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Abstract

We present a model of a coupled system of the olfactory bulb and cortex. Odor
inputs to the epithelium are transformed to oscillatory bulbar activities. The cor-
tex recognizes the odor by resonating to the bulbar oscillating pattern when the
amplitude and phase patterns from the bulb match an odor memory stored in the
intracortical synapses. We assume a cortical structure which transforms the odor
information in the oscillatory pattern to a slow DC feedback signal to the bulb.
This feedback suppresses the bulbar response to the pre-existing odor, allowing
subsequent odor objects to be segmented out for recognition.
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1 Introduction

There is a great deal of current interest in how neural systems, both artificial
and natural, can use top-down feedback to modulate input processing. Here
we propose a minimal model for an olfactory system in which feedback en-
ables it to perform an essential task — olfactory segmentation. Most olfactory
systems need to detect, recognize, and segment odor objects. Segmentation is
necessary because different odors give overlapping activity patterns on odor
receptor neurons, of which there are hundreds of types (1), and each has a
broad spectrum of response to different odor molecules (2). Different odor
objects seldom enter the environment in the same sniff cycle, but they often
stay together in the environment afterwards. Humans usually can not identify
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the individual odor objects in mixtures (3), although they easily perceive an
incoming odor superposed on pre-existing ones. Our model performs odor seg-
mentation temporally: First one odor is detected and encoded by the olfactory
bulb and recognized by the associative memory circuits of the olfactory cor-
tex. Then the cortex gives an odor-specific feedback to the bulb to inhibit the
response or adapt to this odor, so that a superposed second odor arriving later
can be detected and recognized with undiminished sensitivity while the sensi-
tivity to the pre-existing odor is reduced, as observed psychophysically(3). The
stimulus-specific feedback makes odor adaptation an intelligent computational
strategy, unlike simple fatigue, which is not sufficient for odor segmentation.
Our model displays the oscillatory neural activities in the bulb and cortex as
observed physiologically(4). Furthermore, odor cross-adaptation — the sup-
pression and distortion of odor perception immediately after an exposure to
another odor — as observed psychophysically(3), is a consequence of this mod-
el.

2 The Model

Our model (Fig. 1) describes the essential elements of primary olfactory neural
circuitry: the olfactory bulb, the olfactory cortex, and feedforward and feed-
back coupling between them. The formal neurons in our system model the
collective activity of local populations of real neurons. The synaptic architec-
ture is consistent with the known physiology and anatomy of the olfactory

system in most mammalian species (5).
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Fig. 1. The olfactory system in the model.

Our bulb model contains interacting excitatory mitral and inhibitory granule
cells, with membrane potentials x; and y; respectively, and firing rates g,(x;)
and g, (y;) respectively (see (6) and (7) for details). The odortialsy
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where —ax; and —ay; model the decays to resting potentials, H?j > 0 and
W?j > 0 the synaptic connections from the granule to mitral cells and vice
versa, and vector I¢ (components If) the feedback signal from the cortex to
the granule cells. Slowly varying input I and I¢ adiabatically determine the
fixed or equilibrium point X and ¥ of the equations. Neural activities oscil-
lates around this equilibrium as x = & + Y cp Xpe @EHVMH0)  where X,
is an eigenvector of A = HW with eigenvalue \;, and H;; = H?jgg’/(gjj) and
Wij = Wiig,(Z;). Spontaneous oscillation occurs if Re(—a + iv/Ax) > 0; then
the fastest-growing mode, call it X;, dominates the output and the entire
bulb oscillates with a single frequency w; = Re(y/);), and the oscillation am-
plitudes and phases is approximately the complex vector X;. Thus, the bulb
encodes the input via the steps: (1) the input I determines (X,y), which in
turn (2) determines the matrix A, which then (3) determines whether the bulb
will give spontanous oscillatory outputs and, if it does, the oscillation pattern
X and frequency wy.

The mitral cell outputs g,(z;) are transformed to an effective input I? to
the excitatory (pyramidal) cells of the cortex by (1) a convergent-divergent
bulbar-cortex connection matrix and (2) an effective high-pass filtering via
feedforward interneurons in the cortex. Our cortical model is structurally sim-
ilar to that of the bulb. We focus only on the upper layer pyramidal cells and
feedback interneurons:

i = —aui— B9, (0:) + 55 Tgu(ug)+1F, 0 = —avi+70gu(w)+5; Wigu(u;),

where u, v, and W9 correspond to x, y, and WO for the bulb. JO is global
excitatory-to-excitatory connections, 5% and 7° are local synaptic couplings.

Carrying out the same kind of linearization around the fixed point (@, V) as
in the bulb, we obtain a system of driven coupled oscillators. With appro-
priate cell nonlinearities and overall scale of the synaptic connections, the
system does not oscillate spontaneously, nor does it respond much to random
or irrelevant inputs. However, the cortex will resonate vigorously when the
driving oscillatory force I’ matches one of intrinsic oscillatory modes g" in
frequency and patterns amplitudes and phases. These intrinsic modes g” for
p=1,2,...P, are memory items in an associative memory system (8; 9; 10),
and can be stored in the synapses J° and WO in a generalized Hebb-Hopfield
fashion

T — L(BW0 — aJl) = T3, €46 /gl (uy).

Fig. 2 shows that 3 odors A, B, and C all evoke bulbar oscillatory responses.
However only odor A and B are stored in the in the cortical synapses; hence



the cortical oscillatory responge o odor C is almost nonexistent.
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