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ABSTRACT I use a model to show how simple, bottom-up,
neural mechanisms in primary visual cortex can qualitatively
explain the preattentive component of complex psychophysi-
cal phenomena of visual search for a target among distracters.
Depending on the image features, the speed of search ranges
from fast, when a target pops-out or is instantaneously
detectable, to very slow, and it can be asymmetric with respect
to switches between the target and distracter objects. It has
been unclear which neural mechanisms or even cortical areas
control the ease of search, and no physiological correlate has
been found for search asymmetry. My model suggests that
contextual inf luences in V1 play a significant role.

Visual search is an important task associated with visual
segmentation, and phenomena such as pop out and asymme-
tries have been extensively studied (1–5). Examples of pop out
are that a red dot can be instantly spotted among a background
of green ones or a vertical line among horizontal ones. Not
everything pops out—a red ‘‘X’’ is much more difficult to spot
among green X’s and red ‘‘O’s’’, and locating it may require
attentive serial search (1, 4–6). An example of search asym-
metry is that a long line is easier to spot among shorter lines
than vice versa. Other typical target-distractor pairs manifest-
ing the asymmetry include tilted vs. vertical, curved vs. straight,
and convergent vs. parallel lines, incomplete vs. complete
circles, and ellipses vs. circles (3).

A leading psychophysical model (1, 3) of these phenomena
accounts for them by considering maps of basic feature
dimensions and their interactions. The basic feature dimen-
sions include primitive aspects of inputs such as orientation,
color, and brightness. A target is supposed to be instantly
detectable against a background provided that its value (or
feature) in one of these dimensions (e.g., being oriented
vertically or being red) is possessed by none of the distracters.
However, if a target is only distinguished from the background
by a conjunction of features (e.g., being red and an X, for a
target red X against a background of green X’s and red O’s),
and particularly by a conjunction of two orientations (6), then
it will be difficult to spot. This model has been extended to
account for search asymmetries by suggesting that, for some
features (such as line length or curvature), targets with larger
values (longer or more curved lines) are inherently more
detectable than targets with smaller values (shorter or more
straight lines) (3). For features without an obvious order, such
as closure vs. openness, the data on search asymmetries
themselves are used to decide which feature values are ‘‘larger’’
(more detectable) or ‘‘smaller’’ (less detectable).

The model is powerful, and various related and extended
models have been proposed to explain a whole continuum of
search efficiencies by combining parallel and serial search
(4–6). Further, a related model of pop out (2) assumes a set

of special features that constitute textons. In this paper, I
complement these models by proposing, using a model, that
intracortical interactions in V1 are a neural basis for the
preattentive component of the search phenomena. It has
already been suggested that suppression from similar stimuli
outside classical receptive fields contributes to pop out (7, 8),
and recently some striate cortical cells were observed to
respond more strongly to pop out feature stimuli than stimuli
of spatially uniform features (9, 10). My model aims to
determine the underlying cortical area for a whole spectrum of
difficulties of search for various input stimuli and will show that
both suppression and facilitation from the visual context play
roles. My model suggests rationales for what should count as
a feature dimension, why asymmetries have particular signs,
and why conjoining some features is more difficult than others.

I suggest that V1 influences the degrees of ease of search by
determining the saliencies of the visual stimuli in inputs. V1
neurons respond directly only to stimuli within their classical
receptive fields (CRFs). However, horizontal intracortical
connections have been observed to link V1 cells with nearby
CRFs (11, 12) and are suggested to be responsible for the
modulation of cells’ responses by contextual stimuli outside
(but near) their CRFs (7, 13–16). The contextual influences
can be suppressive or facilitative depending on the configura-
tion of the contextual stimuli (7, 15–17). I assume that pop out
occurs when the response to the target, which is determined by
target features as well as contextual features from distracters,
is significantly higher than the responses to distracters (which
also depend on both direct and contextual stimuli), making the
target relatively more salient and easier to spot. Asymmetry
arises because the effective contextual interactions are quite
different when the target and the distracter objects are
swapped. This straightforward idea accounts for a wide range
of visual search phenomena. Its realization in my model
depends on the complex neural dynamics in the intracortical
circuit; although the goal here is to understand the search
phenomena rather than the dynamics themselves.

The Model and Its Performance

The model is based on biological data and focuses on the part
of V1 responsible for contextual influences (Fig. 1B): layer 2–3
pyramidal cells, interneurons, and horizontal intracortical
connections (11, 14, 18). In the model, the centers of the CRFs
are uniformly distributed in space. The preferred orientations
of the cells at a given location span 180°. The pyramidal cells
and interneurons interact with each other locally (18). Images
are filtered by edge- or bar-like local CRFs to form the direct
input to the excitatory pyramidal cells. Based on experimental
data (11, 14), nearby pyramidal cells preferring similar orien-
tations influence each other via horizontal intracortical con-
nections. A pyramidal cell can excite another monosynaptically
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or can inhibit it disynaptically by projecting to the interneurons
that inhibit, and are close to, the target pyramidal cell. The

graded responses of the pyramidal cells model firing rates,
which are initially determined by the direct inputs within their
CRFs and then are quickly modulated by the contextual inputs
through the intracortical interactions. These cells report the
results of V1 processing, and their temporal averages are the
outputs of the model. The horizontal connections are con-
strained so that the model exhibits the contextual influences
observed physiologically (7, 15–17, 19). In particular, (i) the
response to a test bar in the CRF is suppressed significantly by
similarly oriented bars in the surround (iso-orientation sup-
pression) (7); (ii) the suppression is weaker or weakest, re-
spectively, when the surround bars are oriented randomly or
orthogonally to the test bar (7, 17); (iii) however, if the
surround bars are aligned with the test bar to form a smooth
contour, suppression becomes facilitation (15, 16); (iv) addi-
tionally, the responses to bars at or near texture borders are
higher than those to bars far inside texture regions (19). The
model interactions have not been made consistent with all
sources of data because of inconsistencies among the results of
experiments. For instance, with colinear surrounds, facilita-
tion is observed by some with a low contrast test bar (15, 16),
but suppression is observed by others on a test bar of high
contrast (7). Psychophysically, colinear facilitation occurs, and
smooth contours have higher saliencies than random back-
grounds, under both low and high input contrasts (20–22). My
model accommodates colinear facilitation at any contrast and
iso-orientation suppression in the same neural circuit. To
achieve this, two nearby and linked pyramidal cells (with
similar orientation preferences) predominantly excite each
other monosynaptically when CRFs are co-aligned and pre-
dominantly inhibit each other disynaptically otherwise. Both
excitation and inhibition spread no more than 10 CRF sizes.
For instance, the central vertical bar in the iso-orientation
stimulus of Fig. 2B receives colinear excitation from nearby
vertical bars roughly above and below it but disynaptic inhi-
bition from those roughly to its left and right. The synaptic
weights are such that the total inhibition on this bar over-
whelms the total excitation to achieve iso-orientation suppres-
sion. The neural interactions in the model, as conceptually
described above, can be summarized for the interested readers
by the equations (these details are not necessary for readers to
follow the operation of the model and the rest of the paper):

dxiuydt 5 2axxiu 2 gy~yiu! 2 O
DuÞ0

c~Du!gy~yi,u1Du! 1 Jogx~xiu!

1 O
jÞi,u9

Jiu, ju9gx~xju9! 1 Iiu 1 Io [1]

FIG. 1. The model. (A) An input of intermediate contrast to the
model. Each bar excites the principal model cells with the appropriate
preferred locations and orientations. (B) The local principal (pyra-
midal) cells and interneurons are roughly reciprocally connected. Each
pyramidal cell receives direct input from no more than one bar in the
input in A. The pyramidal cells interact with each other (monosyn-
aptically and disynaptically) via horizontal connections, and determine
C—the output of the model, with the target’s z score indicated. The
thicknesses of the bars are proportional to the temporal averages of
pyramidal outputs.

FIG. 2. Contextual influences on the center, vertical (target), bar. All visible bars have the same high input contrast except for the near and
super-threshold target bar in E, as in the physiological experiments (7, 15). (A) No contextual stimulus. (B–D) Contextual stimuli are bars oriented
parallel, orthogonal, or randomly to the target bar, respectively, as in physiological experiments (7). The ratio of the responses to the target bar
in A, B, C, and D is 0.98:0.23:0.74:0.41. (E) A simulation of the experiment in ref. 15. A low contrast (center) target bar is aligned with high contrast
contextual bars in a background of randomly oriented bars, leading to a response 70% higher than those to high contrast bars in B. All results are
sensitive to input contrast levels.
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dyiuydt 5 2 ayyiu 1 gx~xiu! 1 O
jÞi,u9

Wiu, ju9gx~xju9! 1 Ic [2]

where xiu and yiu model the pyramidal and interneuron mem-
brane potentials, respectively, indices i or j mark the centers of
the CRFs and u or u9 the preferred orientations, gx(x) and gy(y)
are sigmoid-like functions modeling cells’ firing rates or re-
sponses given membrane potentials x and y, 2axxiu and 2ayyiu

model the decay to resting potentials, c(Du) is the spread of
inhibition within a hypercolumn, Jogx(xiu) is self or local
excitation of the pyramidal cells, Jiu, ju9 is the monosynaptic
synaptic connection weight from pyramidal cell ju9 to pyrami-
dal cell iu, while Wiu, ju9 is the synaptic weight from pyramidal
cell ju9 to interneuron iu that inhibits the local pyramidal cell
iu (serving disynaptic inhibition from pyramidal ju9 to iu), Iiu

is the direct visual inputs to the CRF of pyramidal cell iu, and
Ic and Io are background inputs, including neural noise and
inputs modeling the general and local normalization of activ-
ities (23, 24).

In each input image (except for Fig. 2E), all of the visible bar
segments have the same (superthreshold) strength. Contextual
influences cause the ultimate responses of the cells to the bars
(shown as proportional to the thickness of the bars in the
figures) to differ. Each plot shows only a small part of a larger
input or output image. In Fig. 1, the greatest response is to the
horizontal bar in the cross because it escapes the iso-
orientation suppression that dampens the responses to the
vertical bars. This makes the cross pop out, assuming that the
saliency of an item (i.e., the cross) is determined by its most
salient feature (i.e., the bar). Let S be the pyramidal response
to the most salient bar in an image item or at an image location
and S and ss be the mean and standard deviation of S at all
locations of visible stimuli. I assess the relative saliency of an
item by two quantities r' SyS and z' (S 2 S)yss (although
it may be psychophysically incomplete). r can be directly
visualized in the thicknesses of the output bars in the figures
whereas z models the psychological z score. A highly salient
target should have large values (r . 1, z . 1), e.g. (r 5 2.4, z 5
7.1), in the above example (Fig. 1C). The saliency in the
background of an image is usually not uniform (i.e., ss . 0),
mainly because of the nonuniform density and alignment of the

background bars, as in Fig. 1 A, and because of the differences
among distracters.

A comparison of Fig. 3A and Fig. 1 A and C shows an
example of asymmetry: A bar among crosses is much less
salient than a cross among bars. This is consistent with
previous theories (1, 3): The horizontal bar in the target cross
is unique and so pops out, but the vertical target bar is not
unique and lacks a horizontal bar in the face of the distracters.
Fig. 3 B and C compares the target ‘}—’ in two different
contexts. Against a texture of ‘}u ’ it is highly salient because
of its unique horizontal bar. Against ‘}u ’ and ‘{—’ it is much less
salient because only the conjunction of ‘—’ and ‘}’ distin-
guishes it, as suggested by psychophysical models (5, 6), but
without an explicit representation in my model for conjunction
between the bars. Again, the bar whose orientation is not
matched in the surround experiences less iso-orientation sup-
pression.

When neither target nor distracters has a primitive feature
(e.g., a particular orientation) that is absent in the other, search
asymmetry is much weaker but still present. Many examples of
search asymmetries are also psychophysically weak (3, 25).
Usually, the phenomena can no longer be understood simply
by iso-orientation (or iso-feature) suppression alone. Local
colinear excitation and general (orientation nonspecific) sur-
round suppression also play roles. Fig. 4 shows that the model
can account for the signs of the typical examples of asymmetry
by using stimuli modeled after those in Treisman and Gormi-
can (3). The responses to different items differ only by small
fractions, i.e., r ' 1, and would be hard to visualize in a figure.
However, these fractions are significant for the more salient
targets when the background saliency (responses S) is homo-
geneous enough (i.e., ss small) to make z score large and the
search easier (note that z $ 3 makes a target more salient than
99% of all items in images). In Fig. 4A, colinear excitation
makes longer lines more salient than shorter ones. In Fig. 4B,
a pair of parallel bars is less salient because stronger suppres-
sion occurs between the two (iso-oriented) bars. In Fig. 4C, a
gap in a circle withdraws from the colinear facilitation as well
as the general and iso-orientation suppression between the
circle segments; apparently, the suppression is quantitatively
more reduced than the facilitation to make the gapped circle

FIG. 3. Inputs and outputs for examples of visual search, with the target’s relative saliency z score indicated under the outputs. All visible bars
have the same intermediate input contrast. (A) A vertical target bar among cross distracters is less salient than a target cross among bars in Fig.
1. The response S to the target is within the standard deviation from the average response S to all image items. (B) Target ‘}—’ among distracters
‘}u ’. The horizontal bar in the target is the most salient in the image, and its S is 150% higher than the average S of the image items. (C) Target
‘}—’ among distracters ‘}u ’ and ‘{—’ . The target is actually less salient than average in this example.
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more salient. In Fig. 4D, colinear excitation within and be-
tween image items is not so sensitive to a slight change in item
curvature, but iso-orientation suppression is stronger in a
background of straight (than curved) lines to make a curved
target more salient. In Fig. 4E, interaction between circles (via
the circle segments) depends only on the circle–circle distance,
whereas interaction between ellipses depends additionally on
another random factor—the orientation of the ellipse–ellipse
displacement. Hence, noisier cortical responses (larger ss) are
evoked from a background of ellipses (than circles), submerg-
ing responses (reducing z) from a target circle. It is hard to
directly compare the z score in my model with the reaction time
in the experiments (3) (see Discussion), and the strengths of
asymmetry are sensitive to stimulus parameters in the model
and experiments. The model exhibits strongest asymmetries
for closed vs. open circles and circle vs. ellipse pairs among the
five examples, comparable with the order of strengths of the
asymmetries in the experiment (3); however, the asymmetry
between straight vs. curved lines is perhaps weaker in the
model than human vision. In human vision, search for an open
circle among closed circle distracters is almost parallel and
insensitive to the size of the gap in the open circle up to half
of the circumference (3), suggesting the importance of line
ends or terminators for preattentive vision. Although my
model does not explicitly use a terminator feature, it exhibits
the same insensitivity with z scores of z 5 9.7, 8.7, 7.5.. 1 for
gap sizes of 1y6 (Fig. 4C), 1y3, and 1y2 of the circumference,
respectively. However, the asymmetry between open and
closed circles disappears for a large gap size of 1y2 of the
circumference in human vision (3), but not in my model,
leaving open the mechanism for and significance of closure or
curve length in saliency. Because the model is rotationally
invariant (so no single orientation is treated specially), it
cannot explain why a line slightly tilted from vertical pops out
more readily from vertical line distracters than vice versa. Of
course, neither our visual environment nor our visual system
is in fact rotationally invariant.

Discussion

My model suggests that V1 responses directly report the
saliencies of input stimuli that control visual search and that
contextual influences in V1 make these saliencies reflect the
distinctiveness of targets against backgrounds in a way that is

consistent with the experimental data on preattentive visual
search. By using a stripped-down model, I have isolated
intracortical interactions as the primary neural basis within V1
for some qualitative aspects of visual search: pop out and its
feature dependence, and the existence and the directions of
search asymmetries. The horizontal interactions in my model,
in particular, the synaptic weights of the connections, are
constrained by anatomical and physiological data and are not
the results of fitting the visual search data. That the model can
nevertheless qualitatively account for many of the psychophys-
ical observations further supports the proposal of this paper.
My model suggests a neural basis for the preattentive compo-
nent of the search phenomena only. The search ultimately
requires decision making and often visual attention or top-
down control (especially when the subject knows the target
identity), and many attentive and quantitative aspects, e.g.,
conjunction detections and search times, cannot be modeled in
my model without assumptions about these additional, prob-
ably extrastriate, mechanisms. Note that I model the depen-
dence of saliencies on input features and configurations rather
than how a saliency map directs attention shifts (26).

The model suggests that the unique features and the prim-
itive feature dimensions in existing psychophysical models
might find their basis in the intracortical interactions as well as
the visual representations (by the CRFs) in V1. For the
example of the feature of orientation, the intracortical con-
nections tend to link cells preferring similar orientations (11,
12). A target bar can be viewed as having a unique orientation
(feature) if the V1 cell most responsive to the bar does not have
substantial intracortical connections from the cells responding
to the background bars that are oriented homogeneously but
differently enough from the target bar. In other words, the
selectivity of the intracortical connections to the preferred
orientations of the linked cells implies that orientation is a
basic feature dimension, and the orientation tuning width of
these connections determines through cortical dynamics the
minimum orientation difference [the preattentive just notice-
able difference (27)] necessary for a bar to pop out as a unique
feature in the orientation dimension by escaping the iso-
orientation suppression from the background. The same thing
should apply for other basic feature dimensions, such as color,
stereo, motion speed, and spatial frequency, as supported by
physiological evidence (14, 28) that intracortical connections
tend to link neurons with similar selectivities in these dimen-

FIG. 4. Five typical examples of visual search asymmetry as simulated in the model (arranged in columns). The input stimuli are plotted, and
the target saliency z scores are indicated below each of them. All input bars are of the same intermediate input contrast. The role of figure and
ground is switched from the top to the bottom rows.
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sions as well. Hence, an image item could pop out when it is
unique in these dimensions, and iso-feature (e.g., iso-disparity)
suppression could reduce the saliencies of the background
when the background features (e.g., depth) are homogeneous.
Consider the implication of my argument on conjunctions
between feature dimensions: say, motion and orientation. If
the intracortical connections link two cells only when they
prefer similar feature values in both, rather than one, of the
dimensions, a conjunction of motion and orientation (coded by
one V1 cell) should be easier to spot (29) than a conjunction
of two orientations (5, 6), e.g., in Fig. 3C (coded by two, rather
than one, V1 cells). In addition, many of the smaller versus
larger feature values (e.g., short vs. long lines, closed vs. open
circles), as proposed by the existing models to account for
search asymmetries (3), could find their origins in V1 as
generated from the basic (orientation) features via the com-
plex interplay between suppressive and facilitative contextual
influences.

My model also suggests that, because of the contextual
influences, saliencies depend on the image configuration as a
whole. Hence, the ease of search and the direction of the
asymmetry depend on the densities and positions of image
items, the similarity between target and distracter (which is
inversely correlated with r), and the heterogeneity amongst the
distracters (correlated with ss), as observed in psychophysical
studies (4). The ease of search may not hold for every stimulus
configuration for a given target-distracter pair, but only on
average over some set of configurations. To understand why
contextual influences and search phenomena should be re-
lated, I have suggested (24, 30) that contextual influences serve
preattentive visual segmentation by highlighting important or
conspicuous image locations, e.g., smooth contours and
boundaries between luminance or texture regions (15, 19), as
demonstrated in this model and shown by examples in Fig. 5.
Consequently, distinctive small figures pop out because they
are the boundaries of themselves from the background; the
search asymmetries manifest further the subtleties of the
underlying computational mechanism.

Many models of contextual influences and intracortical
interactions exist, some focusing on the underlying neural
circuits (e.g., ref. 31), and others on visual feature or contour
linkings by intracortical interactions (e.g., refs. 32–34). Be-
cause most models omit search phenomena, I provide detailed
comparisons between models elsewhere (23). Sagi’s two-stage
model (35), spatial filtering followed by nonlinearity and local
surround inhibition, was applied (36) to explain search asym-
metry data by (25). The second stage can be seen as a
phenomenological model of the cortical contextual suppres-
sion. The authors’ idea that random background textural
variabilities act as noise to limit search performance (36) is
related to the high saliency variance ss in my model to reduce
the z score. However, without a detailed model of the con-
textual interactions, it is harder for that model to account for
asymmetry when the distracter background has little (e.g.,
orientation) variability. More recently, Sagi and collaborators
modeled a detailed cortical circuit for contextual influences,
although it is for lateral masking detection tasks (37).

Because of its low density in input sampling and its current
omission of color, motion, or stereo inputs and multiscale
sampling, my model cannot yet generate spatially precise
stimuli, such as ellipses and circles of exactly the same size, nor
can it yet simulate many of the more complex stimuli used in
psychophysical experiments (1, 3–5, 25). Nevertheless, its
facility at providing a single neural basis for a host of search
phenomena establishes V1 as the likely site of preattentive
search and an important target for future investigation. An
extended implementation is needed to explore the potential
and limits of V1 mechanisms to mediate visual search. For
instance, one could test whether V1 mechanisms can explain
pop out by uniqueness in seemingly high level or scene based

properties like directions of lighting or shading (38, 39) and
whether a continuum of search efficiencies arises when a target
is defined by conjunctions such as color-and-orientation, dis-
parity-and-color, and motion-and-orientation-and-disparity,
as suggested by experimental observations (5, 6, 29, 40).
Through computational modeling, the psychophysical data on
the search efficiencies in various inter- and intradimensional
stimulus conditions constrain the underlying intracortical con-
nections, as hinted by the discussion earlier. In particular, they
should generate predictions on the selectivities of the connec-
tions to the preferred color, disparity, motion, and spatial
frequencies of the linked cells, on which experimental data are
still scanty.

I thank Peter Dayan, Geoff Hinton, Nancy Kanwisher, Earl Miller,
Bart Anderson, and the two reviewers for comments on various

FIG. 5. Three examples of how the model operates as a saliency
network to highlight important or conspicuous locations in the im-
age—smooth contours against background noise, or boundaries be-
tween simple or more complex texture regions.
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versions of the manuscript, and Peter Dayan for many helpful con-
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