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A general method is presented for the analysis of the
asynchronous state in networks of identical, all-to-all cou-
pled, limit-cycle oscillators of arbitrary dimension and with
arbitrarily strong coupling. It is shown that, with strong cou-
pling, this state can be destabilized in directions orthogonal to
the limit-cycle, which may change the units' behavior qual-
itatively. An example, involving integrate and �re neurons
with spike adaptation, exhibits a bifurcation to a synchro-
nized bursting state for strong feedback coupling. The anal-
ysis can account for transitions that cannot be studied in the
commonly used phase-coupled approximation.

PACS number(s): 87.10+e, 87.18.Sn, 05.45.Xt

The study of temporal organization of populations of
coupled nonlinear oscillators has a long history [1,2].
Such systems are of interest, since they describe a wide
array of phenomena in physics, chemistry and, partic-
ularly, biology. Examples are synchronized activity in
pacemaker cells of the heart and in circadian rhythms
as well as in insulin secreting cell in the pancreas [2,3].
In other systems synchrony is detrimental: Both Parkin-
son decease and Epileptic seizure are accompanied by
synchronous activity in di�erent brain areas [4]. A thor-
ough understanding of the synchronizing properties of
networks of non-linear oscillators is therefore of more
than academic interest.
Considering the wide variety of behaviors that inter-

acting non-linear units can display, it is unlikely that
a single theory can adequately account for all possible
phenomena. It is more fruitful to study such networks in
special cases. A special case in which much theoretical
progress has been made is in the case of oscillators with
weak interaction. These systems can be studied using
perturbation theory: One �rst characterizes the units by
analyzing how they react to small transient perturbing
input in the absence of interactions, and then closes the
system by relating these perturbations to the activity of
the other cells [5,6]. Because the interactions are weak,
perturbations in directions orthogonal to the limit-cycle
trajectory can be neglected. This results in a system in
which the units are described by a phase variable, that
denote their position on the limit-cycle, and the interac-
tions depend only on their phase di�erences.
However this reduction is only valid if the sum of all

interactions is small compared to the intrinsic `driving
force' of the oscillators. As a result it does only de-
scribes networks in which the feedback only marginally
a�ects the oscillator frequency, the equilibrium state is
approached extremely slowly, and even moderately weak
noise swamps the feedback. Most systems of interest have

stronger interactions between the units. This can in re-
sult in qualitatively di�erent behavior of the network. In
particular perturbation orthogonal to the limit-cycle can
no longer be neglected. Strong interaction may destabi-
lize modes in these directions. Because such a destabi-
lization drives the oscillators away from their limit-cycle
they may qualitatively change the units' activity.
To study these e�ects, I consider simple networks of

identical oscillators with strong all-to-all coupling. Previ-
ously [8] the analysis of the asynchronous state has been
developed for such networks with units described by 1
dimensional oscillators. Here this analysis is generalized
to limit-cycle oscillators of arbitrary dimension. Close
to the asynchronous state, the activity of the units can
still be reduced to a single phase variable, taking into ac-
count the transverse modes. An example shows the e�ect
of destabilization of these modes.
Consider a network of N identical limit-cycle oscilla-

tors. The state of unit i is described by a K dimensional
vector xi. The evolution of xi satis�es

dxi

dt
= F (xi) + gsEi(t)G(xi): (1)

Here the �rst term, F , describes the dynamics of the os-
cillator when it receives no input and the second term
accounts for the the e�ect of the input the unit receives
from the other cells in the network. The second term de-
scribes the interaction, the variable Ei characterizes the
level of activity of this input, G describes its (normal-
ized) e�ect when the oscillator is in state xi, and g � s
its strength.
If, at time ti the �rst variable of unit i, xi;1 passes

through a threshold value xth from below, the cell �res,
the activation variable Ej is augmented by a single pulse
response, Es(t� ti), weighted by a coupling strength Jij .
Es(t) = 0 for t < 0 and

R
dtEs(t) = 1. It is assumed that

the coupling to all unit is of the same strength, Jij =
(1��i;j)=(N�1). In the largeN limit one can develope a
mean-�eld theory by approximating Ei by Ei(t) = E(t),
where E is given by

E(t) =
1

N

X
i;k

Es(t� t
(k)
i ) �

Z
1

0

dt0 R(t� t0)Es(t
0): (2)

Here t
(k)
i is the kth time that unit i �res, R(t) is the

network averaged �ring rate, R(t) = N�1
P

i;k �(t�t
(k)
i ).

Consider a network that is in an asynchronous state,
in which the rate R is constant. In this case the states of
the oscillators will satisfy xi(t) = xA(t� ti), where xA is
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a periodic solution of Eqn. (1) in which Ei(t) is set to R.
Assuming that xA;1 passes through xth from below only
once per period, consistency requires that this period be
1=R. In what follows it is convenient to de�ne xA so that
xA;1(0) = xth.
Since, by assumption, the uncoupled units oscillate,

there is an asynchronous solution for gs = 0. The
asynchronous state will persist for �nite but su�ciently
small gs. For larger gs the consistent periodic solution
may not exists [9]. The network behavior beyond this
point will depend on the type of bifurcation through
which this solution disappears. From here on I will as-
sume that gs is such that an asynchronous solution ex-
ists with rate R = R0. Then xi can be written as
xi = xA(�i=!0), where !0 = 2�R0 and the 2� peri-
odic phases �i are uniformly distributed between 0 and
2� and satisfy d�i=dt = !0. Is this solution stable? To
determine this, we �rst investigate how an single oscilla-
tor that receives a constant input R0 reacts to a small
perturbing input.
Consider an isolated oscillator i whose state vector x

obeys Eqn. (1) with Ei(t) = R0 + ��(t� t0), where 0 <
t0 � T0 � 1=R0, and, for t < t0, xi(t) = xA(t). When
j�j � 1, it is straightforward to show that if we write
x(t) = xA(t) + ��(t)�(t � t0), the perturbation � of the
state variable x satis�es to leading order in �

d�(t)=dt =M(t)�(t); (3)

and �(t0) = gsG(x(t0)). Here the M is the Jacobian of
F +gsR0G,Mij(t) = @[Fi(xA(t))+gsR0Gi(xA(t))]=@xj .
Because M is periodic with period T0, one can write

exp(
R t
0
dt0M(t0)), using the Floquet representation [10],

as U(t)S exp(Kt)S�1, where U(t) is a T0 periodic ma-
trix and U(0) is the identity matrix. K and S are given

by Kij = �i�ij and Sij = v
(j)
i respectively. Here �k is

the kth eigenvalue of
R T0
0
dtM(t) and v(k) its right eigen-

vector. Thus � can be written as

�(t) = gsU(t)Se
K(t�t0)S�1U�1(t0)G(xA(t0)): (4)

Due to the perturbation the �ring times will, for n >
0, be shifted from tn = nT0 to tn = nT0 + �n, where
�n is of order �. This shift can be found by imposing
xi;1(nT0 + �n) = xth. Thus, to leading order,

�n = �

gs�

!0

KX
k=1

�k(!0t0)e
�k(nT�t0); (5)

where the phase response functions �k are given by

�k(�) = !0S1k

PK
i;j=1 S

�1
ki U

�1
ij (�=!0)Gi(xA(�=!0))

F1(xA(0)) +R0G1(vxA(0))
:

(6)

Remembering that we want to study a network of in-
teracting oscillators, in which the input from the cell i is

determined by the �ring times t
(n)
i of that unit, we want

to describe the activity of the oscillator by a phase like

variable �i for which �i(t
(n)
i ) = 0 mod (2�). Up to terms

of order �2, �i can be written as

�i(t) = !0t+ gs�

KX
k=1

�k(�i(t0))e
�k(t�t0)�(t� t0): (7)

This result can readily be generalized to input E(t) =
gs(R0 + �(t)), with j�(t)j � 1. In which case �i satis�es

d�i

dt
= !0 + gs

KX
k=1

vk(�i; t); (8)

where

vk(�; t) = �k(�)�(t) + �k

Z
1

0

dt0�(t� t0)�k(�� !0t
0)e�kt

0

:

(9)

It should be noted that, since xA(t + �) is a solution
Eqn. (1) with E = R0 for any value of � , one of the
eigenvalues, say �1, is equal to zero.
Applying this to the network de�ned by Eqns. (1) and

(2), one sees that, as long as the system stay close to the
asynchronous state, jE(t) � R0j � 1, the activity of the
cells can be described by Eqn. (8), where � satis�es

�(t) =

Z
1

0

dt0[R(t� t0)�R0]Es(t
0)) (10)

and R(t) is determined by the phases �i. Thus, the orig-
inal system with KN+1 variables is reduced to one with
N + 1 variables. Analysis of the stability of the asyn-
chronous state can be performed along lines similar to
those in networks of 1 dimensional oscillators [8].
The population dynamics is analyzed using the density

�(�; t), de�ned by �(�; t) = N�1
P

i �(�i(t) � �), and

ux J(�; t) = [!0 +

P
k vk(�; t)]�(�; t). These satisfy the

continuity equation

@

@t
�(�; t) = �

@

@�
J(�; t) (11)

and boundary condition J(0; t) = J(2�; t). The rate R(t)
is just the 
ux through � = 0, R(t) = J(0; t). The asyn-
chronous state is characterized by the solution � = 0,
�(�; t) = �eq = (2�)�1, and J(�; t) = Jeq = R0.
The stability of this state is analyzed by setting

J(�; t) = Jeq + j(�; t) and �(�; t) = [Jeq + j(�; t)]=[!0 +P
k vk(�; t)] and linearizing the latter in j(�; t) and �(t).

This is inserted in the continuity Eqn. (11) and solved for
j(�; t) = j�(�) exp(�t) and �(t) = �� exp(�t), taking the
boundary condition into account. Combining this with
Eqn. (10) one obtains the eigenvalue equation

1

~Es(�)
=

gs�

!0

KX
k=1

R 2�
0
d��k(�)e

(���k)�=!0

e(���k)=R0 � 1
; (12)
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where ~Es(�) =
R
1

0
dtEs(t)e

��t.
If the coupling is weak, gs small, the eigenvalues will

given by � = �k;n � �k;n, where

�k;n = �k + in!0; (13)

and � = �si � �s
i . Here �s

i for i = 1; � � � ; is are the

is solutions of 1= ~Es(�) = 0. For reasonable choices of
Es(t), �

s
i will have negative real parts. If furthermore the

units are stable limit-cycle oscillators, so that Re(�k) < 0
for k = 2; � � � ;K, the only eigenvalues that could have a
positive real part are �1;n. These are just the eigenvalues
associated with modes of perturbation along the limit-
cycle. Thus in the weak coupling limit the phase coupled
model is recovered.
The solutions of the eigenvalue Eqn. (12), and their

associated eigen-modes, vary continuously with the cou-
pling strengths gs. Therefore even for stronger coupling
one can continue to identify the eigenvalues with �si or
�k;n. However if the coupling is strong, j�k;n��k;nj need
not be small, so that Re(�k;n) could be positive for some
n and some k 6= 1. Thus a mode that can be ignored in
the weak coupling limit may become unstable.
I will now brie
y describe a model where one of these

modes becomes unstable [12]: Consider an excitatorily
coupled network of integrate and �re neurons with spike
adaptation. Cell i is described by a voltage-like variable
Vi and an adaptation current Ai. The evolution of these
variables is given by

d

dt

�
Vi
Ai

�
=

�
I0 � Vi �Ai + gsE(t)
��AAi

�
: (14)

Here I0 describes an external input into the cells assumed
to be above threshold, I0 > xth. The adaptation time
constant is 1=�A. If at time t = ti the voltage Vi reaches
the threshold xth = 1, it is immediately reset to zero,
Ai is increased by an amount �AgAm and the coupling
variable E(t) is augmented by and amount Es(t� ti)=N .
Es(t) is the alpha-function Es(t) = �2

st exp(��st)�(t),
where �s is the synaptic rate constant.
In the asynchronous state the cells �re periodically

with rate T0, E(t) = gsR0 = gs=T0, the state variables
Vi and Ai satisfy, if the neuron last �red at time ti,

Ai(ti + t) = A0e
��At (15)

and

Vi(ti + t) = (I0 + gsR0)[1� e�t]�A0

e��At � e�t

�A � 1
(16)

for 0 < t < T0. Here A0 = �AgA=[(1� e��AT0)], and T0
is determined by the constraint V (ti + T0) = 1.
Analyzing the single unit's response to a small per-

turbing input shows that the �k are given by

�1 = 0; �2 = ��A +
1

T0
log
�
1� c1e

�AT0
�
; (17)

and the phase response functions satisfy

�1(�) = c2(1�
c1

1� e��2T0
)e!0�; (18)

and

�2(�) = c2
c1

1� e��2T0
e!0(1��2)� (19)

respectively. Here c1 = �AA0e
��AT0

F1

e��AT0�e�T0

1��A
, c2 =

!0
e�T

F1
and F1 = I0 + gsT

�1
0 � A0e

��AT0
� 1. With

~Es(�) = �2
s=(� + � � s)2 this determines the eigenvalue

Eqn.
For very slow coupling, �s close to 0, this equation has

solutions �1;n � in!0 and �2;n � �2 + in!0.
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FIG. 1. Real part of the eigenvalues �1;1 (solid line) and

�2;1 (dashed line) in a network of integrate and �re neu-
rons with adaptation. Parameters: I0 = 1:1, gs = 0:675,
�A = 1=30 and gA = 0:4.

The eigenvalue Eqn. was solved numerically for dif-
ferent values of the synaptic rate constant �s for a net-
work of oscillators with gA = 0:4. Figure 1 shows the
real part of the eigenvalues �1;1 and �2;1. If these are
both negative, all other eigenvalues have negative real
part too and the asynchronous state, in which the units
�re periodically, is stable. Re(�1;1) decreases from 0 as
�s is increased and stays negative. Re(�2;1) initially de-
creases from �2 and then increases. It changes sign at
�s = �cr � 6. Numerical simulations show that at this
point the asynchronous state is destabilized through a
sub-critical Hopf bifurcation. Beyond the critical point
the cells �re in bursts. Figure 2 shows voltage traces of
two cells in this state. As can be seen, the bursts of the
cells are synchronized, but the individual spikes are not.
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FIG. 2. Voltage trace for two cells in a network past the

bifurcation point. the cells �re in bursts, with synchronization
on the burst, but not on the spike to spike level. Parameters
as in Fig. 1 and �

s
= 7

This behavior should be contrasted with that of a net-
work without adaptation. In such networks the asyn-
chronous state is stable for �s below a critical value
�s = �cr. At �cr these networks undergo a super-critical
Hopf bifurcation and just beyond this point the network
exhibits weakly synchronized, nearly periodic activity
[8,11].
If gA is decreased su�ciently Re(�1;1) rather than

Re(�2;1) becomes positive when �cr is exceeded, lead-
ing to a super-critical Hopf bifurcation similar to that in
a network of cells without adaptation. For small gs only
this second scenario occurs, no matter how large gA.
I have presented a general method to analyze the asyn-

chronous state in networks of all to all coupled limit-cycle
oscillators. In this method one �rst determines the asyn-
chronous state self-consistently, and than investigate how
a single oscillator, receiving the the appropriate constant
input responds to a short perturbing input. While I have
discussed an example where the asynchronous solution
can be found analytically, the method can also be used
for models where asynchronous solution xA and the Ja-
cobian M have to be determined numerically. An inter-
esting application would be to study networks of more re-
alistic, conductance based, model neurons [13] and com-
pare the results with the phase coupled approximations
that are currently, almost exclusively, used to analyze
synchronization in such networks.
I have analyzed the system in the large N limit using

mean-�eld theory. To assess the validity of this limit for
�nite networks, one can study the stability of the splay
state, in which the units are 1=N out of phase, in �nite
systems using the techniques developed in [11]. For the
above example as few as 10 units are su�cient to yield
bifurcation parameters that are , to within numerical ac-
curacy, identical to those in the large N limit.
The analysis was worked out for a system with a

`neuron-like' synaptic coupling. Other types of coupling,

more appropriate other systems, can be studied analo-
gously. For example in a system where the coupling de-
pends directly on the state of both unit

d

dt
xi = F (xi) +N�1

X
j

G(xj ;xi): (20)

Here the asynchronous solution is xA(�) is determined
by self-consistently solving !0dxA=d� = F (xA)+G(xA),
where G(x) = (2�)�1

R
d�0G(xA(�

0);x). Perturbations
of this asynchronous state can be studied using analysis
along the lines presented here to derive an eigencalue
equation.
Other generalizations may be less straightforward. It

should be possible to account for heterogeneities. One
e�ect of this will be to add a continuous component to
the eigenvalue spectrum [6], however this should be eas-
ily dealt with. Adding noise to the system is probably
more involved. With noise the trajectories of the oscilla-
tors in their K dimensional parameter space are, in the
asynchronous state, no longer a 1 dimensional path. As a
result it is not clear whether KN+1 dimensional system
with noise can be reduced to a N+1 dimensional system
as has been done above. However some useful approxi-
mations of the system with noise have been developed by
Sirovich and Everson [14].
I thank D. Hansel for most useful discussions. This
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