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1 Introduction

A number of electrophysiological studies in visual and visuo-motor cortices have shown that the tuning
curves of cells to visual stimulus parameters may be multiplicatively modulated by extra-retinal factors.
One example is found in the gain �elds of neurons in the posterior parietal cortex. Many of these cells
exhibit tuning for the retinotopic location of a visually presented motor target; these tuning curves
can be scaled in response to changes in body con�guration (Andersen et al : 1985; Brotchie et al : 1995).
More recently, shifts in attention have also been found to modulate neural responses multiplicatively in a
number of visual cortical areas; for example, the orientation tuning curves of cells in area V4 (McAdams
and Maunsell 1999), or direction tuning curves of cells in area MT (Treue and Trujillo 1999).

Salinas and Abbott (1996) showed in simulations that a form of multiplicative scaling can be repro-
duced by a simple network model. They considered a recurrent network of continuous output neurons,
with lateral connection weights in a centre-surround (\mexican hat") con�guration; that is, nearby
neurons excite each other, while distant neurons are mutually inhibitory. Such networks have been
previously shown to account for a number of the properties observed in cortical responses (Ben-Yishai
et al : 1995; Somers et al : 1995; Carandini and Ringach 1997). Salinas and Abbott showed that if an
additional, modulatory, input is provided equally to all cells in such a network, changes in the level of
modulation result in apparently multiplicative changes in the output.

In this note, we examine this behaviour of the network more closely, presenting a theoretical analysis
of the apparent multiplicative scaling. We show, both through this analysis and through simulations, that
the multiplicative behaviour arises when the output of the network achieves a critical width, which is a
characteristic of the recurrent connectivity. Thus, the shape of the tuning curves within the multiplicative
scaling regime is determined by the recurrent weights of the network, rather than by the stimulus-driven
input.

2 The Network

We consider a recurrently connected network of analog neurons. The neurons are tuned to a one-
dimensional feature of the stimulus (such as its location in azimuth, or its orientation) and, for conve-
nience, are arranged in a line or ring according to their preferred values, forming a topographic map of

the stimulus feature. The recurrent connection strength between two neurons depends solely on their
relative stimulus preferences.

The membrane activation level of the ith neuron at a time t, ui(t), is governed by the di�erential
equation

�

d

dt

ui(t) = �ui(t) + hi(t) (1)

where � is a membrane time constant and hi(t) is the time-varying total input to the ith neuron. This
input has three parts: two external sources | both of which are stepped to �xed values initially, and
then held constant in time | and a recurrent feedback component which evolves with the network
dynamics:

hi(t) = si + r +
X
j

Jijmj(t): (2)
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The �rst external source is a stimulus-tuned component, si, which depends on the stimulus presented
to the network and on the tuning of the cell. The second external source is a modulatory component r,
which is taken to be the same for all cells. Finally, the recurrent component of the input is the sum, as
j ranges over all the cells in network, of the output of the jth cell mj(t), weighted by the connection
strength from the jth cell to the ith, Jij . In all of the networks we consider, the recurrent connections
are symmetric, and depend only on the separation between the two neurons in the topographic map,
that is, Jij = J(ji�jj). The connection strength may be positive or negative; the model does not include
a separate class of inhibitory cells.

The output of the ith neuron mi(t) is related to the activation ui(t) by a nonlinear transfer function,
g. We take this to be the threshold-linear function

g(u) =

�
�(u� T ) for u � T

0 for u < T

(3)

for some threshold T and slope �.
Since the external inputs are held �xed, and the recurrent weights are symmetric, the network activity

evolves from its initial value to to a stable �xed-point attractor. Furthermore, provided the connection
strengths are not too large, this attractor will be �nite. We write �i for the output of the ith neuron at
the �xed point; its value is obtained by setting the derivative dui=dt to 0, resulting in the condition

�i = g(
X
j

Jij�j + si + r): (4)

In this note we will be interested in the properties of this stable solution, rather than in the dynamics
of settling.

We will focus on two versions of the basic network.
In the �rst instance, we treat a network of �nite size in general terms. For this analysis it is useful

to collect the input and output variables into vectors representing the entire network. The �xed-point
output vector will be written �. The stimulus-related inputs are collected into the vector s. The
modulatory input is the same for all cells, and can thus be written r1, where 1 is a vector of ones (of
dimensionality appropriate to the context), and r is a scalar as before. The connection weights are
collected into a symmetric Toeplitz matrix, J. Taking the transfer function g to act element-by-element
on a vector argument, the condition on the attractor output can be written as

� = g(J�+ s+ r1) (5)

In the second case, we treat a special instance of the network in which the connectivity matrix and
tuned input are trigonometric functions of the stimulus, which is taken to be an angle � representing,
for example, the direction of motion of a visual stimulus. In this case, it is convenient to take the
number of neurons to approach the continuum limit. The stimulus-driven input and network output can
then both be written as functions of stimulus angle, s(�) and �(�) respectively, through reference to the
topographic map. The sum in (2) becomes an integral in the limit, and the translation invariance of
the recurrent connectivity allows it to be written as a convolution with a symmetric kernel, J(�). This
kernel represents both the density and strength of connections between neurons whose preferred stimuli

di�er by an angle �. The �xed-point condition for the continuous network is

�(�) = g

�Z �

��

d�
0

2�
J(� � �

0)�(�0) + s(�) + r

�
: (6)

3 Finite Network

Experimental reports of multiplicative scaling are based on the modulation of a single neuron's tuning
curve by an extra-retinal signal. Multiple tuning curves are obtained for the same cell, for di�erent
settings of the modulatory parameter. These tuning curves are observed to all be centred on the same
stimulus, and to be scaled versions of each other.

In simulations, and the subsequent analysis, it is convenient to replace the tuning curve taken for
a single cell by the pro�le of �xed-point activation across the entire network in response to a single
stimulus. The pro�le obtained in this way may be treated as a tuning curve by plotting the output of
each cell against its preferred stimulus value. For networks such as those we examine here, which are
translationally invariant, symmetric and have stationary parameters, this curve will be identical to that
obtained by plotting the �xed-point output of a single neuron in response to various stimuli.

2



−5 0 5
0

0.2

0.4

0.6

0.8

1
c     

−5 0 5

b     

−1

−0.5

0

0.5

−1

−0.5

0

0.5

1
a     

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8
d     

−5 0 5
0

0.5

1

1.5

2

2.5
e     

r1

s

�

u

J0

Figure 1: The �nite network. Panel b shows every tenth cell (along with the 100th cell) in the network of
100 neurons, with units arranged according to their stimulus preference. The superimposed dashed curve
(J0) shows the connection strength from each of the units to the central neuron, which has preferred
stimulus 0. Typical inputs to the network are shown in panel c (s and r1). Panel a shows the resulting
output; the solid line (�) shows the �xed-point output, the dotted line (u) shows the unrecti�ed output
at the �xed point, given by �(J�+ s+ r1� T ). The solid lines in panel d show the central part of the
�xed-point output of the network at a variety of modulatory input levels; the summed external inputs
(s + r1) in each case are shown in panel e. No squares appear over the output corresponding to a
modulation level of 0.5. The squares plotted over the remaining outputs are obtained by multiplication
of this output curve. The density of neurons is twice that of the squares. Note the restricted horizontal
scale in panel d, showing only the central segment of the network. Panels d and e were adapted from
Salinas and Abbott (1996).

3.1 Simulation

The network we use for simulation is identical to that of Salinas and Abbott (1996) and is illustrated in
�gure 1a{c. We use 100 cells, with preferred stimulus values ranging from -5 to 4.9 in arbitrary units.
The recurrent connection strengths are given by the di�erence of two Gaussians:

Jij =

�
AE exp

�
�

(xi � xj)
2

2�2E

�
�AI exp

�
�

(xi � xj)
2

2�2I

��
Æx (7)

Here AE (AI) sets the strength, and �E (�I) the extent, of the excitatory (inhibitory) connections. The
values xi and xj are the preferred stimuli for the ith and jth neurons respectively: thus the extents of
the connections are given in the dimensions of the stimulus. The term Æx gives the spacing between
adjacent neurons; this allows the connection strengths to be speci�ed in a neural-density-independent
way. The values of the parameters are those of Salinas and Abbott (the Æx term is implicit in their
paper): AE = 10:5, AI = 7, �E = 1, �I = 10 and Æx = 0:1. The transfer function parameters, in the
notation of (3), are T = 1 and � = 0:2.

Tuned input to the network is Gaussian in shape. Since the network is translation invariant, we lose
no generality in taking the presented stimulus position to be 0 in all cases. In this case, the stimulus-
related input to the ith neuron is

si = As exp

�
�

x
2
i

2�2s

�
: (8)

We set the strength of the input, As, to 1, and the width, �s, to 1. This last parameter is smaller than
the value (1.5) used by Salinas and Abbott; this reduction will allow us to bring out the behaviour of
the network more clearly.
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The parameters described above are held �xed in all the simulations. Panel c of �gure 1 shows typical
values of the stimulus-related and modulatory inputs, with the resulting �xed-point output (equivalent
to the tuning curve of the central neuron) shown in panel a. In panel d, the attractor outputs of the
network for various di�erent levels of modulatory input are shown. Despite an additive change in the
total external input to the network (panel e), the output (and thus the tuning curves) appears to be
multiplicatively scaled by the modulation.

3.2 Analysis

The equivalence of tuning curves and �xed-point output in the symmetric, translation-invariant network,
implies that, for the network to show multiplicative scaling, the �xed-point output must change in
proportion to its initial value as the modulation is changed. In other words exact multiplicative scaling
requires the condition

d�

dr

/ �: (9)

A feature of the centre-surround or \mexican hat" recurrent network architecture, evident in �gure
1, is that the attractors exhibit \bump" output geometries; a group of cells whose preferred stimuli
fall close to the current input are active (forming a bump in the topographic representation), while the
surrounding neurons are all below threshold (Amari 1977; Ben-Yishai et al : 1995). In the networks we
consider here, the inhibitory e�ect of a single neuron reaches all the other cells in the network. This will
limit the dynamics of the network so that attractors will contain only a single bump.

Clearly, one necessary condition for the relationship of (9) to hold, is that the extent of this bump
must remain constant as the modulatory input is changed. In particular, those neurons that fall outside
the bump should remain below threshold, thus exerting no e�ect on the level of activation of those cells
that fall within it. As a result, if the network does indeed behave multiplicatively, these neurons within
the bump may be viewed as comprising a small sub-network, e�ectively isolated from the remaining
units. By de�nition, all of the neurons within this restricted sub-network have non-zero output. Thus,
their activation levels are above threshold, and fall within the linear portion of the transfer function.
This feature makes the restricted network amenable to direct solution.

Suppose a central group of n neurons is active in the bump. We write the vector variables associated
with the restricted network as follows: �n contains the non-zero elements of the steady-state output
vector �; sn contains the corresponding elements of the stimulus-related input s; and the square matrix
Jn represents the corresponding rows and columns of J.

Since all neurons within the restricted network are above threshold, the �xed-point satis�es the linear
equation:

�n = �(Jn�n + sn + (r � T )1): (10)

Stability requires that all the eigenvalues of Jn be less than �
�1, and thus we can solve this equation to

obtain

�n = (��1
I� Jn)

�1(sn + (r � T )1); (11)

where I is the identity matrix.
Thus, within the restricted network, the derivative of the attractor with respect to the modulation

can be computed:

d�n

dr

= (��1
I� Jn)

�1
1: (12)

This result is crucial to our understanding of the multiplicative behaviour. It shows that the change
in output due to a change in modulation is a function only of the network connectivity and the bump
attractor width, not of the exact shape of the current attractor �, or of the stimulus-related input s.
Thus, even if the bump width does remain constant, the condition (9) will only hold if, in addition, the
non-zero segment of the output, �, is proportional to (��1

I� Jn)
�1

1. Inspection of (11) suggests that
this may occur in two cases. The �rst case is when (r�T )� si; that is, the modulatory input dominates
the tuned input in terms of the current owing into the cells. The second case is when (��1

I�Jn)
�1

sn is
similar in shape to (��1

I� Jn)
�1

1; that is, within the restricted network the tuned input is similar to a
constant input level (with the possible addition of eigenmodes suppressed by the matrix (��1

I� Jn)
�1).
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Figure 2: Sensitivity of marginal neuron input to change in modulation, plotted as a function of the
attractor width, n (measured in terms of the range of preferred stimuli spanned by cells in the bump).
The network is exactly as in �gure 1. The solid line shows the derivative of the total input for the
neuron just outside the bump, the dashed line for the neuron just inside. The di�erence between the
zero-crossings of the two lines corresponds to a widening of the bump by a single unit on each side.

This latter case holds for stimulus-dependent input which is broadly tuned relative to the scale of the
connectivity matrix and the attractor bump, so that it is e�ectively at within the activated region of
the network. Salinas and Abbott (1996) use precisely such broadly tuned input.

The analysis to this point has assumed that the width of the stable output bump remains constant
as the modulation changes. This is a necessary condition for multiplicative modulation, but does it
actually hold true in networks of the type discussed here?

Consider the case in which the network inputs have been chosen to yield an output vector � that
exhibits a bump of width n. We can assess the stability of this width by �nding the change in the total
input to a neuron just outside the bump (identi�ed by the subscript n + 1) as a result of a change in
modulation input. The total input to this marginal neuron is

hn+1 = j
T
n+1�+ sn+1 + r; (13)

where jn+1 is the vector formed from the (n + 1)th row of the connection matrix. Since only neurons
within the bump are active, we can restrict the vectors in this expression to these central n neurons:

hn+1 = j
T
n+1;n�n + sn+1 + r: (14)

Using (12), we thus �nd the sensitivity of this marginal input to changes in modulation:

dhn+1

dr

= j
T
n+1;n(�

�1
I� Jn)

�1
1+ 1: (15)

Again, this result is remarkable in that, as we saw in the case of the change in output, the result is
independent of the stimulus-tuned input, as well as of the detailed shape of the steady-state output. It
depends only on the network architecture and on the current output width.

Figure 2 shows the dependence of the marginal input derivative (dhn+1=dr) on the bump width
for the network with parameters taken from Salinas and Abbott (1996), along with a similar input
derivative calculated for the neuron just inside the bump attractor (dhn=dr). These curves demonstrate
that for a range of bump widths, an increase in the modulation strength will drive the bump towards a
characteristic, stable, width.

If the output starts relatively narrow, an increase in modulation drives up the input to the neuron

that lies just outside the bump. A suÆcient increase in modulation raises the activation level of this
unit above threshold, and thus recruits it into the central bump. This process repeats until the bump
reaches a width of 2.0 stimulus units, at which point the net change in input to the marginal unit is
almost zero (it is actually very slightly negative). Subsequent increases in modulation leave the bump-
width unchanged. The complementary behaviour is observed if the initial output is larger than the
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Figure 3: A closer look at the output of the �nite network. Panel a shows the output curves of �gure
1b, each having been rescaled to achieve a unit maximum. To focus on properties of the bump, only
the central 31 neurons are shown. The dots represent the outputs of the cells in the �nite network,
the grey lines indicate the corresponding curves for a continuous network with the same connectivity.
The inner-most curve corresponds to the smallest modulatory input, with the widths increasing as the
modulation rises. Panel b shows the di�erences between the successive outputs shown in �gure 1b.
Again, the inner-most curve corresponds to the two smallest modulation values, and the curves grow
wider with increasing modulation.

characteristic width. In this case, an increase in modulation drives down the input to the neuron that
lies just inside the bump (as well as to the one just outside). Thus the bump narrows until, once again, a
stable point is reached. In this case this stable width appears to be slightly larger, at 2.2; the di�erence

is a result of the �nite network size. In a continuous model, a single stable size emerges regardless of
direction of approach.

This behaviour can be observed directly in the outputs of the simulation described above. If the
�xed-point output curves shown in �gure 1 are rescaled to have equal heights, as in �gure 3a, the
progressive widening indicated by the analysis becomes obvious. Furthermore, it is clear that once the
limiting width has been achieved, the overall output shape does indeed remain constant (provided that
inhibition is broad enough to prevent additional bumps forming as the modulation drives cells far from
the center above threshold). Figure 3b shows the di�erences between successive output curves, thus
approximating the derivatives of (12). We see that even for narrow outputs (and, therefore, smaller
restricted networks) the shape of the derivative resembles a truncated version of the eventual stable
output shape. Thus the output is being pushed further towards the characteristic output shape of the
network with each increase in modulation. By the time the limiting width is achieved, the output is
being driven in large part by the modulatory input.

4 Continuous Network

We turn now to a continuum model in which the neurons are taken to form a dense array and the recurrent
weights and tuned input are both given by trigonometric functions. This network was investigated as
a model of orientation tuning in V1 by (Ben-Yishai et al : 1995), and possesses all the features needed
to exhibit the multiplicative scaling that is the subject of this note. It has the advantage that in many
cases we can arrive at algebraic solutions to various equations. To avoid complications which arise from
the �-periodicity of orientation, we choose to construct a model analogous to that of Ben-Yishai et al :,
but on a 2�-periodic feature such as stimulus motion direction.

The model assumes a continuum of neurons tuned to the direction of a moving visual stimulus. The
preferred directions of the neurons will be indicated by the continuous variable � 2 [��; �). The density
of connections between neurons tuned to the orientations �1 and �2 is given by

J(�1; �2) =
1

�

(J0 + J1 cos(�1 � �2)) (16)

with J0 < 0 and J1 > 0. We assume without loss of generality that the visual stimulus is presented at
0 orientation. The input tuning curves of the cells are also taken to be cosine functions, resulting in
stimulus-related input given by

s(�) = s1 cos �: (17)
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Figure 4: Output of the continuous network. Panel a shows the output of the network at various
modulation levels, r = 1; 4; 7; 10; 13; 16. See �gure 1 for an explanation of the squares. Panel b shows
the same outputs on a larger scale, focusing on the change in �c. Panel c shows the modulation-induced
change in attractor width as a function of �c. The zero corresponds to the observed limit width in the
simulations. Panel d shows the change in output of the marginal unit as the modulation is increased
(compare to �gure 2). The dotted vertical lines in panels b-d all correspond to the limiting ��c = 0:8134.
Only values of �c less than, or equal to this are achievable.

The modulatory input, r, is once again a constant independent of the neurons' preferred orientations.
The steady state equation for this model is given by

�(�) = g

�Z �

��

d�
0

�

(J0 + J1 cos(� � �
0)) �(�0) + r + s1 cos �

�
(18)

If we write �0 for the zeroth Fourier series coeÆcient of the output,
R

d�
�
�(�), and �1 for the �rst

coeÆcient,
R

d�
�
cos(�)�(�), we obtain a solution for the steady state:

�(�) =

�
�(�1J1 + s1)(cos � � cos �c) j�j � �c

0 j�j > �c
(19)

Here, �c, the critical angle, de�nes the width of the central bump of the attractor. It is related to

the inputs and the Fourier components of the output by the following system of equations:

cos �c =
T � (r + �0J0)

s1 + �1J1

(20)

�0 = 2�
�
(�1J1 + s1)(sin �c � �c cos �c) (21)

�1 = �

�
(�1J1 + s1)(�c �

1
2
sin 2�c): (22)

The �xed-point output curves for a number of di�erent modulation levels are shown in �gure 4a.
These plots were made using the following parameter settings: J0 = �86, J1 = 100, � = 1, T = 1,
s1 = 1:5. The enlargement in panel b reveals a slow change in the attractor width.

For the continuous network we can di�erentiate the expression for the �xed-point output �(�) with
respect to the modulatory input level r directly, without the need to assume a restricted sub-network of
constant size. For notational compactness, we introduce the terms �0 = r + �0J0, �1 = s1 + �1J1 and
Wi = �Ji=� for i = 0; 1. The derivative is well-de�ned everywhere but at the critical angle.

d�

dr

(�) =

�
�(�00 + �

0

1 cos �) j�j < �c

0 j�j > �c
: (23)
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The primes denote derivatives with respect to r, which are given by

�
0

0 =
1�W1(�c +

1
2
sin 2�c)

D

; (24)

�
0

1 =
2W1 sin �c

D

; (25)

where

D = (1� 2W0�c)(1�W1(�c +
1
2
sin 2�c))� 4W0W1 sin

2
�c: (26)

At the critical angle the derivative is not well-de�ned; however the left and right derivatives (for dr ! 0�

and dr ! 0+ respectively) can be evaluated:

d�

dr �

(�c) = 0 (27)

d�

dr +
(�c) = �(�00 + �

0

1 cos �c): (28)

The second of these derivatives corresponds (upto a factor of �) to the quantity dhn=dr calculated in
(15) above. It is shown in �gure 4d.

In this case we can exploit the existence of these derivatives to also directly calculate the change of
the attractor output width with changes in modulation. Di�erentiating (20) and using the expressions
for �0i above, we �nd that

d�c

dr

=

�
1�W1(�c �

1
2
sin 2�c)

�2
Ds1 sin �c

: (29)

This derivative is shown as a function of �c in �gure 4c. The limiting width of the network, ��c , is
achieved when d�c=dr = 0. For the cosine network this implies the simple condition

sin 2��c = 2

�
�
�

c �
�

�J1

�
(30)

For the values of the parameters that were used in �gure 4, numerical solution of this equation yields
the value ��c = 0:8134.

5 Discussion

The modi�cation of sensory neuronal responses by changes in modulatory variables, such as body con�g-
uration or attention, is a subject of considerable theoretical and experimental interest (Andersen et al :

1985; Pouget and Sejnowski 1992; Salinas and Abbott 1995; Andersen and Zipser 1988; Salinas and
Abbott 1997). A number of experiments, in a variety of visual and visuo-motor cortical areas, have
suggested that the modulatory inuence takes the form of a gain-change or multiplicative scaling in the
neuronal response curves (Andersen et al : 1985; Brotchie et al : 1995; McAdams and Maunsell 1999;
Treue and Trujillo 1999). Particularly in the attentional data, the support for precisely multiplicative
modulation seems strong.

Following Salinas and Abbott (1996), we have seen that a form of multiplicative scaling can arise
in a simple recurrent network model with centre-surround lateral connectivity, broadly-tuned stimulus-
related input, and modulation that results in a uniform input current in all cells. Where Salinas and
Abbott studied the behaviour of the network through simulation alone, we have here added an analytic
understanding of some of its properties.

Our analysis indicates that the network exhibits approximately multiplicative scaling within a par-
ticular regime. The two central results, (12), (15), show that as the modulatory input is varied, the
�xed-point output of the network changes shape in a way that depends only on the network connectivity
and the extent of the non-zero region of the current attractor. In particular, it does not depend on the
details of the current output shape, nor on the stimulus-related input. Only when the extent of the
central bump reaches a particular limiting width, characteristic of the network, and also the �xed-point
output has the same shape as the modulation-related change (given by (12)), will exactly multiplicative
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scaling be observed. Thus, the shape of the multiplied curve is dictated by the network connectivity,
rather than by the shape of the input.

Fortunately, this regime is easy to achieve. We have seen that an increase in modulation drives the
output of the network towards this characteristic width and shape, regardless of the output response
to the stimulus-related input alone. Furthermore, a broadly tuned stimulus-related input may carry a
considerable at component when restricted to the neurons that fall within this characteristic width. If
this is the case, the stimulus-related input itself will drive the network towards the characteristic output.
Finally, the network might operate in the \marginal phase" regime (identi�ed by Ben-Yishai et al : 1995)
where the amplitude of the stimulus-related input is extremely small and serves only to break symmetry
in the network, while the network output is driven by a combination of a low threshold and a high
\background" un-tuned input.

Recurrent networks with this type of centre-surround connectivity have been studied before in the
context of the sharpening of broad thalamic input and generation of contrast-invariant tuning curves
in primary visual cortex (Ben-Yishai et al : 1995; Somers et al : 1995; Carandini and Ringach 1997). In
particular, these studies argued that the shapes of the tuning curves of cells may be dominated by the
e�ects of lateral connectivity within the network, rather than by the shape of the input delivered to it.
We observe here that it is precisely in those cases where this is true, that the network can also exhibit
multiplicative modulation. Indeed, in the model networks, the two types of behaviour arise through
virtually identical mechanisms.

Clearly, this is not the only mechanism through which multiplicative scaling e�ects may arise. How-
ever, given the known prevalence of lateral connections within the neocortex, care must be taken to
evaluate alternative models in the context of recurrent circuitry. For example, a simple hypothesis
might be that the extra-retinal modulation directly a�ects the gain of the individual cells directly |
modifying the slope parameter, �, of the transfer function | perhaps through some neuromodulator
pathway. However, in a centre-surround network of the type discussed here, such a manipulation does
not result in purely multiplicative scaling. Simulations using the Gaussian network described above (not
shown) indicate that as � is increased, with the input, which is now entirely stimulus-related, being
held �xed, the �xed-point output grows both taller and narrower. This narrowing behaviour can also
be seen by inspection of (30). Thus, in the presence of strong lateral connections, a direct neuronal gain

modulation does not result in multiplicative scaling of the �xed-point output.
One important discrepancy between the data and the model we have discussed must be noted. In

some experiments (notably that of McAdams and Maunsell 1999) the response of a neuron is, on average,
elevated above its background level in the presence of any stimulus, even when this stimulus is orthogonal
to its preferred one. Furthermore, the amplitude of even this cross-orientation response appears to be
multiplicatively scaled by attention. The mechanism for scaling discussed here depends on a region of
zero output outside the central bump. Even if this zero idealized analog output were to correspond to
a non-zero, but small, �ring rate in a real, noisy neuron, we would not expect it to be a�ected by the
modulation. Thus, some extension of this simple model is needed to capture this aspect of attentional
scaling.
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