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Gaussian distributions lie at the heart of popular tools for capturing structure in high

dimensional data. Standard techniques employ as models arbitrary linear transformations

of spherical Gaussians. In this paper, we present a simple extension to a class of non{

linear, volume preserving transformations which provides an e�cient local description of

curvature. The resulting generalized Gaussian models give a simple statistical tool for

measuring deviations from multivariate Gaussian distributions. Remarkably, there is a

computationally e�cient, analytic solution for �tting the parameters of the non{linear

models. The power of this approach is demonstrated in a curvature analysis of the Asian

foreign exchange market.

1.1 Introduction

In many strategies for risk management and asset allocation amongst multiple

investments, the expected values and covariance structure of the returns are the

fundamental statistical quantities of interest (eg [Burmeister et al 1994]). These

quantities emerge exactly as a result of �tting Gaussian probability distributions

to the data { making critical the task of understanding and broadening the nature

of Gaussian �ts.

Principal component analysis (PCA) is one of the main tools used in �tting

Gaussian distributions. The idea underlying PCA is that high dimensional data

often have lower dimensional structure, and that this structure can be described in

a computationally e�cient manner by �nding the eigenvectors associated with the

largest eigenvalues of the covariance matrix of the data. PCA is a well established

multivariate modeling and signal processing tool, favored for its simplicity and

ease of interpretation. Recently, for example, researchers in computational �nance

investigated the use of PCA for isolating the driving factors in the market (eg [Utans

et al 1997]).

From a statistical perspective, PCA can be seen as having two linked aspects {
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one which models the data with a multivariate Gaussian distribution, and the other

which �nds the coordinate directions that optimizes the reconstruction of the data

by minimizing the variance of the data components that are not modeled. Many

researchers have worked to extend the applicability of PCA to more general situa-

tions. This includes work on neural network extensions of PCA (eg [Karhunen and

Joutsensalo 1995], [Oja 1995]), local versions of PCA (eg [Tipping 1997], [Kamb-

hatla and Leen 1997]), work on Principal Curves [Hastie and Stuetzle 1989] and the

support vector machine based kernel PCA [Sch�olkopf et al 1998]. Many of these

extensions have lost the simple analytic nature of the PCA solution, relying in-

stead on non{linear optimization algorithms. Furthermore, none have retained the

dimension reduction, least squares reconstruction, and maximum likelihood density

estimation aspects of PCA. Our new generalization of PCA extends the multivari-

ate linear Gaussian models to non{linear Gaussian models with curvature param-

eters, while successfully retaining the desirable analytical parameter estimation,

least squares reconstruction and maximum likelihood density modeling properties.

Section 1.2 discusses the basic Curved Gaussian model; section 1.3 presents the

curvature analysis of the Asian foreign exchange market; and section 1.4 considers

natural extensions of the model.

1.2 Curved Gaussian Model

1.2.1 Non{Linear transformation

In PCA, data are linearly projected onto a lower dimensional hyperplane, and the

resulting reduced dimensional data modeled with a multivariate Gaussian distribu-

tion. Since all such models can be described by a symmetric covariance matrix which

can be diagonalized through an orthogonal transformation, PCA can be considered

as a model of the reduced dimensional data with a dilated then rotated spherical

multivariate Gaussian distribution. To extend the linearly transformed multivari-

ate Gaussian models, we consider subsequent compositions with non{linear volume

preserving transformations, as seen in Figure 1.1.

Consider a volume preserving non{linear transformation T : <n 7! <n with

T (x) = ' = ('1; '2; :::; 'n) of the form:

'1 = x1 + k1

'2 = x2 +
X
i

k2im2i(x1)
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Figure 1.1
Contrasting at and curved multivariate Gaussian models. (A) Flat Gaussian model, as de�ned by
Principal Component Analysis and represented with an iso{density surface. (B) Curved Gaussian
model, with one curved coordinate '3; k31 = 3, k32 = 1, all other kij = 0. (C) Curved Gaussian
model with two curved coordinates '2 and '3; k21 = 1,k31 = 3, k32 = 1.

'3 = x3 +
X
i

k3im3i(x1; x2)

...

'n = xn +
X
i

knimni(x1; x2; : : : ; xn�1) ;

where the non{linear functions mij(x1; :::; xi�1) are suitably well-behaved and

�xed basis functions of x1; :::; xi�1. In particular, we require that the functions

mij(x1; :::; xi�1) and their inverses have continuous partial derivatives. The Jaco-

bian of the transformation is lower diagonal everywhere with 1's along the diagonal,

so the determinant is 1, and the transformation is volume preserving. Note that an

ordering of the coordinates is assumed, with di�erent orderings leading to di�erent

transformations.

1.2.2 Transformation Model

Since the non{linear transformation de�ned above and its partial derivatives are

continuous by our constraint on the mij 's, a simple induction proof shows that the

inverse transformation T �1 exists and also has continuous partial derivatives. By

the change of variables theorem, the non{linear transformation of a multivariate

Gaussian probability density function will already be normalized since the trans-

formation considered is volume-preserving.
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Figure 1.2
Data with a naturally curved distribution in x1; x2 is modeled with both a conventional two-
dimensional Gaussian and a more exible curved Gaussian model. The solid contours correspond
to the �;

p
2� and

p
5� density contours. (A) Conventional two-dimensional Gaussian model. The

dashed line is the line x2 = 1:5. (B) Curved two-dimensional Gaussian with w1 = 1, w2 = 3 and
k21 = 1:5. The dashed line is the image of the line '2 = x2 + k21x

2

1
= 0; 3000 points were drawn

from the distribution.

We are now able to de�ne a \curved" multivariate Gaussian likelihood model of

the form

P (x;w;kij) / (w1:::wn)
1=2 exp[�w1'

2

1
:::� wn�1'

2

n�1 � wn'
2

n]; (1.1)

where x = (x1; x2; :::; xn) is the principal component coordinate system of the

dataset. In essence, the data is modeled by the non{linear transformation T �1 of a

multivariate Gaussian as de�ned in Eqn. 1.1 in the f'g coordinate system. A few

non{linear transformations of Gaussians are shown in Figure 1.1. These curved

Gaussian models provide a much larger class of parametric models for density

estimation. Remarkably, it is easy to �t these models to data.

1.2.3 Analytic Parameter Estimation

Consider �tting a model of the form Eqn. 1.1 to data D =
�
xl
	
. Maximizing the

log likelihood with respect to the coe�cients of mij gives optimizing equations

@

@kij
h'2i i = 0: (1.2)

To make the notation more compact, let ki = (ki1; ki2; :::; kîi)
T denote the

coe�cients in the transformation for the 'i component. Using the expansion for

'i given above, this implies h'imiji = 0 for j = 1; :::; î. De�ne li 2 <î, and
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�(i) 2 <î �<î as follows

li = �(hximi1i; hximi2i; :::; hximîii)
T ; (1.3)

�(i)jk = hmijmiki: (1.4)

The maximum likelihood condition can be expressed as �(i)ki = li, with solution

ki = �(i)�1li. Or more compactly

kij =
h
�(i)

�1
li

i
j
: (1.5)

This solution, if it exists, is the unique global maximum of the log likelihood.

The maximum likelihood solution with respect to the inverse variance parameters

are

wi =
1

2h'2i i
: (1.6)

Surprisingly, just like in Principal Component Analysis, we have analytic solutions

for all of the model parameters. Furthermore, the determination of these parameters

only involve simple linear algebra { this is a signi�cant advantage over the numerous

extensions of PCA which rely on non{linear optimization algorithms. Figure 1.2

compares a two dimensional curved Gaussian model to a at Gaussian model of

data drawn from a naturally curved distribution.

In selecting the non{linear functions mij(x1; :::; xi�1), it is simplest to con-

sider the case where they are products of non-negative powers of the variables

fx1; :::; xi�1g. More speci�cally, let mij 's be multinomials

mij =

i�1Y
k=1

xckk ; (1.7)

with ck � 0 for all k. The restriction to positive powers in the polynomial ensures

that there are no singularities in the transformation. In the numerics presented in

this paper, we considered quadratic non{linear transformations where mij = x2j
for 0 < j < i and mi0 = 1. The parameters kij in this case have an intuitive

interpretation as curvatures.

1.2.4 Least Squares Reconstruction

The optimizing Eqns. 1.5{1.6 reveal a direct connection with least squares. From

Eqn. 1.2, the maximum likelihood solution coincides with an extremum for h'2i i,

viewed as a function of the multinomial coe�cients ki. Only minima exist since h'2i i

is unbounded above, so the maximum likelihood solution is the least squares solu-



61. Curved Gaussian Models with Application to the Modeling of Foreign Exchange Rates

tion. Parameter estimation for the model thus corresponds to a set of n uncoupled

least squares �ts.

By specifying that mi0 = 1, we impose the condition h'ii = 0. Because the

coe�cients ki minimize h'2i i, this implies h'2i i � hx2i i, and hence V ar('i) �

V ar(xi) since h'ii = hxii = 0. Applying the curved Gaussian model to dimension

reduction therefore guarantees an improved least squares reconstruction of the data

over conventional PCA approaches.

1.2.5 Sequential Flattening

Finally, because ki and ki0 are uncoupled for i 6= i0, the multinomial coe�cients ki
can be computed in parallel, completely independently of each other. Alternatively,

consider single coordinate non{linear transformations T j : <n 7! <n, T j(x) = � =

(�1; �2; :::; �n) de�ned as follows:

�j = xj +
X
i

kjimji(x1; x2; : : : ; xj�1);

�i = xi; i 6= j:

The composition T n � T n�1 � ::: � T 1 of single coordinate transformations couples

the kj's and sequentially transforms the data starting with the x1 component. After

a simple rewriting of the equations, the resulting composite transformation is given

by ' = T n � T n�1 � ::: � T 1(x) with

x1 = '1 � k1

x2 = '2 �
X
i

k2im2i('1)

...

xn = 'n �
X
i

knimni('1; '2; : : : ; 'n�1) :

It is now clear that we are in fact directly parameterizing the transformation

of the multivariate Gaussian instead of its inverse, and that we can model data

with this direct parameterization of the transformation of a multivariate Gaussian

distribution by solving for k1,k2; :::;kn in sequence. Intuitively, this analysis \se-

quentially attens" the data one coordinate at a time, in the given ordering of the

coordinates.
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Figure 1.3
Pairwise plots of the value in U.S. Dollar of various Asian currencies. Lower diagonal and upper di-
agonal plots correspond to price and return data respectively. Beginning with the �rst column/row
from the top left corner, the currencies are the Indonesian Rupiah, Japanese Yen, Korean Won,
Malaysian Ringgit, Taiwan Dollar, Philippine Peso, Singapore Dollar, and the Thai Baht. The
corresponding column identi�cation is plotted as a function of the row identi�cation.
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Figure 1.4
Analysis of Japanese Yen vs. Korean Won price data. Plotted are curved Gaussian models starting
from the principal component coordinate system with (A) the smallest variance principal com-
ponent taken as the curvature direction, (B) the largest variance component as the curvature
direction. In units of inverse U.S. Dollar, the curvature constants are k = :35 in A, and 1:03 in B,
corresponding to dimensionless curvatures of :30 and :03 respectively. The dimensionless curva-
ture gives a much better handle on the signi�cance of the curvatures because of the normalization
relative to the �i length scales. The solid lines are the �,

p
2� and

p
5� contours of the model,

while the dashed line shows the transformation of the '2 = 0 line. The analytic �t in (A) captures
some of the curvature, though qualitatively there appears to be more curvature. This is partly due
to the asymmetric concentration of the data. (C) Additional parameterization of the coordinate
system, as described in section 1.4, results in a better curvature �t of the data.

1.3 Curvature Analysis of Asian Foreign Exchange Rates

1.3.1 Data Preprocessing

We investigated the Asian foreign exchange market consisting of the Indonesian

Rupiah, Japanese Yen, Korean Won, Malaysian Ringgit, Taiwan Dollar, Philippine

Peso, Singapore Dollar, and the Thai Baht. Daily price values of the various cur-

rencies as measured in U.S. Dollar were taken from October 23, 1993 to August 27,

1998, corresponding to a dataset of 1769 eight-dimensional datapoints. They were

�rst normalized relative to their values on August 27, 1998, resulting in a multi{

currency portfolio with components weighted equally according to the exchange

rates of that date. The relative return data was calculated by taking di�erences of

the logarithms of the normalized price data. Two{dimensional projections of both

the price and return data are shown in Figure 1.3.

1.3.2 Japanese Yen vs. Korean Won

From Figure 1.3, curvature is clearly present is some pairwise price data. A simple

curved Gaussian model of the Japanese Yen vs. Korean Won data is presented

in Figure 1.4, with signi�cant curvature �ts of k = 0:35 and 1:03 in units of
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inverse U.S. Dollar for the two possible choices of the curved coordinate (ie the

two possible orderings of the principal components). From the plot, we see that

the magnitude of k is not directly indicative of its importance in the model �t.

In Figure 1.4A the curvature in the �tted model describes a signi�cant non{linear

warping in the data of the curved coordinate relative to the standard deviation of

the curved coordinate. In comparison, for the model in Figure 1.4B, the large value

of k is due to the small variance in the non{curved coordinate. Clearly the fkijg

parameters need to be considered relative to the standard deviation length scales, as

determined by the fwg parameters. In order to better represent the magnitudes of

the curvature coe�cients, we de�ne the dimensionless curvature as k�ij = kij�
2

j =�i,

where the standard deviation is related to the fwg parameters by wi =
1

2�2
i

. The

numerator kij�
2

j is a length scale along the i-th coordinate due to the curvature

parameter kij . The dimensionless curvature measures this length scale relative to

the standard deviation of the i-th coordinate �i. Justifying our intuitive de�nition,

the dimensionless curvature in the model depicted in Figure 1.4A is 30% while it is

only 3% for the model in Figure 1.4B.

To demonstrate an application of the curved Gaussian model to dimension re-

duction, after principal component analysis and curved Gaussian analysis of the

data, we discarded the minimal variance principal component, and reduced the di-

mensionality of the data to seven. The PCA and curved Gaussian reconstructions

of the Japanese Yen price data are then compared. The cumulative least squares

reconstruction errors for the two reconstructions are shown in Figure 1.5. As ex-

pected, the least squares reconstruction error over the entire dataset of the curved

Gaussian reconstruction is lower than the PCA reconstruction error.

1.3.3 Single component curved Gaussian model

In addition to the curvature analysis of a two dimensional projection of the price

data, we also performed a multidimensional curvature analysis on the relative

return data. Here we �rst performed PCA on the full eight dimensional data,

then successively chose each of the eight PCA directions as the direction in which

to �t a single component curved Gaussian model. Each curved model has seven

parameters, one for each of the other PCA directions. Out of the total of 56

curvature parameters, dimensionless curvature values with magnitudes as high as

four and �ve percent were found.

For the eight separate curved Gaussian models, we found the standard deviation

of the curved coordinate '8 relative to the at coordinate x8 to be :916, :948, :977,

:979, :989, :993, :996 and :999 respectively. As discussed in section 1.2, this result-
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Figure 1.5
Cumulative least squares reconstruction error of the Japanese Yen price data. The minimal
variance coordinate was chosen as the curved coordinate x8 and thrown away to reduce the
dimensionality of the data to 7. The dotted line corresponds to the cumulative square error of the
conventional PCA reconstruction, and the solid line the lower reconstruction error achieved with
the curved Gaussian reconstruction.

ing variance reduction from the volume preserving non{linear transformations is

indicative of the better �ts achievable with the introduction of curvature parame-

ters.

1.3.4 Sequential attening

Finally, we proceeded with the full multi{dimensional curved Gaussian model of the

price data with a direct parameterization of the non{linear transformation of the

Gaussian. Since ordering of the principal components matters, there is a total of 8!

models | one for each order in which the components are attened. A compilation

of the dimensionless curvatures of all 8! models of the foreign exchange data are

shown in Figure 1.6AB for the price and return data. Because the dataset consists

of less than two thousand datapoints, it is important to perform the same analysis

on data sets of the same size sampled from the Gaussian distribution. The resulting

curvature distribution of the normally distributed data is shown in Figure 1.6C. The

curvatures in the price data are an order of magnitude larger than what is expected

of a Gaussian dataset of the same size. In contrast, curvatures in the return data

are comparatively smaller, indicative of the sparse nature of the return data.
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Figure 1.6
Histogram of the dimensionless curvature parameters (quoted in percentage values) in the curved
Gaussian models of the price and return data. (A) Dimensionless curvatures for models corre-
sponding to all 8! coordinate permutations of the price data. (B) Similar plot for the return data.
(C) Curvature histogram for 5040 datasets of 1768 data points sampled from eight dimensional
Gaussian distributions with unit variance. Eight random coordinate permutations are considered
for each dataset.

1.4 Extensions

1.4.1 Linear Coordinate Transformations

The lesson from Figure 1.4B and the lack of a principled approach to ordering the

at coordinates is that the coordinate system itself should be parameterized and

optimized.

Drawing inspiration from Independent Component Analysis (eg [Bell and Se-

jnowski 1995, Amari et al 1996, Cardoso and Laheld 1996, Lin et al 1997, Lin

1998]), one way to do this is to consider a curved, source datapoint x being used

to generate an observed datapoint y through a linear transformation:

y =W�1x� b (1.8)

where b is a translation, andW�1 is an invertible `mixing' transformation. Given a

datasetD =
�
yl
	
, the task is to �nd the unmixing linear transformation parameters

b and W, together with the parameters w and kj of the curved source model so

as to �t the data as tightly as possible. The contribution to the log likelihood from

the datapoint yl is

log jWj+ log p(W(yl + b);w;kij):

It does not seem possible, in general, to derive closed{form optima for the likelihood

as a function of all the parameters. Instead, we consider an iterative stochastic
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Figure 1.7
Mixture of Gaussians models for modeling the Japanese Yen versus the Korean Won data. (A;B)
Two di�erent mixtures of Gaussian �ts to these data using four full covariance two-dimensional
Gaussians. The centers of the Gaussians are marked by a cross,

p
2� values by the ellipses, and

the mixing proportions by the widths of the outlines of the ellipses. (C) Curved model �t with
coordinate system parameterization. The dashed line is the quadratic `skeleton' of the �nal curved
model and the thick solid line the �nal

p
2� contour for the model.

gradient ascent of the likelihood. In each step, �rst the global maximum of the

likelihood in w and kij for the current values of W and b is calculated, then the

latter variables are changed by stochastic gradient ascent. The partial derivatives

of the log likelihood with respect to the mixing parameters are straightforward to

calculate.

Note that there is substantial redundancy in the model. For example, the lin-

ear transformationW can be restricted to an arbitrary orthogonal transformation.

However, the learning rule is considerably simpler with the model parameteriza-

tion given above. Just as for ICA, we can use the natural gradient ascent algo-

rithm [Amari et al 1996, Cardoso and Laheld 1996] to update the mixing transfor-

mation along the direction of steepest ascent by right multiplying the update rule

for W by the matrix WTW.

An example of the dynamics of the iterative curved Gaussian model �t to the

Japanese Yen vs. Korean Won data is shown in Figure 1.7C. Initialized according

to a linear Gaussian model, the algorithm quickly settles into an optimal curved
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Gaussian �t of the data. However, as can be expected with adaptive optimization

approaches, the algorithm sometimes falls into local maxima.

1.4.2 Mixture Models

Another natural extension is to consider mixtures of curved Gaussians. One of the

most popular extensions of standard Gaussian models is to mixture models such

as the mixture of Gaussians [Nowlan 1991], and in more recent work, mixtures of

principal component or factor analyzers [Bregler and Omohundro 1995, Kamb-

hatla and Leen 1997, Hinton et al 1997, Roweis and Ghahramani 1999, Tipping

1997]. Such mixture models are attractive because the expectation maximization

algorithm (EM; [Dempster et al 1977]) allows them to be �t to data in a computa-

tionally e�cient manner.

The curved Gaussian model can substitute exactly for at Gaussian model in

mixtures. As seen in Figure 1.7, few curved Gaussians can often capture the in-

formation contained in many linear Gaussians. The E phase of EM, in which the

responsibility of each element of the mixture for each data point is assigned is

straightforward because the non{linear transformation is volume preserving. The

M phase of EM, in which the parameters of each element are changed to reect

their responsibilities is straightforward because of the analytical solution for the

curved models presented in section 1.2.3.

1.5 Discussion

We have presented an analytic generalization of the linear Gaussian models that

captures weak non{linear correlations in the data. There are various natural exten-

sions of the work. Particularly important is the adoption of ideas from independent

component analysis to infer the appropriate coordinate system in which to �t the

curved model, and the notion of using mixtures of the curved Gaussian distribu-

tions, in the same way that one uses mixtures of standard Gaussian distributions.

This presents no conceptual or computational hurdle, and can be done simply us-

ing the expectation{maximization algorithm. Another extension is that of using the

curvature information for things other than �tting a Gaussian model. For instance,

the information could be used to enhance local kernel methods in a curved form of

tangent distance [Simard et al 1993]. Also, more general non{linear models could

be used in place of the simple quadratic form used in our analysis of the foreign

exchange data. To manage the trade{o�s of bias for variance in assuming more

exible parameterizations, more sophisticated cross{validation or Bayesian meth-
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ods could be considered for choosing the orders of the polynomials or the forms of

the non{linearities.

There is great interest in multivariate statistical analysis tools beyond linear

Gaussian models. The curved Gaussian models presented in this paper provide a

simple way of looking at non{linearities in the data. Since the curvature parameter

�t is still analytic, all current applications of PCA will bene�t from the added ex-

ibility. Although the subsequent non{linear transformation might be very close to

the identity for some datasets, the existence of a computationally inexpensive an-

alytic solution strongly motivates the consideration of these curvature parameters.

In conclusion, the curved Gaussian models provide an extremely simple tool for

probing and characterizing deviations of the data from a multivariate Gaussian dis-

tribution. The alternative of considering higher order multivariate moments, which

are higher order tensors, quickly runs into the curse of dimensionality. Finally,

with respect to computational �nance, this curvature modeling provides the funda-

mental basis for non{linear asset allocation strategies and new non{linear �nancial

products. We believe curved Gaussian models will be a very useful multivariate

statistical modeling and signal processing tool.
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