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Abstract

Current methods for learning graphical mod-
els with latent variables and a �xed structure
estimate optimal values for the model param-
eters. Whereas this approach usually pro-
duces over�tting and suboptimal generaliza-
tion performance, carrying out the Bayesian
program of computing the full posterior dis-
tributions over the parameters remains a dif-
�cult problem. Moreover, learning the struc-
ture of models with latent variables, for which
the Bayesian approach is crucial, is yet a
harder problem. In this paper I present
the Variational Bayes framework, which pro-
vides a solution to these problems. This ap-
proach approximates full posterior distribu-
tions over model parameters and structures,
as well as latent variables, in an analytical
manner without resorting to sampling meth-
ods. Unlike in the Laplace approximation,
these posteriors are generally non-Gaussian
and no Hessian needs to be computed. The
resulting algorithm generalizes the standard
Expectation Maximization algorithm, and its
convergence is guaranteed. I demonstrate
that this algorithm can be applied to a large
class of models in several domains, including
unsupervised clustering and blind source sep-
aration.

1 Introduction

This paper focuses on learning graphical models from
data. A standard method to learn a model is maxi-
mum likelihood (ML). This method estimates optimal
values for the model parameters within a �xed graph
structure from a given dataset. There are three main
problems with ML learning. First, it produces a model
that over�ts the data and subsequently have subopti-

mal generalization performance. Second, it cannot be
used to learn the structure of the graph, since more
complicated graphs assign a higher likelihood to the
data. Third, it is computationally tractable only for a
small class of models.

The Bayesian framework (Mackay 1992a, 1992b;
Cooper and Herskovits 1992; Heckerman et al. 1995)
provides, in principle, a solution to the �rst two prob-
lems. In this framework one considers an ensemble
of models, characterized by a probability distribu-
tion over all possible parameter values and structures.
Rather than learning a single model from a given
dataset, one computes the distribution over the en-
semble of models given these data. Model uncertainty
is thus taken into account, leading to enhanced gen-
eralization performance. In addition, complex mod-
els are e�ectively penalized by being assigned a lower
posterior probability, hence optimal structures can be
identi�ed. In models that contain hidden variables,
the posterior one computes is the joint distribution
over models and hidden variables given the data.

Unfortunately, computations in the Bayesian frame-
work can seldom be performed exactly, due to the need
to integrate over models. Approximations therefore
must be made (see, e.g., Cheeseman and Stutz 1995;
Chickering and Heckerman 1997; Friedman 1998), the
major schemes being Markov chain Monte Carlo meth-
ods and Laplace approximation. The former attempts
to achieve exact results but typically requires vast
computational resources. The latter has lower com-
plexity of O(m2N), where m is the number of pa-
rameters and N the dataset (sample) size, but is a
good approximation only in the limit N=m ! 1; in
particular, is assumes that all posterior distributions
are Normal (but see the discussion in Mackay 1998a).
Naturally, the situation becomes worse when hidden
variables exist.

In this paper I present the Variational Bayes frame-
work for computations in graphical models. This
framework facilitates analytical calculations of poste-



rior distributions over the hidden variables, param-
eters and structures. It draws together variational
ideas from intractable hidden variables models (Saul,
Jaakkola and Jordan 1996; Ghahramani and Jor-
dan 1997) and from Bayesian inference (Waterhouse,
Mackay and Robinson 1996; Jaakkola & Jordan 1997;
Mackay 1998), which, in turn, draw on the work of
Neal and Hinton (1998). The posteriors are obtained
via an iterative EM-like algorithm whose convergence
is guaranteed. Focusing on the parameter posterior,
its resulting approximation is more eÆcient than the
Laplace as the Hessian needs not be computed, and
produces non-trivial posteriors for any sample size. In
addition, the BIC/MDL model selection criteria are
obtained from VB in the large sample limit. The VB
framework is developed in section 2, and is applied to
mixture models in section 3 and to the blind source
separation problem in section 4. Learning structure of
complex models is discussed in section 5.

Notation. We shall use the Dirichlet, Normal, and
Wishart distributions D, N , W in the following
parametrization:

D(f�sg; f�sg) /
mY
s=1

��s�1s ;

N (x;�;�) / e�(x��)T�(x��)=2 ;

W(�; a;B) / j � ja�1 e�TrB� : (1)

Note that � is the inverse covariance (a.k.a. preci-
sion) matrix of N . We also use the Normal-Wishart
distribution

NW(x;�; a;B;�; �) =W(�; a;B)N (x;�; ��) : (2)

2 The Variational Bayes Framework

for Graphical Models

2.1 De�nitions

We restrict our attention in this paper to directed
acyclic graphs (a.k.a. Bayesian networks). Let M de-
note a set of model structures. The variables in a
structure m 2 M are divided into two sets: visible
(data) variables vi 2 V and hidden (latent) variables
hi 2 H . Each variable is a vector of some dimension,
whose coordinates may assume either discrete or con-
tinuous values. A structure m speci�es (a) the visible
set V , which is the same for all models; (b) the hidden
set H ; (c) the dependencies (i.e., directed edges) be-
tween the variables; and (d) the parametrized form of
the probabilistic dependencies p(ui j pai; �i;m), where
ui 2 V [ H , pai is the set of parents of ui, and �i
denotes the parameter set of this conditional distribu-
tion. Hence, di�erent structures may have di�erent

numbers of hidden variables, and a given hidden vari-
able may have a di�erent dimensionality or assume a
di�erent set of values in di�erent structures. The rea-
son we consider vector variables rather than the cus-
tomary scalars is that we shall occasionally be using
real-valued distributions p(ui j pai; �i;m) that allow
correlations between the coordinates of ui, which are
therefore not conditionally independent; of course, this
could have also been achieved using a slightly more
complicated graph.

Denoting the complete set of parameters by � =
[if�ig, the relevant joint distribution is

p(V;H;�;m) =
Y
i

p(ui j pai; �i;m)p(� j m)p(m) (3)

where p(� j m) is the prior distribution on the param-
eters of structure m and p(m) is the prior over our set
of structures. As a �nal note on terminology, the term
model will refer to a pair (�;m) of a speci�c structure
and speci�c parameter values.

We are interested in the ensemble likelihood p(Y ). This
is the likelihood

Q
n p(V = yn j �;m) assigned to

the dataset Y = fyn; n = 1 : Ng by model (�;m),
averaged over the ensemble of models described by
p(�;m) = p(� j m)p(m). This quantity is also known
as marginal likelihood or evidence. Note that its calcu-
lation requires averaging over all con�gurations of the
hidden units within each model. The ensemble like-
lihood is generally computationally intractable, as it
requires (a) integrating the joint (3) over the parame-
ters, which typically cannot be performed analytically;
(b) summation over all possible values of the hidden
variables. For discrete variables, the number of terms
in these sums is exponential in the number of nodes,
whereas for real-valued variables these sums may turn
into analytically intractable integrals; (c) summation
over all possible structures, whose number grows ex-
ponentially with the maximum numbers allowed for
nodes and edges. In the following we address these
issues within a variational framework.

2.2 Ensemble Likelihood and Occam Factor

The Variational Bayes framework is formulated as fol-
lows. Starting from the ensemble liklehood, we use the
Neal-Hinton representation (Neal and Hinton 1998) to
place a lower bound on it:

L = log p(Y ) � F �
X
m2M

Z
d�
X
H

q(H;�;m j Y ) log
p(Y;H;�;m)

q(H;�;m j Y )
; (4)

where the sum over H ranges over all possible val-
ues of all hidden variables and implies integration for



continuous variables. The inequality (4) holds for an
arbitrary conditional distribution q. The optimal q
is obtained by setting the functional derivative of the
right hand side with respect to q to zero; the re-
sulting equation is solved only by the true posterior,
q = p(H;�;m j Y ), obtained from (3) using Bayes'
rule. It is easy to show that in this case the inequality
(4) becomes an equality. However, the computation of
the true posterior is intractable and approximations
must be made. Our approach restricts the space of al-
lowed q to distributions where the parameters are con-
ditionally independent of the hidden variables given a
structure, i.e., have the form

q(H;�;m j Y ) = q(H j m;Y )q(� j m;Y )q(m j Y ) : (5)

This posterior will generally di�er from the true one
and is termed the variational posterior. It will be op-
timized to produce the best approximation to the true
posterior. Hence, we get a lower bound F on the en-
semble likelihood, which splits into two terms:

F = F�;m �D�;m ;

F�;m = h
X
H

q(H j m) log
p(Y;H j �;m)

q(H j m)
i�;m ;

D�;m = KL[q(�;m) jj p(�;m)] ; (6)

where the average h�i�;m in the �rst term is com-
puted with respect to the model posterior q(�;m),
and the second term is the Kullback-Leibler (KL)
distance between q(�;m) and p(�;m), i.e., D�;m =
hlog q(�;m)=p(�;m)i�;m. The dependence of the
variational posteriors on the data Y is henceforth omit-
ted. As we shall see, the �rst term corresponds to the
likelihood term, whereas the second term is the Occam
factor which penalizes for over complex models. Thus,
our score function F may be interpreted as a penal-
ized likelihood, where the penalty is the KL distance

between the posterior and prior distributions over the

ensemble of models.

2.3 Large Sample Limit

To gain some insight into F , consider the large sam-
ple limits N ! 1. In this case, the model posterior
is strongly peaked about its mean, the maximum like-
lihood (ML) model (�0;m0), with a covariance that
typically decreases as 1=N . To compute the �rst term
of F in this limit, only the ML model (�0;m0) needs
to be included; the relative correction will be O(1=N).
To compute the second term, we approximate q(�;m0)
by a multivariable Gaussian distribution with the same
mean and covariance. We thus obtain

F(N !1) = F0 �D0 ;

F0 =
X
H

q(H) log
p(Y;H j �0)

q(H)
;

D0 =
j �0 j

2
logN � log p(�0) ; (7)

where j �0 j is the number of parameters in the ML
model, and the m0 dependence is omitted. Let us �rst
focus on maximizing F0 alone. As shown in (Neal
and Hinton 1998), this is a generalized representation
of the ML problem where we seek a single parame-
ter value �0. The ordinary EM algorithm is obtained
by maximizing F0 w.r.t. q(H) and �0 alternately: In
the E-step of the rth iteration we set ÆF0=Æq(H) = 0,

which gives q(H) = p(H j Y;�(r�1)
0 ); in the M-step

we �x q and solve @F0=@�0 = 0 to obtain �
(r)
0 . The

variational EM algorithm (Saul et al. 1996) was in-
troduced for cases where the computation of the exact
posterior p(H j Y ) is intractable. Instead, a form q(H)
which allows performing the calculation is used; it has
its own set of parameters, and in the E-step these pa-
rameters are optimized to minimize the KL distance
between q(H) and the true posterior.

Second, the penalty D0 reduces in this limit to a term
that is linear in the number of the ML model param-
eters, plus a simple regularizer � log p(�0). Finally,
we point out that the Bayesian information criterion
(BIC) (Schwartz 1978) and the minimum description
length criterion (MDL) (Rissanen 1987) both emerge
as a special case of our large sample expression (7), cor-
responding to using at prior p(�) and exact (rather
than variational) posterior q(H).

2.4 Optimal Posteriors and Relation to EM

To �nd the optimal variational posterior over the pa-
rameters for a given structure m, we set ÆF=Æq(� j
m) = 0 in (6) and obtain

log q(� j m) = hlog p(Y;H j �;m)iHjm

+ log p(� j m)� log zm ; (8)

where the average h�iHjm in the �rst term is computed
w.r.t. the hidden variable posterior q(H j m), and zm
is a normalization constant. In spite of the apparent
complexity of (8), the resulting posterior is typically
quite simple. First, averaging over the hidden vari-
ables using the variational posterior q(H j m) is ob-
tained in a closed form; this is a key property of the
variational approach (see below).

Second, if we use directed graphs where each node
has its own parameters, and if we use a parameter
prior that factorizes over the nodes, then the param-
eter posterior factorizes as well. To see this, recall
the joint distribution over the nodes (3), and assume
p(� j m) =

Q
i p(�i j m). From (8) we then have

log q(� j m) =
X
i

hlog p(ui j pai; �i;m)iHjm



+
X
i

log p(�i j m)� log zm

�
X
i

log q(�i j m) ; (9)

proving that, given a particular graph structure, the
posteriors over the parameters of di�erent nodes are
mutually independent.

Third, the functional form of the parameter poste-
rior is determined by the distributions that de�ne our
model, as well as by the priors. In general, using stan-
dard forms for these distributions leads to a standard
form for the posterior. We now demonstrate it for
two cases of interest. (i) Discrete to discrete: As-
sume that node ui and its parents pai are discrete,
so their connection is described by a probability table,
p(ui = s j pai = t; �i) = �ti;s � 0, where the parame-

ters satisfy the normalization condition
P

s �
t
i;s = 1 for

each t. In this case, an appropriate prior on the pa-
rameters is a Dirichlet distribution with hyperparame-
ters �ti;s: p(�i j m) =

Q
tD(f�

t
i;sg; f�

t
i;sg). To perform

the average over H in (9) we need the variational pos-
terior over the hidden variables, which factorizes intoQ

n q(u
n
i = s;pani = t). It is straightforward to show

that this averaging gives again a posterior which is a
product of Dirichlet distributions with modi�ed hyper-
parameters:

q(�i j m) =
Y
t

D(f�ti;sg; f�
t
i;s +N ��ti;sg) ; (10)

where ��ti;s =
P

n q(u
n
i = s;pani = t j m)=N .

(ii) Discrete to Normal: Assume that node ui
is continuous and Normally distributed conditioned
on its parents pai, which are discrete: p(ui = x j
pai = t; �i) = N (x;�t;�t), with the parame-
ters �i = f�t;�tg having a Normal-Wishart prior
NW(at;Bt; �t; �t) independently for each t. It can
be shown that the posterior q(�i j m) is also Normal-
Wishart with modi�ed hyperparameters:

q(�i j m) =
Y
t

NW(�t;�t; (11)

at +N ��t;Bt +N ��tB
0
t; �

0
t; �t +N ��t) ;

where B0
t and �0t are determined from the �rst two

moments of the hidden variable posterior q(uni = x j
pani = t;m), and ��t =

P
n q(pa

n
i = t j m)=N .

Hence, in both cases the posterior has the same form as
the prior. Notice that its covariance becomes O(1=N).
In fact, (10,11) show that as the sample size N in-
creases, the inuence of the prior on the form of the
posterior diminishes. These results will be revisited
below as speci�c models are being considered.

Next, to �nd the variational posterior over the hidden
variables for a given structure m, we may try similarly

to set ÆF=Æq(H j m) = 0 in (6), arriving at

log q(H j m) = hlog p(Y;H j �;m)i�jm � log z0m ; (12)

where the average h�i�jm is computed w.r.t. the pa-
rameter posterior q(� j m), and z0m is a (di�erent) nor-
malization constant. This procedure will be success-
ful for some models, one of which is illustrated below.
However, for many interesting models the resulting
posterior will be quite diÆcult to work with, e.g., com-
puting the normalization constant will be intractable,
as well as performing the average in (8). In such cases
we choose a parametric form for q(H j �;m) with a
separate set of parameters �, termed variational pa-

rameters, that are optimized to maximize F . The cru-
cial consideration in the choice of this posterior is that
it allows performing all the required calculations an-
alytically, while still providing a good approximation
in the relevant sense. Below we shall demonstrate how
this is done.

Finally, the posterior over the structuresm is similarly
shown to be given by

log q(m) = h hlog p(Y;H j �;m)iHjm

+ log
p(� j m)

q(� j m)
i�jm � log z : (13)

As will be illustrated below, the parameter posteriors
that emerge from VB turn out to have a parametric
functional form, with these parameters (which should
not be confused with the model parameters) being suf-
�cient statistics (SS) computed from the data by an
iterative, two-step, EM-like algorithm. In the E-step
the hidden variable posterior is computed using the old
SS; in the M-step the new SS are computed, updating
the parameter posterior. in the large sample limit,
this algorithm reduces to ordinary EM (Dempster et
al. 1977).

2.5 Predictive Quantities and Labeling

The probability that a hypothesis is true given the
data D is determined by averaging over all models us-
ing their posteriors. For example, for density estima-
tion applications, the predictive density for a new data
vector y is

p(y j Y ) =
X
m2M

Z
d�
X
H

p(y j H;�;m)p(H;�;m j Y ) : (14)

One approach is to directly replace the true poste-
rior by the variational one q(H;�;m j Y ). Unfortu-
nately, since the variational posterior is designed to
compute analytically averages over the logarithm of



p(y j H;�;m) rather than the actual distribution, ad-
ditional approximations may be necessary.

However, the variational approach allows a rather at-
tractive alternative route. Instead of considering the
predictive density we consider its logarithm, given by
log p(y j Y ) = log p(Y 0)�log p(Y ), where Y 0 = Y [fyg
is the augmented dataset. We now repeat the ex-
act same steps used to compute the lower bound
F � log p(Y ) (4,6), and compute F 0 � log p(Y 0). This
calculation requires only little additional e�ort, as the
required posterior q(H;�;m j Y 0) is very close to the
old one q(H;�;m j Y ) which can be used for initial-
ization. The predictive distribution is then given by

p(y j Y ) = eF
0�F : (15)

In fact, in the large sample limit we obtain F 0 � F =P
m q(m)h hlog p(y j H;�;m)iHjm i�jm with no addi-

tional computation.

For other applications, such as unsupervised classi�ca-
tion and blind source separation, the most likely value
of a hidden variable hi given a new data vector y is
required. This value is given by the MAP estimate
ĥi = argmaxhi p(hi j y; Y ). Again, one approach is to
directly replace the true by the variational posterior,
giving

ĥi = argmax
hi

X
m2M

q(m)h hp(y; H j �;m)iHijm i�jm ; (16)

where the average h�iHijm is performed w.r.t. q(H j m)
over all hidden variables after marginalizing it over
hi. Alternatively, we may compute the posterior for
the augmented dataset as above, focus on the factor
q(H j m;Y 0) and marginalize over all hidden variables

but hi to obtain ĥi = argmaxhi
P

m q(hi j m;Y 0).

A labeling problem may arise when computing a MAP
estimate of hidden variables given new data. Consider
two graph structures m1;m2 which contain the same
hidden variables hi; hj , and assume both are invariant
under the permutation hi $ hj . Then the node la-
beled hi in m1 may be labeled hj in m2, producing
an incorrect estimate when summing over structures
in (16). The same problem may arise from permuta-
tion of discrete values of a hidden variable (i.e., com-
ponent label in mixture models). The honest way to
avoid labeling problems is by incorporating appropri-
ate prior information about the relevant hidden vari-
ables into the model to break its permutation invari-
ance. A practical solution is to approximate the sum
over all structures by a small number of most probable
ones, and use post-processing to correct label switches.
Of course, the problem is completely avoided if only
the single most probable structure is used in place of
the sum in (16).

3 Variational Bayes Mixture Models

3.1 De�nitions

Mixture models constitute a useful tool for exible
density estimation. These models have been investi-
gated and analyzed extensively (see, e.g., Titterington
et al. 1985), and eÆcient methods exist for �tting a
given model to data. However, the issue of determin-
ing the required number of mixture components is still
an open problem. When viewed in the framework of
unsupervised classi�cation, this becomes the issue of
determining the number of unobserved classes. While
the Bayesian approach provides the solution in prin-
ciple, no satisfactory practical algorithm has emerged
from the application of involved sampling techniques
(Richardson and Green 1997; Rasmussen 1999) and
approximation methods (e.g., Cheeseman and Stutz
1995) to this problem. We now show that an elegant
solution is provided by the VB approach.

We consider models of the form

p(y j �;m) =

mX
s=1

p(y j s;�;m)p(s j �;m) (17)

(compare to (3)), where m is the number of compo-
nent, which determines the structure of the model. y
denotes the observed data vector, s = 1; :::;m is the
hidden component label, p(s j �;m) = �s the compo-
nent probabilities which sum to one, and p(y j s;�;m)
the component distributions. Whereas our approach
can be applied to arbitrary models, for simplicity we
shall �rst consider the classical mixture model where
the data are real-valued and the component distribu-
tions are Normal, p(y j s;�;m) = N (y;�s;�s), where
�s is the mean and �s the inverse covariance matrix.
We use non-informative priors (this point will be re-
visited later) on the parameters � = f�s;�s; �sg, i.e.,
p(f�sg) is at, p(f�sg) is at within an m-dim hyper-
cube whose edge length ! 1, and p(f�sg) =

Q
s j

�s j�1. Finally, we use a structure prior p(m) = 1=K
for 1 � m � K with K being the maximal number of
components.

3.2 Learning Algorithm

We can now follow the steps outlined above for a
dataset Y = y1:N and derive the variational poste-
rior distributions over parameters q(� j m), compo-
nent label q(s1:N j m), and structure q(m). When
doing this, we �nd that the parameter posterior fac-
torizes into q(� j m) =

Q
s q(�s;�s j m)q(f�sg j m),

as predicted from (9). The mean and inverse covari-
ance are jointly Normal-Wishart; note that they fac-
torize over s as well. The component probabilities are
jointly Dirichlet. These results are consistent with the



general properties (10,11). To make the results more
transparent we further restricted the parameter pos-
terior to factorize the mean from the covariance (al-
though all calculations can be fully carried out using
their joint distribution), arriving at

q(�s j m) = N (�s; ��s; N ��s��s) ; (18)

q(�s j m) = W(�s; as;Bs) ;

q(f�sg j m) = D(f�sg;N ��1 + 1; :::; N ��m + 1) ;

where as = N ��s=2 and Bs = as��
�1
s . Hence the means

are Normal, the inverse covariances are Wishart, and
the component probabilities remain Dirichlet. The pa-
rameters appearing in (18) will be de�ned shortly.

The label posterior factorizes over the data instances,
q(s1:N j Y;m) =

Q
n q(sn j yn;m) for obvious reasons,

and is given for instance n by

q(sn j m) =
1

zn
~�s� j

~�s
2�

j e�(yn�
��
s
)T ��s(yn� ��

s
)=2)

� e�d=2N��s ; (19)

where d is the data dimensionality, zn a normaliza-
tion constant, ~�s = exp(	(N ��s + 1) � 	(N + m)),
~�s =j Bs j�1 exp(d	(as)), and 	 is the psi (digamma)
function.

The VB approach has therefore led us to an EM-like
algorithm for each structure m, where in the E-step
we learn the label posterior (19), and in the M-step
we learn the parameter posteriors (18). In fact, we
obtain the following learning algorithm for the param-
eters, which determine the suÆcient statistics (SS) of
these distributions. First we initialize ��s, ��s, ��s to
appropriate values. Next we compute q(sn j m) from
(19). Then we compute the new SS by

��s = h1isjm ; ��s =
1

��s
hyisjm ; (20)

��s = (1�
1

N ��s
)

�
1

��s
h(y � ��s)(y � ��s)

T isjm

��1
;

where h�isjm implies averaging w.r.t. the label poste-
rior, i.e., hf(y)isjm =

P
n f(yn)q(sn j m)=N . These

steps are repeated until convergence; the case ��s �
1=N will be commented upon below.

Several remarks deserve to be made at this point. (a)
Whereas no prior assumptions about them have been
made, the parameters posteriors that emerge from ap-
plying VB to the mixture model using uninforma-
tive priors have non-trivial functional forms that are
intuitively appealing. More importantly, in general
they are not Normal, unlike those resulting from the
Laplace approximation. (b) In fact, no complications
would appear if we generalize the priors to have the

same functional form of the corresponding posteriors
(besides the appearance of appropriate hyperparam-
eters). (c) The quantities ��s, ��s,

��s learned by the
rules (20) are the means of the posterior distributions
(18) over the parameters (more precisely, ��s are the
mean component probabilities only in the large sample
limit). The covariances of these posteriors areO(1=N).
(d) In the large sample limit, the posteriors collapse
onto their means, and also ~�s = ��s, ~�s = ��s. There-
fore in this limit we recover the ordinary EM algo-
rithm. (e) Most strikingly, when the number of data
vectors assigned to component s is one or less, i.e.,
��s � 1=N , it can be shown that the rules (19{20) are
replaced by q(sn = s) = ��s = 0, e�ectively declaring
component s nonexistent. This property is important
since it protects our algorithm from the following well-
known problem with the ordinary EM algorithm for
mixture models: There, one component may become
centered at a single data vector, sending its covariance
to zero and the model likelihood to in�nity; the result-
ing wrong model is thus assigned a higher likelihood
than the correct one. The VB algorithm automatically
eliminates such a component.

Finally, once the posterior distributions over the pa-
rameters and label conditioned on structure have been
obtained, the posterior distribution over model struc-
ture q(m) is given by

q(m) =
1

z
exp

�
hlog

p(y1:N ; s1:N ;� j m)

q(s1:n;� j m)
is;�jm

�
; (21)

where h�is;�jm refers to averaging w.r.t. q(s1:n;� j m).
The resulting closed-form expression is omitted.

Also omitted is the expression we obtained for the pre-
dictive density (15); we point out, however, that it is
not a mixture of Normal distributions.

3.3 Results

I applied the VB mixture model algorithm to several
toy problems; Fig. 1 presents the results on two of
them. In the �rst (top) 600 data points were generated
from a 2-dim mixture model with Normal components,
whose covariances are represented by the ellipses on
the top left panel. The algorithm was then applied
with maximum number of components K = 10; the
resulting log-posterior over the number of components
is shown on the top right panel, indicating that the
posterior is sharply peaked at the correct value m = 3.

In the second problem (bottom), the VB algorithm
was applied to 800 data points generated from a 3-
dim noisy spiral. Here there is no `correct' number;
the resulting posterior (whose logarithm is plotted on
the bottom right panel) is peaked at m = 11. The
means of the resulting posterior over the covariances
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Figure 1: Application of the VB mixture model to den-
sity estimation. Top: Data generated from a 3-component
model (left) and the resulting log-posterior over the number
of components. Bottom: Data generated from a noisy spi-
ral and the means of the covariance posterior correspond-
ing to an 11-component model (left), and the log-posterior
over the number of components.

for this case are represented by their axes (bottom
left). Larger numbers of components were observed to
produce overlaps. The VB mixture is currently being
applied to the task of handwritten character recogni-
tion.

4 Blind Source Separation

4.1 De�nitions

In the blind source separation (BSS) problem, a.k.a.
independent component analysis (ICA) (Jutten and
Herault 1991; Bell and Sejnowski 1995; Cardoso and
Lahed 1996; Attias and Schreiner 1998), one is pre-
sented with multivariable time series data. It is as-
sumed that these data, which are generally corre-
lated, arise from several individual source signals that
are mutually statistically independent. The sources
are unobservable and are mixed together by an un-
known linear transformation, corrupted by unobserv-
able noise. The task is to recover the sources from
the data. A successful solution to this problem will
have many applications in areas involving processing
of multisensor signals, such as speech recognition and
enhancement, analysis and classi�cation of biomedi-
cal data, target localization and tracking by radar and
sonar devices, and wireless communication.

Let xnj denote the signal emitted by source j = 1 : m

at time n, and let yni denote the signal received at
sensor i = 1 : d at the same time. In the instantaneous
mixing version of this problem, we assume that the two
are linearly related: yn = Axn +un, where the d�m
matrixA is termed themixing matrix, and uni are zero-
mean Gaussian noise signals with inverse variance �i.
We also assume that we have good approximations for
the independent source densities pi(xi). We shall use
the model pi(xi) = cosh�2(xi=2)=2, which has been
shown to be accurate for the purpose of separating
speech sources (Bell and Sejnowski 1995; Attias and
Schreiner 1998). Thus, the graph we consider is given
by

p(x j m) =

mY
j=1

1

2
cosh�2(

xj
2
) ;

p(y j x;A;m) =

dY
i=1

N (yi;

mX
j=1

Aijxj ; �i) : (22)

In terms of (3), we have hidden variables H = fxjg,
parameters � = fAijg, and structure m determined
by the number of sources.

Most existing ICA algorithms address the simpli�ed
case where the noise vanishes and the mixing matrix
is square invertible, so the number of sensors equals
the number of sources. Furthermore, m is assumed
known in advance. Using maximum likelihood, one
computes the distribution assigned to the data by the
model (A;m), p(y j A;m) =j A j�1 p(x j m), and
chooses A to maximize it. The sources are then recov-
ered via x = A�1y.

The more general case of non-square mixing and non-
zero noise is harder, since one has to compute p(y j
A;m) =

R
dx p(y j x;A;m)p(x j m), where the m-

dim integration is non-trivial due to the non-Gaussian
nature of the sources. Lewicki and Sejnowski (1998)
integrated over the sources using the Laplace approx-
imation. Attias (1999a) solved this problem by mod-
eling each source density by a 1-dim mixture of Gaus-
sians, which allows the above integral to be calculated
analytically. The sources are then reconstructed by
a MAP estimate: x̂ = argmaxx p(x j y;A;m). This
approach results in an EM algorithm that learns both
the mixing and noise covariance matrices, as well as
the source distributions, from noisy data. Since the
computational complexity of the algorithm increases
exponentially with the number of sources, the large m
case is treated in (Attias 1999a) by a structured varia-
tional approximation (Ghahramani and Jordan 1997).

However, in realistic cases the observed data is gener-
ated by an unknown number of sources m. Here we
exploit the VB approach to compute the posterior dis-
tribution over m from a dataset Y of sensor signals.



We point out that realistic situations include many ad-
ditional complications, such as multipath propagation
and reverberant conditions (see (Attias and Schreiner
1998) for a treatment of the zero-noise convolutive
blind separation problem), as well as non-stationarity;
these issues are beyond the scope of the present paper.

4.2 Learning Algorithm

For the prior distribution on the mixing matrix, we
choose the elements Aij to be independent, zero-mean
Normal variables with precision � as a single hyperpa-
rameter, i.e.,

p(A j �;m) =
� �

2�

�dm=2

exp

0
@��

2

X
ij

H2
ij

1
A : (23)

This prior becomes uninformative in the limit � ! 0.
For simplicity, we keep � and the noise precisions �i
as hyperparameters, although VB can treat them in a
full probabilistic manner with little added e�ort. The
structure prior employed is p(m) = 1=K for 1 � m �
K with K being the maximal number of sources.

Following the discussion of section 2.4, we �nd that
the mixing matrix posterior is Normal,

q(A j m) = N (A; �A;�) ; (24)

whose mean and covariance are given by

�Aij =
�
Cyx(C

i
xx)

�1
�
ij

;

�ij;kl =
1

�iN

�
Ci
xx

��1
jl

Æik ;

Ci
xx � Cxx +

�

�iN
I ; (25)

where that �ij;kl is the expectation of (Aij� �Aij)(Akl�
�Akl). Viewing Aij as a dm � 1 vector formed by
concatenating the columns of A into a large col-
umn, note that � has a block-diagonal form consist-
ing of d blocks of dimension m �m. The correlation
matrices are Cyx = hyxT ixjm =

P
n yn�

T
n=N and

Cxx = hxxT ixjm =
P

n(�n�
T
n + ��1)=N ; the aver-

ages are computed w.r.t. the source posterior q(x j m)
(26). We point out that in the large sample limit,
the covariance of A vanishes and its mean becomes
�A = Cyx(Cxx)

�1, a form appearing in the ordinary
EM algorithms for factor analysis (Rubin and Thayer
1982) and independent factor analysis (Attias 1999a).

However, the source posterior cannot be obtained by
directly optimizing F (see (12)), due to the non-
Gaussian nature of the sources. Instead we use two
variational tricks. First, noting that the source pos-
terior factorizes over instances, i.e., q(x1:N j m;Y ) =

Q
n q(xn j m;yn), we choose a Normal distribution at

each instance n,

q(xn j m) = N (xn;�n;�n) ; (26)

where the mean � and (general) inverse covariance
�, termed variational parameters, may depend on the
data yn, and will be adapted to help this posterior
best approximate the optimal one. Second, in order
to adapt them we must compute the expected value of
log p(Y;x j A;m) under this posterior, which poses a
diÆculty, again due to the form of p(x j m). To over-
come it, we exploit Jensen's inequality to compute a
bound on this quantity:

hlog p(x j m)ixjm = �2
mX
i=1

hlog
cosh(xi=2)

2
ixjm

� �
1

4
Tr��1 � 2

LX
i=1

log
cosh(�i=2)

2
: (27)

In general, the accuracy of this lower bound depends
on the variational parameters � and �, especially on
the latter: Note that in the zero-noise case (�i !1),
��1 vanishes and the bound is exact. I found experi-
mentally that, for the distributions of � and � arising
in the cases treated in the present paper, the mean
error of the bound is smaller than 4%.

Given the posterior overA, we can now set @F=@�n =
0 and derive the �xed point equation

�AT�(yn � �A�n)� tanh
�n
2

=

P
i(C

i
xx)

�1

N
�n ; (28)

where � = diag(�1; :::; �d). This equation can be
solved iteratively for each n, using the initial value
�n = (ATA)�1Ayn which is exact in the limit of
low noise and large sample size. The variational pre-
cision matrix turns out from @F=@�n = 0 to be n-
independent:

�n = � � �AT��A+
1

2
I+

P
i(C

i
xx)

�1

N
: (29)

Finally, optimizing the hyperparameter � gives

� =
1

dm
Tr

 
�AT �A+

X
i

(Ci
xx)

�1

�iN

!
: (30)

An optimization rule for the hyperparameters �i can
similarly be derived but is omitted. We also omit the
structure posterior q(m).

Hence, like in the mixture model case, VB led to an
EM-like algorithm for each m, where the E-step learns
the source posterior (26), and the M-step learns the pa-
rameter posterior (24). The algorithm actually learns
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Figure 2: Left: Application of the VB source separation
algorithm to 11-dim data generated by linear mixing of 5
speech and music signals. Left: The resulting posterior
over the number of sources. Right: log-error in recon-
structed sources w.r.t. the original ones for di�erent noise
levels.

the SS of these distributions as follows. First we ini-
tialize �A, �, �i, � to appropriate values. Next we
compute the SS of q(x j m) using (28{29). Then we
compute the new SS of q(A j m) from (25,30). These
steps are repeated until convergence.

We remark that a Variational Bayes algorithm for
the more conventional method of factor analysis can
straightforwardly be derived. In that case, the sources
are Normal and the source posterior (26) is actually
optimal (within the VB framework). The resulting
equation for � can be solved in a single iteration.
However, as is well known, the Gaussian nature of
the sources prevents factor analysis from performing
source separation.

4.3 Results

I applied the VB source separation algorithm to 11-
dim data generated by mixing 5 speech and music sig-
nals obtained from commercial CDs. Each signal was
1sec long at sampling frequency 8:82kHz. The sig-
nals were mixed by a random 11 � 5 mixing matrix,
and di�erent levels of Gaussian noise were added. The
posterior over the number of sources found by the al-
gorithm is plotted in Fig. 2 (left), and is peaked at
the correct value of m = 5. The sources were then
reconstructed from the data using a MAP estimate.
The log-error of the reconstructed w.r.t. the original
sources is plotted for di�erent signal-to-noise (SNR)
levels in Fig. 2 (right), and is seen to decrease with
increasing SNR as expected. Additional experiments
with di�erent numbers of sources and of sensors gave
similar results.

5 Hierarchical Mixtures and Probable

Structures

Whereas the integration over all model parameters
and structures is tractable in the two models dis-
cussed above, in more complicated models such a full
Bayesian treatment is practically impossible. Consider
the hierarchical mixture model constructed as follows.
Each mixture component s = 1; :::; l has a probability
p(s j l) = �s, and a distribution of a blind separation
model with ks sources and a d� ks mixing matrix As.
Hence, the graphical model is described by the joint
distribution

p = p(y j x;A; �1:l; s; k1:l; l)p(x j s; ks)p(s j l)

p(A j ks; s)p(�1:l j l)p(k1:l j l)p(l) : (31)

This model is potentially useful for pattern recognition
on speech and image data. The reason is that these
data typically have long-tailed distributions, which are
modeled more eÆciently by exponential rather than
Normal component distributions. However, denoting
by K the maximal number of sources for each com-
ponent and by L the maximal number of components,
we have KL possible structures for this model.

A simple way to obtain a polynomial time algorithm is
to include only the most probable structure and pos-
sibly a few neighboring structures. Formally, this pro-
cedure amounts to making the factorized variational
approximation

q(k1:l; l) = Æl;l0
lY

s=1

 X
r

wr
sÆks;k0s+r

!
; (32)

with r covering a small range of r0 numbers includ-
ing zero and wr

s � 0 satisfying
P

r w
r
s = 1. The form

(32) allows only a single number of components l0,
and restricts each component s to a range of r0 pos-
sible source numbers about k0s with probabilities wr

s .
The quantities l0, k01:l, w

r
1:l are variational parame-

ters which depend on the dataset Y ; their optimiza-
tion amounts to performing a local search in structure
space for the most probable structures (although the
wr
s may be �xed). Of course, alternative variational

structure posteriors are possible.

6 Conclusion

This paper developed an approximation scheme for
Bayesian inference in graphical models with hidden
variables, and demonstrated it on density estimation
and blind source separation tasks. A comparison of
the accuracy of VB with that of the Laplace approx-
imation against a Monte Carlo standard would be



an important undertaking. It will be exciting to ap-
ply the VB framework to complex Bayesian networks
(e.g., Attias 1999b), including dynamic models, and
demonstrate its performance on real-world tasks such
as speech recognition and scene analysis.
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