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Abstract

We present a model of a coupled system of the olfactory bulb and cortex. Odor

inputs to the epithelium are transformed to oscillatory bulbar activities. The cor-

tex recognizes the odor by resonating to the bulbar oscillating pattern when the

amplitude and phase patterns from the bulb match an odor memory stored in the

intracortical synapses. We assume a cortical structure which transforms the odor

information in the oscillatory pattern to a slow DC feedback signal to the bulb.

This feedback suppresses the bulbar response to the pre-existing odor, allowing

subsequent odor objects to be segmented out for recognition.
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1 Introduction

There is a great deal of current interest in how neural systems, both arti�cial

and natural, can use top-down feedback to modulate input processing. Here

we propose a minimal model for an olfactory system in which feedback en-

ables it to perform an essential task { olfactory segmentation. Most olfactory

systems need to detect, recognize, and segment odor objects. Segmentation is

necessary because di�erent odors give overlapping activity patterns on odor

receptor neurons, of which there are hundreds of types (1), and each has a

broad spectrum of response to di�erent odor molecules (2). Di�erent odor

objects seldom enter the environment in the same sni� cycle, but they often

stay together in the environment afterwards. Humans usually can not identify
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_xi = ��xi �
P

j H
0

ijgy(yj) + Ii _yi = ��yj +
P

j W
0

ijgx(xj) + Ici ;

where ��xi and ��yi model the decays to resting potentials, H0

ij > 0 and

W
0

ij > 0 the synaptic connections from the granule to mitral cells and vice

versa, and vector Ic (components Ici ) the feedback signal from the cortex to

the granule cells. Slowly varying input I and Ic adiabatically determine the

�xed or equilibrium point �x and �y of the equations. Neural activities oscil-

lates around this equilibrium as x = �x +
P

k ckXke
��t�i(

p
�kt+�k), where Xk

is an eigenvector of A = HW with eigenvalue �k, and Hij = H0

ijg
0
y(�yj) and

Wij = W 0

ijg
0
x(�xj). Spontaneous oscillation occurs if Re(�� � i

p
�k) > 0; then

the fastest-growing mode, call it X1, dominates the output and the entire

bulb oscillates with a single frequency !1 � Re(
p
�1), and the oscillation am-

plitudes and phases is approximately the complex vector X1. Thus, the bulb

encodes the input via the steps: (1) the input I determines (�x; �y), which in

turn (2) determines the matrix A, which then (3) determines whether the bulb

will give spontanous oscillatory outputs and, if it does, the oscillation pattern

X1 and frequency !1.

The mitral cell outputs gx(xi) are transformed to an e�ective input Ibi to

the excitatory (pyramidal) cells of the cortex by (1) a convergent-divergent

bulbar-cortex connection matrix and (2) an e�ective high-pass �ltering via

feedforward interneurons in the cortex. Our cortical model is structurally sim-

ilar to that of the bulb. We focus only on the upper layer pyramidal cells and

feedback interneurons:

_ui = ��ui��0gv(vi)+
P

j J
0

ijgu(uj)+I
b
i ; _vi = ��vi+
0gu(ui)+

P
j
~W 0

ijgu(uj),

where u, v, and ~W
0 correspond to x, y, and W

0 for the bulb. J0 is global

excitatory-to-excitatory connections, �0 and 
0 are local synaptic couplings.

Carrying out the same kind of linearization around the �xed point (�u; �v) as

in the bulb, we obtain a system of driven coupled oscillators. With appro-

priate cell nonlinearities and overall scale of the synaptic connections, the

system does not oscillate spontaneously, nor does it respond much to random

or irrelevant inputs. However, the cortex will resonate vigorously when the

driving oscillatory force Ib matches one of intrinsic oscillatory modes ~�� in

frequency and patterns amplitudes and phases. These intrinsic modes ~�� for

� = 1; 2; :::P , are memory items in an associative memory system (8; 9; 10),

and can be stored in the synapses J0 and ~W
0 in a generalized Hebb-Hop�eld

fashion

J0

ij �
i

!
(� ~W 0

ij � �J0

ij) = J
P

� �
�
i �

��
j =g0u(�uj):

Fig. 2 shows that 3 odors A, B, and C all evoke bulbar oscillatory responses.

However only odor A and B are stored in the in the cortical synapses; hence
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the cortical oscillatory response to odor C is almost nonexistent.

C Bulbar
outputs

Cortical
outputs

B Bulbar
outputs

Cortical
outputs

ABulbar
outputs

Cortical
outputs

Fig. 2. A, B, C: bulbar and cortical oscillation patterns for odors A, B (stored) and

C (not stored) for 5 of the 50 mitral and cortical excitatory neurons in the model.

The cortex-to-bulb feedback is turned o� in the simulation for simplicity.

It was shown in(7)that a suitable DC feedback signal to suppresstheodor-speci�cactivity in the bulbisd I

c

= H

�1

�dI. Somehow ,this f e e d b a ck should

be constructed from the cortical outputs that c o ntains theodorinformation.

We do not know how this is done in cortical circuitry, so we treatthisp a r t

of the problem phenomenologically. First, we transform the AC signal i n the

pyramidal cell output gu(ui) to a slow DC like signal by thresholding gu(ui)

and then passing it through two successive v ery slow leaky integrators. One can

then easily construct a synaptic connection matrix to transform this signal to

the desired feedback signal for the odor input that evoked the cortical output

g

u

(u) in the past sni�s.

Feedback signal slowly builds up and the adaptation to odor A becomes e�ec-

tive at the second sni� (Fig. 3A), and the system responds to odor A+B at the

third sni� in a way as if only o d o r Bwere present (Fig. 3B), achieving odor

adaptation and segmentation consistent with human behavior. Quantitativeanalysis con�rms that the response to the segmented odor B in the third sni� is

about 98% similar to that of response to odor B alone. Simulations show that

odor adaptation eventually achieves an equilibrium level wheninsigni�cant

residual responses to background odors maintain a steady feedbacksignal. A

consequence of the model is olfactory cross-adaptation, when the background

odor A is suddenly removed and o d o r Bis presented.Thefeedbacksignal or

background adaptation to odor A persists for a while and signi�cantly distorts

(and suppresses) the response to, and thus the percept of, odor B (Fig. (3C)),

as observed psychophysically (3).
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C: Crossadapting B by A
Bulbar
outputs

Cortical
outputs

B: Segmenting B from A

Bulbar
outputs

Cortical
outputs

A:Adaptation to A

Bulbar
outputs

Cortical
outputs

Fig. 3.Whenthefeedbackisturnedon,bulbarandcorticaloscillationpatterns

for three successive sni�s. OnlyodorA ispresent in the�rsttwosni�s, odorBispresent atthe3rd sni�.A:responsetoodor Ain 2ndsni�,notethereductionin

response levels.B:response to odor B superposed on odor A in 3rd sni�, resembling

that to odor B alone.C:response to odor B at the 3rd sni� when odor A has been

withdrawn. Note the distortion in response.3DiscussionWe have augmented the bulbmodeldeveloped inearlierworkbyoneofus

(6; 7) with a model of the p yriform cortex and with feedforward and feedback

connections between it and the bulb. It is a minimal computational model for

how anolfactorysystemcandetect,recognizeand segmentodors. As faras

weknow, this is the simplestsystemconsistentwithanatomicalknowledge

that can perform these three tasks, all of which are fundamental for olfaction.Ourmodel doesnotdealwithothercomputational tasks,suchas hierachical

catagorization of odors(10).

The resonantassociativememoryrecognitionmechanismandtheslowfeed-

back to the granule (inhibitory) neurons of the bulb are essentialparts of our

model, but many of the details of the present treatment are not. For example,theslow feedbacksignal couldbeimplementedbymany othermechanisms,

but itmust beslow.Theseessentialfeaturesare necessary in order thatthemodel be consistent with the observed phenomenology of the olfactory system.

References

[1] L Buckand RAxel,Cell65(1) 175-187 (1991)

[2] G M S h e p h e r d , InOlfaction|Amodel system forcomputationalneu-

5



roscience Ed. J L Davis and H Eichenbaum, p 225-250. MIT Press

(1990).

[3] R W Moncrie�, The Chemical Senses, 3rd ed, CRC Press (1967).

[4] W J Freeman and W Schneider, Psychophysiology 19, 44-56 (1982)

[5] G M Shepherd, The synaptic organization of the brain Second Ed. 1979,

Third ed. 1990. Oxford University Press

[6] Z Li and J Hop�eld, Biol Cybern 61 379-392 (1989)

[7] Z Li, Biol Cybern 62 349-361 (1990)

[8] L B Haberly, Chem. Senses 10 219-238 (1985)

[9] M A Wilson and J D Bower, J Neurophysiol 67 981-995 (1992)

[10] J Ambros-Ingerson, R Granger and G Lynch, Science 247 1344-1348

(1990)

6


