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Abstract

The recurrent neural interaction in the primary visual cortex makes its out-
puts complex nonlinear functions of its inputs. This nonlinear transform
serves the role of pre-attentive visual segmentation, i.e., the autonomous
transformation from visual inputs to processed outputs that selectively em-
phasize certain features (e.g., pop-out features) for segmentation. Under-
standing the nonlinear dynamics of the neural circuit is a key to appreciating
the cortical computational potential and tasks. However, the complex non-
linear dynamics of recurrent networks makes it extremely difficult to build
a well-behaved and computationally functional model of the cortex merely
by simulation trials. This paper describes an analytical study of the recur-
rent neural dynamics. We derive requirements on the neural architecture,
components, and connection weights of a biologically plausible model of the
cortex to achieve simultaneously different components of pre-attentive seg-
mentation: region segmentation, figure-ground segregation, and contour en-
hancement. In addition, we analysis conditions for behaviors such as neural
oscillations, illusory contours, and visual halluciations. Many of our analyt-
ical techniques can be applied to other recurrent networks with translation
invariant neural and connection structures.



Computational design and nonlinear dynamics of recurrent
network models of the primary visual cortex

Zhaoping Li
Gatsby Unit

1 Introduction

Recurrent neural dynamics is a basic computational substrate for cortical processing. The pri-
mary visual cortex is an example where recurrent dynamics is enabled by intra-cortical finite
range lateral connections between neurons. The cortical input is the retinal image filtered
through the cortical receptive fields (RFs) shaped like small edges or bars and retinotopical-
ly distributed in the visual space. The cortical outputs given the inputs are the cell activities
or outputs under the recurrent interactions. In isolation, this cortical network can be seen
as an autonomous system that transforms (nonlinearly) any cortical inputs to a different or
processed output, namely the responses of the neurons to the input. Two immediate charac-
teristics of this transform follow. First, if we focuse on cases when top-down feedback from
higher visual areas does not change during the course of the transform, the primary cortical
computation is autonomous, suggesting that the computation concerned is pre-attentive in
nature. In other words, we consider cases when feedback from higher visual areas is purely
passive and its role is merely to set a background or operating point for V1 computation. This
enables us to isolate the recurrent dynamics in V1 for thorough study. Of course, more ex-
tensive computation can doubtlessly be performed when V1 interacts dynamically with other
visual areas, however, this is beyond the scope of this paper. Second, the recurrent dynamics
enables a global scale computation to occur as, despite the local connectivities, the output of a
V1 cell depends non-locally on its inputs in a way that it is hard to achieve in non-recurrent
networks with only local connections.

Understanding the neural dynamics by computational modeling is essential to under-
standing the underlying signal transformations and thus the computational power. In this
paper, we do not deal in depth with neural properties and behaviors (e.g., tuning properties
of single units) that are not as directly concerned with global scale visual computation. Phys-
iological and psychophysical data suggest that the pre-attentive computation in the primary
cortex includes tasks such as contour enhancement, texture segmentation, and figure-ground
segregation (Kapadia, Ito, Gilbert, and Westheimer1995, Gallant, Nothdurft, van Essen 1995,
Knierim and van Essen 1992). To achieve these tasks, V1 functions as a saliency circuit to give
higher responses to locations of higher saliencies in inputs, such as borders between texture
regions, pop-out figures against backgrounds, and smooth contours (Li 1998, 1999a, 1999c).
This saliency computation serves the purpose of pre-attentive segmentation. It is known to
be a very difficult computation, especially considering that the same cortical circuit needs
to achieve both contour enhancement and region or figure/ground segmentations, and that
there is still no known general solution to segmentation after decades of research in machine
and natural visual algorithms. There have been various models of the cortex which aim to

y I am very grateful to Peter Dayan for conversations and discussions, and his very helpful comments on the
drafts of this paper. A preliminary version of this paper is published as “Neural dynamics in a recurrent network
model of primary visual cortex” in Proceedings of ICANN99.
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model particular components of the cortical computation, such as contour enhancement, i.e.,
relatively higher neural activities for cells receiving inputs arising from bars belonging to s-
mooth contours (Grossberg and Mingolla 1985, Zucker, Dobbins, Iverson 1989, Yen and Finkel
1996). It is already very hard merely to successfully model the contour enhancement task in
the cortex (Li 1998). Until recently, no models of the primary visual cortex are successful in
capturing in a single model both the contour enhancement and texture segmentation compo-
nents in the pre-attentive computation. In this paper, we describe the analytical study of the
nonlinear recurrent dynamics to enable computational design of the recurrent network model
to simultaneously achieve these components of the primary cortical computation.

Different neural circuits in different cortical areas share many common properties of neural
connections, elementary operations, and the canonical microcircuit (Shepherd 1990). Some of
our analytical techniques, e.g., the analysis of the cortical microcircuit, can be applied to other
models of recurrent networks. It will be clear that much of our analysis relies on the fact
that the primary visual cortex is a translation invariant system in the sense that the neural
properties and connection patterns do not depend very much on the location of the neurons
in the cortex. Many of our analytical techniques can be applied to other recurrent networks
with translation invariant properties.

2 A minimal model of the primary visual cortex

In this section we introduce a model of the neural circuit in the cortex. Throughout the paper,
when discussing general characteristics of the recurrent dynamics, we try to keep our analy-
sis general. However, specific model details are needed to demonstrate particular analytical
results or to illustrate some approximation and simplification techniques. For this, we use the
model of V1 whose specifics and numerical parameters are available (Li 1998, 1999a), so that
the readers can try out our simulations.

A minimal model of the cortex is the one which has enough components for necessary com-
putations but not the excess details which are not essential for the computations concerned.
It is essentially a subjective matter as to what a minimal model is, since there is no recipe for
a minimalist design. However, we present, as a candidate, a model that instantiates all the
desired computation, but for which simplified versions fail.

We adopt a level of description for which a model neuron is described by its membrane
potential x and its firing rate gx(x), which is a sigmoid-like function of x. In the model, visual
cortical cells have their orientative selective receptive fields, which are arranged on a regular
2-dimensional array in image coordinates, indexed by i = (mi; ni) where mi and ni are the
horizontal and vertical coordinates. At each array point i, there is a group of cells, one each
for K preferred orientations � = k�=K for k = 0; 1; :::;K � 1 spanning 180o. Cell i� has its RF
located at i and preference for orientation �. We further simplify matters by focusing only on
the cells in layer 2-3 in the cortex, which are mainly responsible for the recurrent dynamics.
Let the external visual inputs to cell i� be Ii�. This is the result of processing the visual image
through the RF of the cell. The responses gx(xi�) from the cells are the results of both the
external input Ii� and the recurrent interaction in the neural circuit.

The desired computation fIi�g ! fgx(xi�)g is to give higher responses gx(xi�) to input bars
i� of higher perceptual saliency. For instance, if a visual image consists of a collection of bars
fi�g and all of them have the same input strength fIi�g, the responses fgx(xi�)g to them can
have different strength gx(xi�) for different bars — they should be relatively higher (compared
to responses to other bars in the image) if the bars i� are part of isolated smooth contours, or
are at boundaries of texture regions, or are targets against backgrounds. For a well behaved
model, this computation requires that, if the input bars are of the same saliency, e.g., when the
input consists merely of bars of the same contrast from a homogeneous texture without any
boundary, the output level to every bar should be the same.
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2.1 A less-than-minimal recurrent model of V1

A very simple recurrent dynamic model of the cortex can be described by equation:

_xi� = ��xxi� +
X
j�0

Ti�;j�0gx(xj�0) + Ii� + Io (1)

where��xxi� model the decay in membrane potential, and Io is the background input. This is
a recurrent network with units xi� , inputs Ii�, outputs gx(xi�), and recurrent connections Ti�;j�0

linking cells i� and j�
0. Visual input Ii� persists after onset, and initializes the activity levels

gx(xi�). The activities are then modified by the network interaction, making gx(xi�) depen-
dent on input Ij�0 for (j�0) 6= (i�). The computation is defined by the input-output transform
fIi�g ! fgx(xi�)g, which, in turn, is determined by the neural connections. Translation invari-
ance in the connections means that Ti�;j�0 depends only on the vector i� j and relative angles
of this vector to the orientations � and � 0. For visual computations, mirror symmetry is expect-
ed, hence, the connections are symmetric, Ti�;j�0 = Tj�0;i�. One might also wish to distinguish
interactions within a hypercolumn, i.e., i = j, from interactions between non-overlapping re-
ceptive fields, i.e., i 6= j, so Ti�;j�0 could be characterized by two subsets Ti�;i�0 and Ti�;j�0 for
j 6= i.

Many previous models of the primary visual cortex (e.g., Grossberg and Mingolla 1985,
Zucker, Dobbins, Iverson 1989, Braun, Niebur, Schuster, and Koch 1994) can be seen as more
complex versions of the one described above. The added complexities in these models include
stronger nonlinearities, global normalization (e.g., by adding a global normalizing input to
the background Io), and shunting inhibition. However, they are all characterized by reciprocal
or symmetric interactions between model units. It is well known (Hopfield 1984) that in a
symmetric recurrent network as in equation (1), given any stationary input Ii�, the dynamic
trajectory xi�(t) will converge in time t to a fixed point which is a local minimum (attractor) in
an energy landscape

E(fxi�g) = �
1

2

X
i�;j�0

Ti�;j�0gx(xi�)gx(xj�0)�
X
i�

Ii�gx(xi�) + �x

X
i�

Z
gx(xi�)

0
g
�1
x (x)dx (2)

Empirically, this convergence behavior to attractors still holds when the network is a modified
or distorted (e.g., imperfect symmetry in neural connections) version of that in equation (1).

The energy landscape is sculpted by the intrinsic connections Ti�;j�0 while the external
inputs Ii� shift the locations of the local minima. The energy minimum state (the fixed point)
�xi� where @E=@gx(xi�) = 0 for all i� is (when Io = 0)

�xi� = (Ii� +
X
j�0

Ti�;j�0gx(�xj�0))=�x (3)

Without recurrent interactions (T = 0), this minimum �xi� = Ii�=�x is exactly a scaled and
faithful copy of the visual input Ii�. However, when the interaction T is strong enough, the
recurrent interaction term � 1

2

P
i�;j�0 Ti�;j�0gx(xi�)gx(xj�0) pulls the energy minimum state to-

wards ones that are shaped by T and are unfaithful to the input. This happens when T is so
strong that one of the eigenvalues �T of the matrix T with elements Ti�;j�0 � Ti�;j�0g

0
x
(�xj�0)

satisfies �T > �x (here g0
x

is the gain in the sigmoid function gx(:)). For instance, when the
input Ii� is homogeneous or translation invariant such that Ii� = Ij� for all i = j, a strong in-
teractions T could pull the state into an attractor in the direction of an eigenvector of Twhich
is not translation invariant, i.e., xi� 6= xj� for i 6= j. Computationally, the input unfaithfullness,
i.e., gx(xi�) 6/ Ii�, is desirable to a limited degree since this is how a saliency circuit produces
differential outputs (saliencies) gx(xi�) to input bars of different saliencies even if they have
the same input strength Ii�. However, this unfaithfulness should be controlled and driven
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by the nature, in particular, the spatial configuration, of the input pattern fIi�g (e.g., the s-
mooth contours or figures against a background) or the nature of deviations of input pattern
fIi�g from homogeneity or homogeneous saliency. However, it is computational undesirable
to have spontaneous or non-input-driven network behavior, such as inhomogeneous outputs
to homogenous texture inputs, since this would lead to visual hallucinations (Ermentrout and
Cowan 1979).

To illustrate, consider an example when the interactions T only link cells that prefer the
same orientation, i.e., Ti�;j�0 = 0 when � 6= �

0. This is an idealization from experimental indica-
tions (Gilbert and Wiesel 1983, Rockland and Lund 1983) that cortical lateral interactions tend
of link cells prefering similar orientations. In this idealization, the network can be seen as mul-
tiple subnetworks each for a particular orientation �with no interaction between subnetworks.
Let us take just one of the subnetworks, and for convenience we will drop the subindex for its
angle �. Consider a very simple interaction Tij between i and j to be local and center-surround
in shape, i.e., self excitation and nearest neighbor inhibition, such that

Tij /

8><
>:

1 if i = j

�1 if i and j are nearest neighbors.
0 otherwise

(4)

For instance, in a Manhattan grid i = (mi; ni), the nearest neighbors of i are (mi � 1; ni) and
(mi; ni � 1). With strong enough T , the network under constant and uniform external input
can settle into an “antiferromagnetic” state for which neighboring units xi exhibit one of the
two different activities, e.g., xi is high when mi + ni is even and xi is low otherwise. This
energy minimum state pattern fxig is just a spatial array of replicas of the center-surround
local interaction pattern T .

Consider another example, again in an idealization of a subnetwork of a single orientation,
say vertical bars (� = 0). Now we consider the interaction Tij that depends on the orientation
of i � j and is no longer rotationally invariant. The rotational invariance comes from both
experimental indications and theoretical suggestions (e.g., Kapadia et al 1995, Polat and Sagi
1993, Field, Hayes, and Hess 1993) that i and j excite each other (Tij > 0) when the two bars
are co-aligned and inhibit each other when they are not co-aligned. (This also holds for cells
tuned to similar, but not exactly the same, orientations, see Fig. (2B), and such interaction
pattern has been called association field (Field et al 1993)). For vertical bars � = 0, Tij takes
the shape like that in Fig (1), Tij > 0 between local and roughly vertically displaced i and j

and Tij < 0 between local and more horizontally displaced i and j. When such interactions
are strong enough, the network is likely to settle into states consisting of stripy patterns (like
finger-print or ocular dominance patterns) for which the orientation of the stripes is parallel
to the associative interaction pattern T and the thicknesses of the stripes and the distances
between neighboring stripes are approximately the spatial range or scale in T . Fig (1) shows a
simple example when we look at an isolated subnet for � = 0, i.e., a network of units prefer-
ring vertical orientation. Although the system enhances an input (vertical) line relative to the
isolated (short) bar, it also hallucinates other vertical lines under noisy inputs.

The competition between internal interactions T and the external inputs I to shape the
network state is uncompromising in such recurrent models. When the computation requires
strong enough interaction T , for instance, to enhance contours and lines in inputs against
background input noise using the associative field interaction pattern, the network is prone to
“see” contours and lines (the stripes mentioned above) even when the input I suggests no lines
to human eyes. This is called spontaneous pattern formation. To avoid this hallucination, the
model has to weaken its capability to enhance contours. The computational capability of the
network could be accessed by the maximum contour enhancement capability of the network
without hallucination. Mathematical analysis (Li and Dayan 1999) shows that this symmetric
network model of the cortex has a much reduced or insufficient computational capability than
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Figure 1: A submodel example describing a network of symmetrically connected cells tuned
to vertical orientation (� = 0). Shown here are 5 gray scale images, each has a scale bar on
the right. The network has 100x100 cells arranged in a 2-d array, with wrap around boundary
condition. Each cell models a cortical cell tuned to vertical orientation, in a retinotopic manner.
The sigmoid function gx(x) of the cells is gx(x) = 0 when x < 1, gx(x) = x� 1 when 1 � x < 2,
and gx(x) = 1 when x > 2. The top image shows the connection pattern between the center cell
to other cells. This pattern is local and translation invariant, it gives local colinear excitation
between cells vertically displaced, but local inhibition between cells horizontally displaced.
Middle left: 2-d input pattern I , an input line and a noise spot. Middle right: 2-d output
pattern gx(x) to the input at middle left — the line induces a response that is � 100% higher
than the noise spot. Bottom left: 2-d input pattern I for noise input. Bottom right: 2-d output
pattern gx(x) to the noisy input — hallucination of vertical streaks.

that of a more realistic model with an additional complexity which will be introduced below.
In other words, although symmetric recurrent networks are useful for associative memory
computations, for which correcting significant input errors or filling-in extensively missing
inputs is exactly what is needed, such an input distortion is too strong for early visual tasks
where greater faithfulness to visual input is required.
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A property of this translation invariant recurrent network is that, in the continuous limit,
different attractors (the energy minima) are connected. Given a translation invariant input Ii�
such that Ii� = Ij� for all i 6= j, if state fxi�g is an attractor, so is a spatially translated state
fx0

i�
g such that x0

i�
= xi+a;� for any spatial translation a — one can easily varify that fxi�g

and fx0
i�
g have the same energy value E. Hence, if the network hallucinates a stripe pattern

or a spotted pattern (as in the “antiferromagnetic” case) under translation invariant input, the
absolute (but not relative) positions of the spots and the stripes are random and can be shifted.
When the translation happens over one dimension, such a continuum of attractors has been
called “line attractor” (Zhang 1996). For two dimensional images, the continuum is a “surface
attractor”.

2.2 A minimal recurrent model with hidden units

The recurrent model above is apparently too impoverished to capture cortical computations.
We need to add into the model the right neural elements or mechanisms to make the model
computationally sufficient. The major weakness of the symmetrically connected model is the
attractor dynamics which strongly attract the network state fxi�g away from the ones guid-
ed by the visual input fIi�g. Such attractor dynamics can not be removed by introducing
ion channels or spiking neurons (rather than firing rate neurons), for instance, because the
attractor behavior is largely dictated by the symmetric neural connections. For the same rea-
son, mechanisms such as shunting inhibition, global activity normalization, and input gating
(Grossberg and Mingolla 1985, Zucker et al 1989, Braun et al 1994), which are used by many
models despite their questionable biological foundations, also do not directly change the at-
tractor dynamics. Attractor dynamics are untenable, however, in the face of the well estab-
lished fact, called Dale’s law, that a real neuron is either exclusively excitatory or exclusively
inhibitory. Since it is impossible to have symmetric connections between excitatory and in-
hibitory neurons, a recurrent network with interactions between these two types of neurons
will in general no longer support attractor dynamics. Thus we model the principal neurons
xi� as exclusively excitatory pyramidal cells, and introduce inhibitory interneurons to mediate
indirect, or disynaptic, inhibition between them, as in the real cortex (White 1989, Gilbert 1992,
Rocklandand Lund 1983). The simplest step is to introduce one inhibitory interneuron y i� for
each excitatory principal unit xi�, and to connect each pair reciprocally. The principal units xi�
still receive inputs Ii� and send cortical outputs. The inhibitory units yi� are treated as hidden
units in this recurrent network. The model is now described by equations:

_xi� = ��xxi� � gy(yi;�) + Jogx(xi�)�
X
�� 6=0

 (��)gy(yi;�+��)

+
X
j 6=i;�0

Ji�;j�0gx(xj�0) + Ii� + Io (5)

_yi� = ��yyi� + gx(xi�) +
X
j 6=i;�0

Wi�;j�0gx(xj�0) + Ic (6)

where �y and gy(y) model the inhibitory interneuron yi� which inhibits its partner xi�. The
longer range connections Ti�;j�0 (between cells in different hypercolumns i 6= j) are now sep-
arated into two terms: (1) monosynaptic excitation Ji�;j�0 � 0 between xi� and xj�0 and (2)
the disynaptic inhibition Wi�;j�0 � 0 between xi� and xj�0 via the interneuron yi�. Includ-
ing both the monosynaptic and disynaptic pathways, the net interaction between x i� and xj�0

(e.g., whether it is facilitation or inhibition) is determined by the combined action of Ji�;j�0

and Wi�;j�0 . In stationary (but not in dynamic) states, the net effective connection between x i�
and xj�0 is, for example, Ji�;j�0 �Wi�;j�0=�y if gy(y) = y. The term  (��) � 1 represents the
local inhibitory connection at location i, and Jogx(xi�) represents self excitation. Both  (��)

and Jo are merely explicit extensiations of the original interaction Ti�;i�0 between units within
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a hypercolumn. Fig. (2C) schematically shows an example of the network. Ic and Io are back-
ground inputs, including neural noise, feedback from higher centers, and inputs modeling the
general and local normalization of activities (Li 1998) (which are omitted in the analysis in this
paper, though are present in the simulations).

Because each cell has a finite orientation tuning width, an edge of input strength Îi� at i
with orientation � in the input image contributes to Ii� (for � � �) by an amount Îi��(� � �),
where �(� � �) is the orientation tuning curve. In V1, J and W tend to link cells preferring
similar orientation � � �

0 (Gilbert 1992, Rockland and Lund 1983). To implement the inter-
action resembling the association field, the J connections should be dominant between units
preferring co-aligned bars (� � �

0 � 6 (i�j)), while theW connections should be dominant be-
tween units preferring non-aligned ones (Fig. (2B), Zucker et al 1989, Field et al 1993, Li 1998,
1999a). A simplest model of this interaction is to set J > 0 and W = 0 for mutual excitation
and J = 0 and W > 0 for mutual inhibition, as in the model of Li (1998, 1999a). We will call
such a connection pattern as in Fig. (2B) a bow-tie pattern due to the spatial arrangement of
the J and W connections. However, having both Ji�;j�0 > 0 and Wi�;j�0 > 0 between two linked
cells (as is the case in physiology, Hirsch and Gilbert 1991) and letting the ratio Ji�;j�0 : Wi�;j�0

determine the overall sign of interaction gives extra computational flexibility.
A model with the extra complexity of Dale’s law has been demonstrated to be able to

capture the desired computations (Li 1999a). In this paper, we analyse recurrent dynamics in
this minimal model of the cortex. We typically use the bow-tie connection (in Fig. (2B)) for
examples.

3 Dynamic analysis

The model state can be characterized by fxi�; yi�g, or simply fxi�g if one ignores the hidden u-
nits fyi�g. Interaction between excitatory and inhibitory cells makes the network states fx i�(t)g
(as a function of time t) intrinsically oscillatory, and, given an input fIi�g, the model does not
guarantee attractor dynamics converging to a fixed point where _xi� = _yi� = 0. However, the
model output after the initial transient following an input can be well defined by the temporal
average f�xi�g of the network state fxi�(t)g if the state oscillates periodically in time or con-
verges to a fixed point. A stationary state fxi�(t!1)g = f�xi�g is itself a fixed point, while an
oscillatory state fxi�(t ! 1)g oscillates around a fixed point which can often be approximat-
ed by the temporal average f�xi�g. We will henceforth simply use the notation f�xi�g to denote
both the fixed point and the temporal average. When the model is well behaved, there will be
no spontaneous formation of network state f�xi�g that is not input driven. Then the compu-
tational performance of the model can be analyzed by studying the behavior of fgx(�xi�)g, as
we will do in sections 3.1-3.6. In section 3.7, we will study stability and dynamics around the
fixed point f�xi�g, to ensure that the model is well behaved, unlike the model with symmetri-
cally connected units. This ensures that the behavior of fgx(�xi�)g we study in section 3.1-3.6 is
a valid description of the model computation.

3.1 A single pair of neurons

Ignoring the recurrent interactions between different neural pairs, a single pair i� follows e-
quations

_x = �x� gy(y) + Jogx(x) + I (7)

_y = �y + gx(x) + Ic (8)

where, for simplicity, we take �x = �y = 1 (as in the rest of the paper), omit indices i�, and
denote I = Ii� + Io. The fixed point (�x; �y) (where _x = _y = 0) under input (I; Ic) has the
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Figure 2: A schematic of the minimal model of the primary visual cortex. A: Visual inputs are
sampled in a discrete grid by edge/bar detectors, modeling RFs for V1 layer 2-3 cells. Each
grid point has K neuron pairs (see C), one per bar segment. All cells at a grid point share
the same RF center, but are tuned to different orientations spanning 180o, thus modeling a
hypercolumn. A bar segment in one hypercolumn can interact with another in a different
hypercolumn via monosynaptic excitation J (the solid arrow from one thick bar to another),
and/or disynaptic inhibition W (the dashed arrow to a thick dashed bar). See also C. B: A
schematic of the neural connection pattern from the center (thick solid) bar to neighboring
bars within a finite distance (a few RF sizes). J ’s contacts are shown by thin solid bars. W ’s
are shown by thin dashed bars. All bars have the same connection pattern, suitably translated
and rotated from this one. C: An input bar segment is associated with an interconnected pair
of excitatory and inhibitory cells, each model cell models abstractly a local group of cells of the
same type. The excitatory cell receives visual input and sends output gx(xi�) to higher centers.
The inhibitory cell is an interneuron. The visual space has toroidal (wrap-around) boundary
conditions.

input-output (I; Ic ! gx(�x)) gain

Ægx(�x)

ÆI
=

g
0
x(�x)

1 + g0y(�y)g
0
x(�x)� Jog

0
x(�x)

;
Ægx(�x)

ÆIc
= �g0

y
(�y)

Ægx(�x)

ÆI
(9)

Ægx(�x)
ÆI

increases with g0
x
(�x) but decreases with g0

y
(�y). We only consider cases for which Ægx(�x)=ÆI �

0 (otherwise, the pyramidal cell would fire vigorously even with zero input I). The input-
output function I ! gx(�x) depends on Ic — Fig. (3 A,B,C) presents an example for which
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both gx(x) and gy(y) are piece-wise linear functions. The behavior of threshold, input gain
control, and saturation are apparent. When this neural pair receives contextual inputs from
other pairs j�0 6= i� via connections J and W , (I; Ic) effectively changes to (I +�I; Ic +�Ic).
According to equation (9), �gx(�x) � (Ægx(�x)=ÆI)(�I�g0y(�y)�Ic). The overall contextual effect
is excitatory if �I=�Ic > g

0
y(�y) and inhibitory otherwise. In our example when g 0y(�y) increases

with I (or Ic), the contextual inputs could switch from effectively facilitation to suppression as
external input level I increases (Fig. (3 D)). This is the model’s account of the physiological-
ly observed dependence of the contextual influences on input contrast I (Sengpiel, Baddeley,
Freeman, Harrad, and Blakemore 1995), which has also been modelled by others (Stemmler,
Usher, Niebur 1995, Somers, Todorov, Siapas, Toth, Kim, Sur 1998).
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Figure 3: A,B: examples of gx(x) and gy(y) functions. C: Input-output function I ! gx(�x) for
an isolated neural pair without inter-pair neural interactions, under different levels of Ic. D:
The overall effect of the external or contextual inputs (�I;�Ic) on a neural pair is excitatory
or inhibitory if �I=�Ic is large or less than g0y(�y), which depends on I .

3.2 Two interacting pairs of neurons with non-overlapping receptive fields

Two pairs of neurons (i1; �1) and (i2; �2) with nearby but non-overlapping receptive fields can
interact with each other via longer range connections Ji1�1;i2�2 and Wi1�1;i2�2

. For simplicity,
we use indices a = 1; 2 to denote the two pairs and their associated quantities, and denote the
connection strength between the pair as J12 = J21 and W12 = W21. The equations of motion
are

_xa = �xa � gy(ya) + Ia + Io + Jogx(xa) + J12gx(xb)

_ya = �ya + gx(xa) +W12gx(xb) + Ic

where a; b = 1; 2 and a 6= b. The contextual influence from input stimulus I2 to neuron x1 is
monosynaptic excitation J12gx(x2) and disynaptic inhibition W12gx(x2) via inhibitory activi-
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ties gy(y1). The total effective connection from x2 to x1 directly and indirectly, according to the
gain functions Ægx(�x)=ÆI and Ægx(�x)=ÆIc, is J12 � g

0
y
(�y1)W12.

In a simple case when I � I1 = I2, we have the fixed point �x � �x1 = �x2 and �y � �y1 = �y2.
The two bars can excite or inhibit each other depending on whether J12 � g

0
y
(�y)W12 > 0.

According to the bow-tie connection in Fig. (2B), mutual excitation is more likely when two
bars are near parallel and aligned, while mutual inhibition is likely when the two bars are near
parallel but not aligned. Again, high input strength I makes mutual inhibition more likely by
raising g

0
y
(�y). Hence, the mutual interaction is again input contrast dependent. If the two

input stimulus bars are near orthogonal to each other, J12 and W12 � 0, making for the least
contextual interaction and contrast dependency.

When I1 > I2, we have (�x1; �y1) > (�x2; �y2). Usually, g0
y
(�y) increases with �y. Consequently,

J12 � g
0
y
(�y1)W12 < J21 � g

0
y
(�y2)W21. In particular, it can happen that J12 � g

0
y
(�y1)W12 < 0 and

J21 � g
0
y
(�y2)W21 > 0, i.e., x1 effectively excites x2 while x2 effectively inhibits x1. This means,

two interacting pairs tend to have closer activity values x1 and x2 than two non-interacting
pairs.

A simple application is the phenomenon called the tilt illusion, which is the slightly dis-
torted perception of the orientation of a stimulus bar Îi1�1 at position i1 and orientation �1 near
a contextual bar at position i2 and orientation �2. Without loss of generality, we take i1 = (0; 0)

at the center of the visual field, and �1 = 0 oriented vertically. As described above, the stimu-
lus Îi1�1 excites multiple pyramidal cells (i1; �1 � �1) with �1 close to but not necessarily equal
to �1. The perceived orientation for the stimulus (i1; �1) may be approximated by:

�� =
X
�1

gx(�xi1;�1)�1=
X
�1

gx(�xi1;�1) (10)

at i1. Without any contextual bars, the response gx(�xi1;�1) is determined by the cell’s orienta-
tion tuning curve �(�1 � �1), which is an even function of �1 � �1. This means �� = �1. The tilt
illusion results when the contextual bar causes responses gx(�xi1;�1) to be asymmetrical about
� = 0, most noticably gx(�xi1;Æ) 6= gx(�xi1;�Æ) for small angle Æ, making �� 6= �1 = 0.

The tilt illusion is most noticable when �2 � �1. Let us take Æ > 0 as a small clockwise
rotation away from vertical. The contextual bar has a small orientation �2 �> 0 and is located
at one of the 3 nearby positions (Fig. 4):

(a) i2 = (0; n2 > 0) directly above i1
(b) i2 = (m2 > 0; 0) to the right of i1
(c) i2 = (m2 > 0; n2 > 0) upper-right from i1

In condition (a), (i2; �2) is roughly parallel and aligned with (i1; �1), making the contextual
influences likely to be excitatory. However, (i2; �2) is more aligned with slighted left tilted
(i1; �1 = �Æ < 0) than with slightly right tilted (i1; �1 = Æ > 0), i.e., a curve of smaller curvature
is needed to connect (i2; �2) to (i1;�Æ) than to (i1; Æ). Hence, the contextual excitation J12

to the left tilted (i1;�Æ) is stronger than that to the right tilted (i1; Æ), making gx(�xi1;�Æ) >

gx(�xi1;Æ) and thus the tilt illusion is a slighted left tilted perception �� < 0. In condition (b),
(i2; �2) is roughly parallel to but not aligned with (i1; �1), making the contextual influences
likely to be inhibitory. Since (i2; �2) is more parallel to (i1; Æ) than to (i1;�Æ), the disynaptic
inhibitory connection W12 from the contextual bar is stronger to (i1; Æ) than to (i1;�Æ). This
again causes gx(�xi1;�Æ) > gx(�xi1;Æ) and a slightly left tilted illusion �� < 0. Both (a) and (b) cause
the perceived test bar to tilt slightly away (in orientation) from the contextual bar, as usually
observed psychophysically. However in condition (c), when the contextual bar is placed at the
upper-right from the test bar, the contextual facilitation is stronger to the slighted right tilted
(i1; Æ) than the left tilted (i1;�Æ) because of the difference in the alignment. This causes a right
tilted illusion. Although this illusion is not as usually documented in the literature, recent
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Neural
population
response to
the test bar

Perceived
test bar

vertical left tilted left tilted right tilted

B: The vertical test bar with a right tilted contextual bar

(a) (b) (c)

A vertical test bar A: 
without context

Stimulus:

Figure 4: Schematic of tilt illusions — the contextual influences from a contextual bar (tilted �2
degree from vertical) to a vertical test bar. A: the test bar without context, and B: with context.
From top to bottom are the input stimulus, the population response to the test bar, and the
perceived test bar. The neural population responses are from neurons with receptive fields
centered on the test bar and preferring vertical (�1 = 0) and near vertical (�1 = Æ > 0 or �Æ,
tilted to the right or left from vertical) orientations. For schematic visualization, the thickness-
es of each bar (in the population response) is drawn to increase with the response levels of the
corresponding neurons. The perceived orientation of the test bar is the response weighted av-
erage (center of gravity) of the preferred orientations of the population of responsive neurons.
The contextual bar is (a) at top of, (b) on the right of, and (c) at upper-right of, the test bar.

psychophysical observations (Kapadia 1998) confirm this phenomena, as readers themselves
can roughly test on the figure.

3.3 A one dimensional array of identical bars

Consider an input consisting of identical bars oriented at � = �1, lined up horizontally and
separated by equal spaces as in Fig. (5A). The input Ii� can be approximated as

Ii� =

(
Iarray for i = (mi; ni = 0) on the horizontal axis and � = �1

0 otherwise
(11)

Here the approximation Ii� = 0 for � 6= �1 is valid when each cell has a near zero orientation
tuning width or when the input contrast is small. In the simplest case when bars i� outside
that array are silent gx(xi�) = 0 due to insufficient excitation, we ignore all bars beyond the
array, treat the system as one dimensional, omit index �, and let i denote the one dimensional
location of the bar in the array. Then

_xi = �xi � gy(yi) + Iarray + Io + Jogx(xi) +
X
j 6=i

Jijgx(xj) (12)

_yi = �yi + Ic + gx(xi) +
X
j 6=i

Wijgx(xj) (13)
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For an infinitely long array, translation symmetry implies that all units have the same equilib-
rium point �xi = �x and �yi = �y and

_�x = 0 = ��x� gy(�y) + Iarray + Io + (Jo +
X
i6=j

Jij)gx(�x) (14)

_�y = 0 = ��y + Ic + (1 +
X
i6=j

Wij)gx(�x) (15)

Comparing with equations (7) and (8), we see that this array is equivalent to a single neu-
ral pair with stronger self-excitation Jo ! Jo +

P
j
Jij and effective self-inhibition g

0
y
(�y) !

g
0
y
(�y)(1 +

P
j
Wij). The input gain is

Ægx(�x)

ÆIarray
=

g
0
x
(�x)

1 + g0
x
(�x)(g0

y
(�y)� Jo + g0

y
(�y)

P
j
Wij �

P
j
Jij)

(16)

Comparing with equation (9), we see that the response to bars in the array is higher than that
to an isolated bar if the net extra excitatory connection

E �
X
j

Jij (17)

is stronger than the net extra inhibitory (effective) connection

I � g
0
y
(�y)

X
j

Wij : (18)

The connections Jij and Wij depend on �1. When the bow-tie connections are used, and
the bars are parallel to the array, making a straight line (Fig (5B)), we have E > I giving an
enhanced response. The total contour facilitation is

Fcontour = (E � I)gx(�x) (19)

When the bars are orthogonal to the array ( Fig (5C)), E < I and thus the responses are sup-
pressed. In fact, our analysis can be extended to other translation invariant one dimensional
arrays like in Fig (5D, E), for which the index i simply denotes a bar in a location along the
array. In fact, the straight line in Fig (5B) can be seen as the limit of a circle in Fig (5D) when
the radius goes to infinity. Let us again consider the bow-tie connections in which the J con-
nections are assumed stronger between bars that are better aligned with each other. The exci-
tatory strength E among the bars will be larger, and the inhibitory strength I will be smaller,
for the straight line in Fig (5B) than the circle in Fig (5D). Consequently, contour enhancement
is stronger for the straight line than the circle, and the enhancement decreases as the radius of
the circle becomes smaller. Similarly, the pattern in Fig (5C) is a special case of the one in Fig
(5E) when the radius goes to infinity.

The approximations used in equations (11 -15 ) can be quite good in some situations, but
quite poor in others. This is demonstrated in the simulated examples in Fig. (6). Fig. (6G)
shows the control case for which there is no contextual input to the stimulus bar. Contextual
facilitation in Fig. (6A, B, E) is visualized by the thicker bars than those in Fig. (6G); while
contextual suppression in Fig. (6C, D, F) is visualized by the thinner bars. In Fig. (6A), cells
whose RFs are centered on the line but not oriented exactly horizontally are also excited above
threshold, unlike our approximation gx(xi�) = 0 for non-horizontal �. (This should not cause
perceptual problems though, since in population coding, cells preferring orientations near the
stimulus bar are often excited also.) This is caused by direct visual input Ii� for � 6= �1 (� � �1),
as well as the colinear facilitation from other bars in the line. The approximation of translation
invariance �xi = �xj for all bars in the stimulus array is compromised when the array is not
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Figure 5: Examples of the one dimensional input stimulus mentioned in the text. A: horizontal
array of identical bars oriented at angle �1. B: A special case of A when �1 = �=2 and, in C,
when �1 = 0. D: an array of bars aligned into, or tangential to, a circle, the pattern in B is
a special case of this circle when the radius is infinitely large. E: same as D except that the
bars are perpendicular to the circle circumsference, the pattern in C is a special case when the
radius is infinitely large.

infinitely long, e.g., Fig. (6B), or when the bars in the array are not equally spaced, e.g., Fig.
(6E,F). In Fig. (6B), the bars at or near the left end of the line receive less or no contextual
facilitation from their left, meaning that they are less enhanced than bars away from this end.
In Fig. (6F), the more densely spaced bars receive more contextual suppression than others,
giving weaker responses.

3.4 Two dimensional textures and texture boundaries

The analysis for the one dimensional array also applies to an infinitely large two dimension-
al texture of uniform input Ii�1 = Itexture when i = (mi; ni) sit on a regularly spaced grid
(Fig. (7A)). The sums E =

P
j
Jij and I = g

0
y(�y)

P
j
Wij are taken over locations j in the two

dimensional grid.
It is observed physiologically that the cell’s response to a bar is reduced when the bar is

part of an extended texture (Knierim and van Essen 1992). This can be achieved when

E < I: (20)

Consider, for example, the case when i = (mi; ni) form a Manhattan grid with integer values
of mi and ni (Fig (7)). The texture can be seen as a horizontal array of vertical arrays of bars,
e.g., a horizontal array of vertical contours when the bars are vertically oriented (Fig. (7B)).
(The same texture can also be viewed as a vertical array of horizontal arrays of bars, or even
an oblique array of arrays of bars. This will become useful for analysis in section 3.7.) We can
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A: Infinitely long line

B: Half infinitely long line,
ending on the left

C: Infinitely long array
of oblique bars

D: Infinitely long horizontal
array of vertical bars

E: Uneven circular array

F: Uneven radiant array

G: An isolated bar

Figure 6: Simulated outputs from a cortical model to corresponding visual input patterns
of 1 dimensional arrays of bars. The model transforms input Ii� to cell output gx(xi�). The
thicknesses of the bars i� are proportional to temporally averaged model outputs gx(xi�). The
corresponding (suprethreshold) input Îi� = 1:5 is of low/intermediate contrast and is the
same for all 7 examples and all visible bars. Different outputs gx(xi�) for different examples
or for different bars in each example are caused by contextual interactions. Overall contextual
facilitations cause higher outputs in A, B, E than that of an isolated bar in G, while overall
contextual suppressions cause lower outputs in C, D, F (compare the different thicknesses of
the bars). Note the deviations from the idealized approximations in the text. Uneven spacing
between the bars (F, G) or an end of a line (at the left end of B) cause deviations from the
translation invariance of responses. Note that the responses taper off near the line end in B,
and that the responses are noticably weakers to bars that are more densely packed in F. In A,
cells preferring neighboring orientations (near horizontal) at the line are also excited above
threshold, unlike the approximated treatment in the text.

define the effective connections between the vertical arrays (Fig. (7DEF)) distanced a apart:

J
0
a
�

X
j;mj=mi+a

Jij ; W
0
a
�

X
j;mj=mi+a

Wij : (21)
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F GED

A texture of bars oriented at A texture of vertical bars

Two neighboring textures of bars.

Four example pairs of vertical arrays of bars.

θ1

θ1

θ2

θ1

C

Figure 7: Examples of the two dimensional textures and their interactions. A: texture made
of bars oriented at �1 = 0 and sitting on a Manhattan grid. This can be seen as a horizontal
array of vertical array of bars. B: a special case of A when �1 = 0. This is a horizontal array
of vertical lines. Each texture can also be seen as a vertical array of horizontal arrays of bars,
or an oblique array of oblique arrays of bars. Each vertical, horizontal, or oblique array can
be viewed as a single entity, shown as examples in the dotted boxes. C: Two nearby textures
and the boundary between them. D, E, F: examples of nearby and identical vertical arrays. G:
two nearby but different vertical arrays. When each vertical array is seen as an entity, one can
calculate effective connections J 0 and W 0 (defined in the text) between these vertical arrays.

Then
E =

X
j

Jij =
X
a

J
0
a
; I = g

0
y
(�y)

X
j

Wij = g
0
y
(�y)

X
a

W
0
a

(22)

The effective connection within a single vertical array is J 00 and W
0
0. It is possible to have the

connection structure J and W such that J 00 > g
0
y
(�y)W 0

0 and E =
P

a
J
0
a
< I = g

0
y
(�y)

P
a
W

0
a

can be simultaneously satisfied for some orientation �1, as long as there is sufficient excitation
within a vertical array and sufficient inhibition between vertical arrays. In particular, when
the vertical array is a long straight line (�1 = 0), one can have contour enhancement (i.e.,
J
0
0 > g

0
y(�y)W

0
0) when that line is isolated, but overall suppression (i.e., E =

P
a
J
0
a < I =
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g
0
y
(�y)

P
a
W

0
a
) when that line is embedded within a texture of lines. Hence contour enhance-

ment and texture suppression can be achieved within a single neural circuit, i.e., a single set
of J and W connections.

Computationally, contextual suppression within a texture means that the boundaries of a
texture region can give rise to relatively higher responses, thereby serving segmentation. The
contextual suppression on a bar within a texture of bars of orientation �1 is

C
�1

whole�texture
�
X
a

(g0y(�y�1)W
0�1
a � J

0�1
a )gx(�x�1) = (I � E)gx(�x�1) > 0 (23)

Here �x�1 denotes the (translation invariant) fixed point for all texture bars, index �1 denotes
the dependences of parameters and variables on �1. Consider the bars on the vertical axis
i = (mi = 0; ni). Removing the texture bars on the left i = (mi < 0; ni) removes the contextual
suppression from the left half of the texture area. Now the activity level �xi�1 depends on the
horizontal location mi of the bars, or their distance from the texture boundary. As the distance
mi !1, �xi�1 approaches �x�1 . The contextual suppression on the bars on the vertical axis is

C
�1

half�texture
�

X
mj�0

(g0y(�y�1)W
0�1
mj
� J

0�1
mj

)gx(�xj�1) (24)

�
X
mj�0

(g0
y
(�y�1)W

0�1
mj
� J

0�1
mj

)gx(�x�1) (25)

where we approximate �xi�1 � �x�1 . Since C
�1

half�texture
< C

�1

whole�texture
, the reduced sup-

pression leads to relatively higher response of the bars on the vertical axis, thus marking the
boundary for visual segmentation purposes.

Consider two neighboring textures of bars oriented at �1 for i = (mi � 0; ni) and �2 for
i = (mi < 0; ni) (Fig. (7C)). The connections between arrays in different textures (Fig. (7G))
are

J
0�1�2
a

�
X

j;mj=mi+a

Ji�1j�2 W
0�1�2
a

�
X

j;mj=mi+a

Wi�1j�2
(26)

By symmetry J 0�1�2a = J
0�1�2
�a = J

0�2�1
a , and similarly for W 0�1�2

a . Further, when �1 = �2, J 0�1�2a =

J
0�1
a and W

0�1�2
a = W

0�1
a . The contextual suppression on the border bar at i = (mi = 0; ni) is

contributed by both textures, and is thus

C
�1;�2

2�half�textures � C
�1

half�texture
+ C

�1;�2

neighbor�half�texture

where
C
�1;�2

neighbor�half�texture
�

X
mj<0

(g0
y
(�yi�1)W

0�1�2
mj

� J
0�1�2
mj

)gx(�xj�2)

�
X
mj<0

(g0
y
(�y�1)W

0�1�2
mj

� J
0�1�2
mj

)gx(�x�2)

Here C�1;�2

neighbor�half�texture
is the contextual suppression from neighboring texture to the bor-

der texture bars. Again, we use approximation �xj�2 � �x�2 . Note that usually �x�2 6= �x�1 since
the fixed point should depend on the relative orientation between the bars and the arrays (i.e.,
the axes).

The reduction in contextual suppresion on the border bars, or, border enhancement, is then

ÆC � C
�1

whole�texture
� C

�1;�2

2�half�texture (27)

� C
�1;�2=�1
neighbor�half�texture

� C
�1;�2

neighbor�half�texture
(28)

�
X
a<0

(g0
y
(�y�1)W

0�1
a
� J

0�1
a

)gx(�x�1)�
X
a<0

(g0
y
(�y�1)W

0�1�2
a

� J
0�1�2
a

)gx(�x�2) (29)
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which is responsible for relatively higher responses at the texture border than texture regions
away from the border, serving pre-attentive texture segmentation.

If J and W tend to link cells preferring similar orientations as in the bow-tie pattern, J 0�1�2
a

and W
0�1�2
a

decrease with increasing j�1 � �2j, and vanish for j�1 � �2j = �=2. We further note
that �x�1 � �x�2 when �1 � �2. Then,

ÆC �

8><
>:

0 for �1 � �2P
a<0(g

0
y
(�y�1)W

0�1
a
� J

0�1
a

)gx(�x�1) > 0 for �1 ? �2

roughly increases as j�1 � �2j increases
(30)

Thus the texture border gives relatively higher responses when the orientation contrast be-
tween the textures is high, this highlight diminishes as the orientation contrast approaches 0,
see Fig. (8). Furthermore, even at a given contrast j�1 � �2j, the border enhancement ÆC still
depends on �1. For instance, when j�1 � �2j = �=2 and the bow-tie connections are used, the
enhancement ÆC for border bars parallel to the border �1 = 0 is higher than that for border
bars perpendicular to the border �1 = �=2. This is partly because the strength of contextual
suppression g

0
y
(�y�1)W

0�1
a
� J

0�1
a between parallel contours (�1 = 0 and a 6= 0) (Fig. (7D)) is

much stronger than the strength of suppression between two vertical arrays of horizontal bars
(Fig. (7E)). Thus we predict a tuning of the strength of the border highlight to the relative
orientation �1 between the border and the bars (Li 1999b).

Clearly, the approximation (�xi�1 � �x�1 for mi � 0 and �xi�2 � �x�2 for mi < 0), which is
used to arrive at equation (30), breaks down at the border. This breakdown is more severe at
stronger or more salient borders such as the one in Fig. 8C, (which is particularly strong due
to the colinear excitation along the vertical contour at the border). This accentuates the tuning
of the border highlight to the relative angle between the border and the texture bars.

The mechanism underlying the border highlight is texture suppression or iso-orientation
suppression within a texture region. The stronger the suppression, the stronger the border
highlight. By equation (23), this suppression strength is contrast dependent through g

0
y(�y).

Since g0
y(�y) usually increases with increasing �y, the border highlight or texture segmentation

is more effective at higher contrast. The connection weights in the model can be designed
such that at very low input contrast, this suppression diminishes or even becomes facilitation.
There could be computational reasons for such a change: facilitation certainly helps texture
detection, which at low input contrast could be more important than texture segmentation.
Psychophysically, texture segregation does require an input contrast that is well above the
texture detection threshold (Nothdurft 1994).

3.5 Translation invariance and pop-out

In the examples above, orientation contrast in inputs have relatively higher saliency because
they mark boundaries between textures which are composed of bars of single orientations.
However, if orientation contrast is homogeneous through the texture itself, then particular
locations with particular orientation contrast will not have higher saliencies than their sur-
roundings and hence will not pop out or attract visual attention. Fig. (9A) shows an example
for which the texture is made of alternate columns of bars at �1 = 45o (odd a) and �2 = 135o

(even a). The contextual suppression on a bar oriented at �1 is:

Ccomplex�texture =
X

odd a
(g0y(�y�1)W

0�1
a �J 0�1a )gx(�x�1)+

X
even a

(g0y(�y�1)W
0�1�2
a �J 0�1�2a )gx(�x�2) (31)

Thus no bar oriented at �1 is less suppressed, or more salient, than other bars oriented at �1.
Note that since Ccomplex�texture 6= C

�1

whole�texture
, the value of �x�1 is not the same as it would be

in a simple texture of bars of a single orientation �1. This applies similarly to �x�2 . In general,
�x�1 6= �x�2 . In the particular case of Fig. (9A), the bars oriented at �2 receive the same amount of
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Figure 8: Simulated examples of texture boundary highlights between different pairs of tex-
tures, defined by bar orientations. In each example is the input image Ii� above the output
image gx(xi�) averaged in time. Each image plots a small region out of a much more extend-
ed input area. A: �1 = 45o, �2 = �45o. B: �1 = 45o, �2 = 90o. C: �1 = 0o, �2 = 90o. D:
�1 = 45o, �2 = 60o. The texture border is vertical in the middle of each stimulus pattern. Note
how border highlights increase with increasing orientation contrast �1 � �2. The orientation
contrast of 15o in D is difficult to detect by the model or humans. The orientation contrast
�1 � �2 = 90o for both A and C. Note how the responses to the boundary bars decrease with
increasing orientation differences between the bars and the boundary.

contextual suppression as the bars oriented at �1. Hence, the whole texture appears uniform in
saliency. Fig. (9B) shows an example of another homogeneous texture where the bars oriented
at �1 = 0o induced higher responses than bars oriented at �2 = 90o. However, when one
looks at the texture which is defined by both the vertical and horizontal bars and their spatial
arrangement, no local patch of the texture is more salient than another patch. In other words,
although the texture does not have uniform saliency, saliency as a function of spatial location
is translation invariant. This translation invariance in saliency is induced by the translation
invariance in the input (texture). If the neural circuit, with its translation invariant cortical
interactions J and W , does not spontaneously break the translation symmetry (see section 3.7
for analysis), the input translation invariance is preserved at the output.

A boundary between textures is one place where translation invariance in the inputs break-
s down. It induces higher outputs through the cortical interactions. A special case of this is
when one small texture patch is embedded in a large and different texture. The small texture
is small enough that the whole texture is its own boundary, and thus pops out from the back-
ground texture Fig. (9C) . Orientation contrast coincides with the texture boundary or trans-
lation invariance breaking only between two simple textures of bars of single orientations. In
general, orientation contrast does not necessarily pop out.
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A B C

Figure 9: Model responses to homogeneous (A, B) and non-homogeneous (C) input images,
each composed of bars of equal input contrasts. A: A homogeneous (despite of the orienta-
tion contrast) texture of bars of different orientations, a uniform output saliency results. B:
Another homogeneous texture, vertical bars are more salient, however the whole texture has a
translation invariant saliency distribution. C: The small figure pops out from the background
because it is where translation invariance is broken in inputs, and the whole figure is its own
boundary.

3.6 Filling-in and leaking-out

Sometimes small fragments of a smooth contour or homogeneous texture are missing in in-
puts due to input noise or to the visual scene itself. Filling-in is the phenomenon of that the
missing input fragments are not noticed. Filling-in could be caused by at least two possible
mechanisms. The first possibility is that, although the cells for the missing fragment do not
receive direct visual inputs, contextual inputs from stimuli near the missing fragment provide
enough excitation to these cells to make them fire as if there were direct visual inputs. (This
is the way that some models cope with illusory contours, e.g., Grossberg and Mingolla 1985.)
The second possibility is that, even though the cells for the missing fragment do not fire, the
regions near, but not at, the missing fragments do not have high enough saliencies, i.e., are not
conspicuous enough, to strongly attract visual attention. In this case, the missing fragments
are only noticable by attentive visual scrutiny/search.

For a single bar segment missing in a smooth contour, filling-in could be achieved by either
of the two possible mechanisms. Let the missing bar be at i = (mi = 0; ni = 0) in a contour
like Fig. (5B), we ignore the spatial inhomogeneity and make the approximation �xj � �x where
�xj is the activities for the non-missing segments and �x is that in a complete contour (without
missing segments). The contextual excitation to the missing segment is then Fcontour as in e-
quation (19). The filling-in condition under which the cell xi is excited beyond firing threshold
is

Fcontour + Io = (E � I)gx(�x) + Io > Tx (32)

where To is the cell firing threshold such that gx(xi) > 0 when xi > To, Io is the background
input to the excitatory cell, and the effective net connections E , I , and contour facilitation
Fcontour are as defined in equations (17 - 19). Assuming that background input Io alone does
not excite the cell enough to fire, this filling-in condition can be satisfied with large enough
contour facilitation strength E � I and strong enough contour saliency gx(�x) (which in turn is
caused by strong enough input contrast). Assuming that segments within a smooth contour
normally facilitate each other’s firing, then a missing fragment i should usually lead to a re-
duction of contextual facilitation to the neighboring contour bars j. In this case, the bars near
the missing segment can not be more salient or conspicuous than other contour bars far from
the missing fragment, which is thus not easily noticed.

Contour enhancement should not be so strong that bar segments beyond the end of a long,
but finite length, contour are excited towards nonzero outputs. This would make the output
contour longer than the input contour or make it grow in length — leaking out. Consider
the case of a horizontal, half infinitely long, contour with segments j = (mj > 0; nj = 0)
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ending at i = (mi = 0; ni = 0), we again make the approximation �xj � �x that cell activities
in the contour are roughly that in an infinitely long contour. The contextual excitation on the
segment i = (mi = 0; ni = 0) outside the end of the contour is then Fcontour=2, i.e., half the
contour facilitation in a whole contour, since there is no contextual inputs from the left side of
i = (mi = 0; ni = 0). The condition to prevent leaking-out is then

Fcontour=2 + Io < Tx (33)

This condition is satisfied for the line end in Fig. (6B), and should be satisfied for any contour
saliency strength gx(�x). Not leaking out also means that large gaps in lines can not be filled in.
To prevent leaking-out at a location i, e.g., at i = (mi = 0; ni = 1), at the side of an infinitely
long (e.g.,) horizontal contour on the horizontal axis in Fig. (5B) (thus to prevent the contour
getting thicker), we require

P
j2contour(Jij � g

0
y
(�y)Wij)gx(�x) < Tx � Io. for i 62 contour. This

condition is satisfied in Fig. (6A).
If the contextual inputs within a texture are suppressive, the cell for a missing fragment i

in a texture can never be excited to fire. Further, the neighbors k � i of the missing fragment
i will experience a weaker contextual suppression than elements far away because of the ab-
sent inhibitory contribution from the missing fragment. The filling-in can thus be achieved
only by the second possible mechanism outlined above, and this only when the saliencies of
the neighbors near the missing fragment are no more than a small fraction higher than those
for other texture elements (Fig (10B). Hence, the suppression strength W kig

0
y
(�y) � Jki on the

neighboring bars k from the missing bar i � k should be negiligible compared to the total
suppression strength from the whole texture, i.e.,

g
0
y
(�yk)Wki � Jki � (I � E) (34)

where I �
P

j2texture g
0
y
(�yk)Wkj and E �

P
j2texture Jkj . This condition is expected to hold

when the lateral connections are extensive enough to reach large enough contextual areas, i.e.,
when Wki �

P
j
Wkj and Jki �

P
j
Jkj . Leaking-out is not expected outside a texture border

because the contextual input from the texture is suppressive.
It is apparent that the conditions that (a) small gaps in lines should be filled in (equation

(32)), and (b) there should be no leaking-out at the ends of lines (equation (33)), work against
each other. It is not difficult to build a model that achieves active filling-in. However, pre-
venting the model from allowing leaking out and thus creating more illusory contours than is
warranted by human vision implies that there is only a small range of choices for the connec-
tion strengths J and W .

3.7 Oscillations and hallucinations

The computational analysis in section 3.1-3.6 has been limited to looking only at the fixed
point (�X; �Y) which is a good representation of the input I . (Here we use bold-faced character
to represent vectors or matrices.) Our analysis applies only if the fixed point is stable or when
the fixed point is roughly the temporal average of the state variables, i.e.,

R
dtX(t)=

R
dt �

�X and
R
dtY(t)=

R
dt � �Y. When the fixed point is unstable, two possible situations can

arise. First, the system variables (X;Y) could oscillate (Gray and Singer 1989, Eckhorn et
al 1988) around the fixed point (�X; �Y) such that the fixed point still roughly describes the
temporal mean activities. Second, the system could approach a stable state (another fixed
point) (X;Y) 6= (�X; �Y) or even a dynamic state such that the temporal mean

R
dtX(t)=

R
dt is

no longer close to the input driven fixed point �X which is the one we have been studying for
model computation. In particular, assuming that the fixed point �X faithfully represents the
visual input I , a network state whose temporal average state

R
dtX(t)=

R
dt deviates strongly

from �X would imply that the system hallucinates patterns not present or usually perceived
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Figure 10: Examples of filling-in — model outputs from inputs composed of bars of equal
contrasts in each example. A: A line with a gap, the response to the gap is non-zero, B: A
texture with missing bars, the responses to bars near the missing bars are not significantly
higher than the responses to other texture bars.

(by humans) in the input, i.e., spontaneous pattern formation. This is exactly what happens
in the model of symmetric neural connections in equation (1) and Fig. (1), where the fixed
point f�xi�g faithful to the input is unstable because it is not an energy minimum, and the state
variable fxi�g slides to an energy minimum state which is very far from the input.

To analyze stability, we study how small deviations from the fixed point evolve through
time. Change variables and let X� �X! X and Y � �Y ! Y be the deviations. For small
X;Y, we perform a Taylor expansion on equations (5) and (6) to obtain the linear approxima-
tion:  

_X

_Y

!
=

 
�1 + J �G0

y

G
0
x +W �1

! 
X

Y

!
(35)

where J, W, G0
x, and G0

y are matrices with Ji�j�0 = Ji�j�0g
0
x(�xj�0), Ji�;i� = Jog

0
x(�xi�), Wi�j�0 =

Wi�j�0g
0
x
(�xj�0) for i 6= j, Wi�;i�0 = 0, G0

xi�j�0 = Æi�j�0g
0
x
(�xj�0). and G0

yi�j�0
= Æij (� � �

0)g0
y
(�yj�0)

where  (0) = 1. Let the matrix M �

 
�1 + J �G0

y

G
0
x +W �1

!
have eigenvalues 
k and

eigenvectors Zk �

 
X

k

Y
k

!
, for k = 1; 2; :::, the small deviation follows trajectory Z(t) �

P
k
ckZ

k
e

kt, where ck is determined by the initial deviation Z(t = 0). Hence, the fixed point

is stable only when all eigenvalues of M have negative real parts. We can eliminate (hidden)
variable Y to obtain:

�X+ (2� J) _X+ (G0
y(G

0
x +W) + 1� J)X = 0 (36)

This enables us to focus on the output variables X.
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Analysis is possible in the cases of particular interest for which the input is an infinitely
long array or an infinitely large texture of identical bars. In this case, there is a translation
invariant fixed point �X. When it is unstable, deviations X from it can be spatially or transla-
tionally variant, leading to spontaneous pattern formation and perceptual hallucination (Er-
mentrout and Cowan 1979) of spatially non-uniform saliencies. The locations of higher and
hallucinated saliencies in a texture compete and confuse with highlights at texture borders,
and this is undesirable if the output of the computation of texture segmentation uses higher
saliencies at the border. We analyze the translation invariant fixed points by ignoring bars out-
side the array or texture and omit index �, as we did in subsections (3.3) and (3.4). NowX and
Y in equation (35) only include components xi; yi for the contour or texture bars i (omitting
�), and Jij andWij only connect these bars to each other. Again, translation symmetry means

G
0
yij

= Æijg
0
y
(�y); G

0
xij = Æijg

0
x
(�x)

(G0
yG

0
x)ij = g

0
x
(�x)g0

y
(�y)Æij ; (G0

yW)ij = g
0
y
(�y)Wij ;

Jij = Ji+a;j+a Wij =Wi+a;j+a for any a

Hence, J andW are Toplitz matrices. They commute with each other and thus share the same
eigenvectors. One can easily check that, for the kth eigenvector, for k = 1; 2; :::; N (where N is
the size of the system):

The shared eigenvector X
k

j = e
ifkj where i =

p
�1, (37)

The eigenvalue of J �
k

J
=
X
j

Jaje
ifk(a�j) (38)

The eigenvalue of W �
k

W
=
X
j

Waje
ifk(a�j) (39)

Here Xk

j
is the jth component in the eigenvector Xk, which are Fourier waves of spatial fre-

quency fk such that eifkN = 1. �k
J

and �k
W

are Fourier transforms (spectrum) of the row vectors
in J and W. Eq. (36) has solutionsX =

P
k
c
k
X

k
e


k
t, where



k � �1 + �

k

J=2� i
q
g0y(g

0
x + �k

W
)� (�k

J
)2=4 (40)

and c
k, the amplitude of mode Xk, depends on initial conditions X(t = 0). If Re(
k), the real

part of 
k, is negative for all k, the fixed point �X is stable. Otherwise, the mode with the largest
Re(
k), let it be k = 1, will dominate the deviation X(t) � c1X

1
e


1
t from the fixed point �X.

This deviation oscillates in time in a stable limit cycle when g0
y
(g0

x
+�1

W
)�(�1

J
)2=4 > 0 or when

there is no other fixed point for the system trajectory to approach. If X1 is the zero frequency
f1 = 0 Fourier wave, then X1

i
= X

1
j

for i 6= j, this means, the deviation from the fixed
point is also translation invariant, and the neural oscillations will be synchronized between
the bar elements. In this case, the unstable fixed point does not lead to the hallucination
of spatial patterns that are non-homogeneous or not translation invariant. A model without
hallucination should be such that either the fixed points under homogeneous inputs are stable,
or the deviations from the fixed point does not break the translation symmetry. Thus, under
any translation invariant input

Re(
k) < 0 for all k, or Re(
1)f1=0 > Re(
k)fk 6=0 (41)

One notes that both J and W are symmetric matrices with only positive elements. Thus,
both �k

J
and �k

W
are real, and they both achieve largest valuesMax(�k

J
) =

P
j
Jaj andMax(�k

W
) =P

j
Waj for the zero frequency fk = 0 wave or the translation invariant mode. However, it is

the value of Re(
k) that determines the dominant mode k = 1, and this may have f1 6= 0.
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For illustrative purposes, we take the example of smooth contour inputs in Fig. (5B), and
assume no suppression between contour elements W ij = 0. Hence, �k

W
= 0, and 


k = �1 +
�
k

J
=2 � i

q
g0
y
g0
x
� (�k

J
)2=4 with the corresponding eigenvectors Xk

j
= e

ifkj . The mode k = 1

with the highest Re(
k) is the one with largest �k
J

which occurs for f1 = 0. In this case,
X

1
j
= X

1
i
, and �1

J
=
P

j
Jij . Thus the contour input does not induce spatial symmetry breaking

although sufficient contour enhancement
P

j 6=i Jij increases �1
J

and can push Re(
1) positive
to generate synchronized oscillations among the contour segments (see Fig. (11B), Li 1998).
This conclusion does not depend on the detailed form of J ij as long as Wij = 0.

On the other hand, under one-dimensional non-contour inputs such as Fig. (5C,E), the
interaction and dynamics are quite different. If one assumes that Jij = JiiÆij . Then, �k

J
= Jii,

and 
k = �1+Jii=2� i
q
g0
y
(g0

x
+ �k

W
)� J2

ii
=4 for all k. SinceRe(
1) < �1+Jii = �1+Jog0x(�x),

the system is stable when there is insufficient self-excitation Jo < 1=g0
x
(�x). This condition is

always satisfied in a network of well behaved individual neurons for the following reason. An
isolated principal unit x follows equation _x = �x + Jxgx(x) + I . One can easily check that,
under zero input I = 0, too much self-excitation, i.e., Jo > 1=g0

x
(x), would lead to unreasonable

non-zero steady state output g(�x) which is a solution of the equation��x+Jxgx(�x) = 0. Hence
input patterns in which there are no excitatory J links between units for the input elements, (as
we are assuming for patterns in Fig. (5C,E)), induce well behaved model outputs regardless
of the connections W .

The situation is much more complex for a texture input like that in (Fig (7A)). The eigen-
vectors or modes are now 2-d waves Xk

j
/ e

ifkj . Here fk = (fx(k); fy(k)) is a two com-
ponent (horizontal and vertical) wave vector perpendicular to the peaks and troughs of the
waves. Likewise, locations of the texture bars are also described by a two component vector
j = (mj ; nj). In the example when fk = (fx(k); 0) is in the horizontal direction, we have

�
k

J =
X
j

Jaje
ifk(a�j) (42)

=
X
mj ;nj

Jaje
ifx(k)(ma�mj) (43)

=
X
mj

e
ifx(k)(ma�mj)

X
nj

Jaj (44)

= g
0(�x)

X
b

J
0
be

ifx(k)b (45)

Similarly �
k

W = g
0(�x)

X
b

W
0
be

ifx(k)b (46)

where J 0
b

and W
0
b

are the effective connections between two texture columns as defined in
equation (21). This array of columns is then similar to the one dimensional array of bars
above. However, the column-to-column connections J 0 andW 0 are stronger than the bar-to-bar
counterparts. More importantly, the connection structure J 0 and W

0 or the the spectrum (�k
J

,
�
k

W
) depend on the orientation �1 of the texture bars. Unlike the situations for one dimension

arrays of bars, the simplification J
0 = 0 or W 0 = 0 between different columns is no longer

reasonable for some �1.
Let us consider the example when the texture bars are horizontal and parallel to fk, i.e.,

fk = (fx(k); 0), �1 = 90o, corresponding to the contour input discussed above. The inhibition
W

0
b
6= 0 between vertical columns is usually non-zero, unlike what one can assume between

bars in a contour. However, with the bow-tie connections for which co-aligned bars are linked
by J and non-aligned bars are linked by W , it is easy to see that J 0

b
is strong between different

columns, while W 0
b

is strong within a column (b = 0) and weak between columns. To a good
approximation, W 0

b
� Æb0W

0
0, i.e., �k

W
is roughly independent of k, and hence, 
k � �1 +

�
k

J
=2 � i

q
g0y(g

0
x +W 0

0)� (�k
J
)2=4. In this case, Re(
k) is largest when �

k

J
is largest, and this

23



happens at fx(k) = 0, which is a translation invariant mode. This means that, for a texture of
identical bars, translation invariance is not likely to be broken in the direction parallel to the
orientation of the bars, i.e., for an input texture of horizontal bars, the model using the bow-tie
connections is unlikely to produce vertical columns of different saliencies.

However, if the texture bars are vertical (consider still the mode for fk = (fx(k); 0)), the
bow-tie connections result in strong enough facilitation J 0

b
between different vertical columns.

Further, the suppressionW 0
b

between columns also depends non-trivially on b. Hence, both �k
J

and �
k

W
depends on fk non-trivially. Even though both �k

J
and �

k

W
are largest for fk = 0, by

equation (40), the dominant mode with the largest Re(
) is quitely likely to be the one with
fx(k) 6= 0. The abundance of facilitation between the bars means that J 0

b
or �k

J
can be strong

enough to induce unstable modes. Thus, for texture inputs of identical bars, models using the
bow-tie connections have a stronger tendency to hallucinate saliency columns parallel to the
orientation of the bars.

A well behaved model should be designed such that the stability condition in equation (41)
is satisfied considering all fk whether it is parallel, perpendicular, or oblique, to the texture
bars. Given fk, it is easy to calculate �k

J
, �k

W
, and thus 
k using equations (38) and (39). The

spectrum �
k

J
and �

k

W
depend on the orientation of the bars and on the spatial arrangements

of the texture bars (i.e., whether it is arranged in a Manhattan grid or some other fashion)
via the summation in equations (38) and (39). Given a system that does not form patterns
spontaneously from homogeneous inputs, oscillations can only happen when the dominant
mode is the translation invariant one with f1 = 0 and when Re(
1) > 0. Since 
1 = �1 +

�
1
J
=2 � i

q
g0y(g

0
x + �

1
W
)� (�1

J
)2=4, Re(
1) > 0 only when �1

J
is large enough. For f1 = 0, �1

J
=P

j
Jij . Consequently, �1

J
is large enough and oscillations happen when the stimulus is such

that the each stimulus bar receives more excitatory-to-excitatory connections Jij from other
bars in the visual input (Koenig and Schillen 1991). This may explain why neural oscillations
are observed in some cases and not others in physiology. Under the bow-tie connections,
a large texture input is more likely to induce neural oscillation than a long contour input,
which is in turn more likely to induce oscillation than, say, a horizontal array of vertical bars
or isolated individual bars, see Fig. (11). This prediction can be physiologically tested. It
has indeed been observed that grating stimuli are more likely to induce oscillations than bar
stimuli (Molotchnikoff, Shumikhina, and Moisan, 1996).

A model of the visual cortex should be designed such that it performs the desired com-
putations such as contour enhancement and region segmentation. This computation places
qualitative and quantitative requirements on the neural connections J and W through, e.g., e-
quations (32) and (33), and conditions on minimal required contour enhancement Fcontour and
texture suppresion Cwhole�texture. These computational requirements on J and W have to be
satisfied simultaneously with the stability requirements on J and W (equation (41)). Had we
used a recurrent network with symmetric connections, as in equation (1), the stability condi-
tions would involve the spectrum of eigenvalues of the matrixT, whereTi�j�0 = Ti�j�0g

0
x(�xj�0).

A stable fixed point should have �T < �x all the eigenvalues �T of this matrix, a condition that
can be shown to be difficult to satisfy given the required visual computations (Li and Dayan
1999).

4 Summary and Discussion

We have studied the nonlinear neural dynamics in a recurrent model of primary visual cortex.
An analytical understanding of the dynamics has been essential to reveal the computation-
al potential of the recurrent model, a facet that is usually very difficult to understand using
merely computer simulations. Our analysis has been used to build a model that successfully
explains much physiological and psychophysical data (Li 1999a,b,c). The various simplifi-
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Figure 11: Different stimuli give different tendencies to oscillatory responses. Shown here are the visual input
stimuli (all appear at time zero and stay on) and the time course of the neural activities. A an isolated bar and the
neural response which stablizes after the initial oscillatory transients. B An input contour and the synchronized
and sustained oscillatory neural responses from 2 non-neighboring neurons, all neurons corresponding to the
contour segments respond similarly. C: A horizontal array of vertical bars, and the responses (decaying oscillations
towards static values) from two non-neighboring neurons. D: An input texture (with some holes in it), and the
sustained oscillatory responses from 3 neurons, whose spatial (horizontal, vertical) coordinates are (2, 2) (solid
curve), (15, 2) (dotted curve), and (5, 9) (solid-dotted curve). The coordinate of the bottom left texture bar is (0, 0).
Note that the bars next to the holes in the textures induce a little bit higher responses.

cations and approximations in the analysis can be justified by the fact that they have led to
the design of computationally appropriate connections J and W in the model that give rela-
tive higher responses to smooth contour, pop-out targets, and boundaries between different
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(simple or complex) regions, whilst not hallucinating spatial patterns not present in inputs (Li
1998, 1999a). The analysis techniques in this paper can be applied to other recurrent networks
whose neural connections are translationally symmetric.

We presented in this paper an example of how nonlinear neural dynamics link compu-
tations with the model architecture, neural elements, and neural connections. Additional or
different computational goals, including the ones which maybe performed by the primary vi-
sual cortex and which are not yet modelled by the model example studied here, should call
for a more complex or different model design. For example, for contour inputs, a different
computation could be (1) to fill-in the short gaps in a contour under low signal-to-noise inputs
when the gaps are likely caused by input noise, but, (2) to highlight the locations near the
gaps (to draw visual attention) without filling-in under high signal-to-noise inputs when the
gaps are likely caused by the visual scene itself. Another example of desired computation is
to prevent the spontaneous saliency differentiation even when the input is not homogeneous
in the image plane but is generated from homogeneous flat texture surfaces slanted in depth,
thus generalizing the translation invariance computation studied in section 3.5. This computa-
tion should require multiscale image representations and recurrent interactions between cells
tuned to different scales. By studing the recurrent nonlinear dynamics and analysing the link
between model structures and model computation, we hope to be able to better understand
the computations in the primary visual cortex and in other visual or non-visual cortical areas
where recurrent network dynamics play important roles.
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