) = �Ai(TB + TI) (A.5)

These equations imply that�Ai has a linear dependence on�Ii, �Ai(t) =

�a(t)�Ii, wherea is a periodic function with periodTB + TI . The precise
shape ofa(t) depends on the network parameters. However, (because of the non-
homogeneous term present in the RHS of Eqn. (A.4)) for all parameter choices
0 < a(t) < 1 for all t. Sincea(TB) < 1, a(TB + TI), thus,a(0) can at most have
the valueamax = e

�TI=�A .
At t = T

+
B

, just after the termination of the burst, the standard deviation of the
membrane potentials,�V , is of the order 1. In the interburst interval,�V satisfies

d

dt

�
2
V
= �2�2

V
+ (1� a(t)) < V �I >; (A.6)

where< V �I >= N
�1
P

i Vi�Ii obeys

d

dt

< V �I >= � < V �I > +(1� a(t))�2
I
: (A.7)

Thus, if we neglect the term withda=dt which is of order1=�A, we find for�2
V 

d
2

dt
2
+ 3

d

dt

+ 2

!
�
2
V
= (1� a(t))2�2

I
: (A.8)

Therefore, just before the next burst begins, the standard deviation in the mem-
brane potential will at least be equal to

�
2
V
(TB + TI) �

�
1� e

�TI=�A

�2
�
2
I
: (A.9)

So, it will take a time of order� log

��
1� e

�TI=�A

�2
�
2
I

�
=� before the asyn-

chronous state is reached. So, as long as� log(�2
I
) is large compared to�A, it will

take a negligible fraction of the burst duration before the cells fire asynchronously.
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Consequently, Eqns. (20) and (21) will predictTB andTI correctly in the large�A
limit.

Thus, independent of the length of the burst, the standard deviation in the
membrane potential is at least�I at the start of the burst. This means that it will
take, at most, a time of order� log(�I)=� after the commencement of the burst
until �V is of order 1. So, in the large�A limit it takes an arbitrarily small fraction
of the burst duration until the network is again in the asynchronous state.

It should be noted that in the presence of inhomogeneity in the input, the cells
do not all fire at the same rate, and, therefore, the adaptation currents,Ai, will not
go to the same value. This inhomogeneity will also affectIc. However, if�I is
small, this will only have a small effect onTB andTI . So, if a small inhomogeneity
is added to the input, Eqns. (20) and (21) will give a good approximation ofTB

andTI in the large�A limit.

9 Appendix B: The conductance based model

In this appendix, we give the details of the equations of the conductance based
model we have used in Section 6.

The membrane potentials of the neurons follow the equation:

C

dV

dt

= �IL � INa � IK � IKA � Iadapt + Isyn(t) + Iext(t) (B.1)

whereIsyn denotes the synaptic current generated within the network andIext

stands for synaptic currents from sources outside the network.
The leak current isIL = gL(V �EL). The sodium and the delayed rectifier cur-

rents are described in a standard way:INa = gNam
3
1

h(V � ENa), for the sodium
current andIK = gKn

4(V �EK), for the delayed rectifier current. The gating vari-
ables,x = h; n satisfy the relaxation equations:dx=dt = (x

1
� x)=�x. The func-

tionsx
1

, ( x = h; n;m), and�x are:x
1

= �x=(�x + �x), and�x = �=(�x + �x)

where�m = �0:1(V +30)=(exp(�0:1(V +30))�1),�m = 4 exp(�(V +55)=18),
�h = 0:07 exp(�(V + 44)=20), �h = 1=(exp(�0:1(V + 14)) + 1), �n =

�0:01(V + 34)=(exp(�0:1(V + 34))� 1) and�n = 0:125 exp(�(V + 44)=80).
We have taken:� = 10. The model incorporates a potassiumA-current:
IKA = gKAa

3
1

b(V � EK) with a
1
= 1=(exp(�(V + 50)=20) + 1). The function

b(t) is given by:db=dt = (b
1
� b)=�KA with: b

1
= 1=(exp((V + 80)=6) + 1).

For the sake of simplicity, the time constant,�KA is voltage independent. The
adaptation current, denoted byIadapt, is modeled as:Iadapt = gAA(t)(V � EK)
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where the functionA(t) satisfies:

dA

dt

=
A
1
(V )� A

�A

(B.2)

whereA
1
(V ) = 1=(exp(�0:7(V + 30:)) + 1) For the sake of simplicity, the

adaptation time constant�A is independent of the voltage.
The other parameters of the model are:C = 1 �F=cm2, gNa = 100mS=cm

2,
gK = 40 mS=cm

2. Unless otherwise specified,gL = 0:05mS=cm
2, gKA =

20mS=cm
2 and�KA = 20msec. The reversal potentials of the ionic and synaptic

currents are:ENa = 55 mV , EK = �80 mV , EL = �65 mV , EE = 0 mV and
EI = �80mV .

The synaptic inputs from inside the network are modeled as conductance
changes. The synaptic current flow into a postsynaptic cell at timet, induced
by a single presynaptic spike at timet0, is

Isyn(t) = Gsynf(t� t0)(Esyn � V (t)) (B.3)

whereV (t) is the membrane potential of the postsynaptic neuron at timet, Esyn,
the reversal potential of the synapse, andGsyn, its strength. The functionf(t) is
given by:

f(t) =
1

�1 � �2

�
e

�

t
�1 � e

�

t
�2

�
�(t) (B.4)

(�(t) is the Heaviside function). The larger of the time constants,�1 and �2,
characterizes the rate of exponential decay of the synaptic potentials, while their
time to peak is equal totpeak = (�1�2= (�1 � �2)) ln(�1=�2). The normalization
adopted here ensures that the time integral off(t) is always unity. For multiple
events,Isyn(t) becomes the sum of the total contributions at timet of all spikes
generated by the presynaptic cells in the past.

The external synaptic inputs which are excitatory, are described in a similar
way as for the internal synaptic inputs. The spike times,t0, are random and taken
from a Poisson process with a fixed uniform rate,f0. The external synaptic inputs
to different cells are uncorrelated.

The synaptic time constants are:�1 = 1msec, �2 = 3msec for the excitation
in the network;�1 = 1 msec, �2 = 6 msec for the inhibition. The synapses
from outside the network are have an instantaneous rise. They decay with a time
constant�2 = 3msec.
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10 Appendix C: Measure of synchrony in large neu-
ronal networks

To measure the degree of synchrony in the network, we follow the method pro-
posed and developed in (Hansel and Sompolinsky, 1992, Golomb and Rinzel,
1993, Ginzburg and Sompolinsky, 1994), that is grounded on the analysis of the
temporal fluctuations of the activity. One evaluates at a given time,t, the average
membrane potential of the neurons:

AN(t) =
1

N

NX
i=1

Vi(t) (C.1)

Its time fluctuations can be characterized by the variance

�N =
D
AN (t)

2
E
t
� hAN(t)i

2

t
(C.2)

This variance is normalized to the population averaged variance of single cell
activity

� =
1

N

NX
i=1

(
D
Vi(t)

2
E
t
� hVi(t)i

2

t
) (C.3)

The resulting coherence parameter

�N =
�N

�
(C.4)

behaves generally for largeN as

�N = �+
a

N

+O(
1

N
2
) (C.5)

wherea is some constant number and�, comprised between0 and1, measures
the degree of coherence in the system. In particular,� = 1 if the system is totally
synchronized (i.e.,Vi(t) = V (t) for all i) and� = 0 if the state of the system is
asynchronous.
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