
Gatsby Computational Neuroscience Unit 17 Queen Square, London
University College London WC1N 3AR, United Kingdom
http://www.gatsby.ucl.ac.uk +44 20 7679 1176

Funded in part by the Gatsby Charitable Foundation.

November 21, 2000

GCNU TR 2000–008

Products of Hidden Markov Models

Andrew D. Brown
andy@gatsby.ucl.ac.uk

Geoffrey E. Hinton
hinton@gatsby.ucl.ac.uk

Gatsby Unit

Abstract

We present products of hidden Markov models (PoHMM’s), a way of com-
bining HMM’s to form a distributed state time series model. Inference in a
PoHMM is tractable and efficient. Learning of the parameters, although in-
tractable, can be effectively done using the Product of Experts learning rule.
The distributed state helps the model to explain data which has multiple
causes, and the fact that each model need only explain part of the data means
a PoHMM can capture longer range structure than an HMM is capable of.
We show some results on modelling character strings, a simple language task
and the symbolic family trees problem, which highlight these advantages.

Products of Hidden Markov Models

Andrew D. Brown
andy@gatsby.ucl.ac.uk

Geoffrey E. Hinton
hinton@gatsby.ucl.ac.uk

Gatsby Unit

1 Introduction

Hidden Markov models (HMM’s) have been very successful in automatic speech recognition
where they are the standard method for modelling and discriminating sequences of phonemes.
Using the Markov dependence of the hidden state variable, they capture the dependence of
each observation on the recent history of the sequence. They also have the advantage that there
is a very efficient algorithm for fitting an HMM to data: the forward-backward algorithm and
the Baum-Welch re-estimation formulas. However, HMM’s have been less widely applied
in other areas where statistical time series are used. In statistical language modelling, for
example, the most common model is a fully-observed, second-order Markov model, known
as a trigram.

One limitation of HMM’s that makes them inappropriate for language modelling is that
they represent the recent history of the time series using a single, discrete K-state multino-
mial. The efficiency of the Baum-Welch re-estimation algorithm depends on this fact, but it
severely limits the representational power of the model. The hidden state of a single HMM can
only convey log2K bits of information about the recent history. If the generative model had a
distributed hidden state representation [Williams and Hinton, 1991] consisting of M variables
each with K alternative states it could convey M log2K bits of information, so the informa-
tion bottleneck scales linearly with the number of variables and only logarithmically with the
number of alternative states of each variable.

A second limitation of HMM’s is that they have great difficulty in learning to capture long
range dependencies in a sequence [Bengio and Fransconi, 1995]. In the case of natural lan-
guage there are many examples of word agreements which span a large portion of a sentence.
As we shall demonstrate, this is much easier to model in a system that has distributed hidden
state since each variable in the distributed state can be concerned with a specific type of long-
range regularity and does not get distracted by having to deal with all the other regularities in
the time series.

2 Products of HMM’s

Extending the hidden state of an HMM can be done in various ways. One is to add several
hidden state variables which have a causal effect on the observed variables in the model. This
is known as a Factorial HMM [Ghahramani and Jordan, 1997] and is shown in Fig. 1.

In a causal belief network each local probability distribution can be independently esti-
mated given the posterior distribution of the hidden variables conditioned on the evidence.
However, it is exponentially expensive to compute this posterior distribution exactly because

1

Vt+1V tVt-1

St+1
{2}

t-1S{1} St
{1}

St+1
{1}

t-1S{2} St
{2}

Fortunately, there is an alternative objective function for learning whose gradient can be ap-
proximated accurately and efficiently [Hinton, 2000]. It has been shown that optimizing this
alternative objective function leads to good generative models for non-sequential data and we
show here that the same approach works for PoHMM’s.

Maximizing the log likelihood of the data is equivalent to minimizing the Kullback-Leibler
divergence KL(Q0

jjQ1) between the observed data distribution, Q0, and the equilibrium dis-
tribution,Q1, produced by the generative model1. Instead of simply minimizingKL(Q0

jjQ1)

we minimize the “contrastive divergence” KL(Q0
jjQ1) � KL(Q1

jjQ1), where Q1 is the dis-
tribution over one-step reconstructions of the data that are produced by running a Gibbs sam-
pler for one full step, starting at the data. The advantage of using the contrastive divergence
as the objective function for learning is that the intractable derivatives of the partition function
cancel out and if we are prepared to ignore a term that turns out to be negligible in practice
[Hinton, 2000] it is easy to follow the gradient of the contrastive divergence:

1. Calculate each model’s gradient @
@�m

P (V T
1 j�m) on a data point using the forward-backward

algorithm.

2. For each model take a sample from the posterior distribution of paths through state
space.

3. At each time step, multiply together the distributions over symbols specified by the cho-
sen paths in each HMM. Renormalize to get the reconstruction distribution at that time
step.

4. Draw a sample from the reconstruction distribution at each time step to get a recon-
structed sequence. Compute each model’s gradient on the new sequence @

@�m
P (V̂ T

1 j�m)

5. Update the parameters:

��m /
@ logP (V T

1 j�)

@�m
�
@ logP (V̂ T

1 j�)

@�m

To compute the gradient of the HMM we use an EM like trick. Directly computing the
gradient of an HMM is difficult due to the fact that all the parameters are coupled through
their influence on the hidden states. If the HMM were visible and the hidden states were
known then the gradient of the log-likelihood for each parameter would decouple into an
expression involving only local variables. As in EM, we use the posterior distribution over the
hidden states in place of actual values by using the identity:

@

@�
logP (V T

1 j�) =

@

@�

D
logP (V T

1 ; S
T
1 j�)

E
P (ST

1
jV T

1
)

(3)

This says that if we compute the posterior of the HMM using the forward backward algorithm
we can take the gradient of the complete data log-likelihood using the sufficient statistics of
the hidden variables in place of actual values.

A second optimization trick which we have used is to re-parameterize the probabilities of
the HMM, using the softmax function. Working in this domain allows us to do unconstrained
gradient descent over the real numbers. Doing gradient optimization directly in the proba-
bility domain would involve the more difficult proposition of constraining the parameters to

1We call this distribution Q1 because one way to get exact samples from it is to run a Gibbs sampler for an
infinite number of iterations

3

the probability simplex. An added advantage of this re-paramaterization is that the probabili-
ties cannot go to zero anywhere. It is clearly desirable in the PoE framework that none of the
individual experts assigns zero probability to an event.

As an example we look at the gradient rule for the transition probabilities of an HMM,
P (St = jjSt�1 = i) = Aij . If we re-parameterize using the softmax function:

Aij =
exp(aij)P
j exp(aij)

: (4)

Taking the derivative with respect to aij yields

@

@aij

D
logP (V T

1 ; S
T
1)
E
=

TX
t=1

hSt = j; St�1 = ii � (
TX
t=1

hSt�1 = ii)Aij ; (5)

As before the angle brackets indicate an expectation with respect to the posterior of the hidden
states. This has the intuitive interpretation that the derivative for the softmax parameter a ij
regresses toward the point where A ij is equal to the expected transition probability under the
posterior. If we set the derivative to zero and solved this equation directly, we would recover
the Baum-Welch update equation.

3 Results

To demonstrate the relative merits of a product of HMM’s versus a single HMM, we have
applied them to two problems in text and language modelling. The first of these is modelling
strings of English letters, and the second is a task of discriminating sets of simple English
sentences which exhibit long and short range dependencies.

3.1 Modelling Character Strings

The first experiment involved modelling character strings from a corpus of English text. The
problem was slightly modified to better demonstrate the advantages of a product model.
Rather than training the model on a single case, or mixed case text, we trained it on data
in which the characters in a sentence were either all upper case or all lower case. Thus there
really are independent factors underlying this sequence: the binary decision of upper case or
lower case and the statistics of the letters.

We used 8600 sentences2 and converted them to all upper and all lower case to yield over
17,000 training sentences. 56 symbols were allowed: 4 symbols for space and punctuation, 26
upper and 26 lower case letters. We compared a single HMM with 32 hidden states against
a product of a 2 state and a 30 state hidden Markov model. In the product model the 2 state
HMM learns to differentiate upper and lower case. It ‘votes’ to put probability mass on the
upper or lower case letters respectively (Fig. 3), and it enforces the continuity through its
transition matrix. Then the 30-state HMM need only learn the case-independent statistics of
the characters and the fact that the upper and lower case characters are analogous, placing
proportional amounts of probability mass on the two halves of the symbol set. In Fig. 4 we see
an example of two of the big HMM’s 30 hidden states. Its output distributions are symmetric
over the upper and lower case letters, indicating that it has left the modelling of case to the
smaller 2-state HMM model.

2from Thomas Hardy’s “Tess of the d’Urbervilles” available from Project Gutenberg
(http://www.gutenberg.net)

4

. # * A B C D E
F G H I J K L M N

O P Q R S T U V W

X Y Z a b c d e f

g h i j k l m n o

p q r s t u v w x

y z

. # * A B C D E

F G H I J K L M N

O P Q R S T U V W

X Y Z a b c d e f

g h i j k l m n o

p q r s t u v w x

y z

Figure 3: An ’eye-chart’ diagram of the output distributions of the 2-state HMM in the
PoHMM. Each chart corresponds to a single state’s output distribution and the size of each
symbol is proportional to the probability mass on that symbol.

. # * A B CD E

F G H I J K L M N

O P Q R S T U V W

X Y Z a b c d e f

g h i j k l m n o

p q r s t u v w x

y z

. # * AB C D E

F G H I J K L M N

OP Q R S T U V W

X Y Z a b c d e f

g h i j k l m n o
p q r s t u v w x

y z

Figure 4: Eye-chart diagram of the output distributions of two of the states of the 30 state
HMM

By contrast, the single HMM has to partition its data space into two parts, one each for
upper and lower case. In effect it has to model the caseless letter statistics with a much smaller
number of hidden states. This can be seen in Fig. 5a) where the observation distributions of
the 32 states fall into 3 categories: punctuation, upper case, and lower case. Similarly we can
see in the transition matrix (Fig. 5b) that the upper case states only transition to upper case
states and likewise for the lower case states.

While we cannot compute the log likelihood of a string under the PoHMM we can com-
pute the probability of a single symbol conditioned on the other symbols in a sentence. This
leads to a simple, interesting test of the models which we refer to as the “symmetric Shannon
game”. In the original Shannon game [Shannon, 1948], a prediction of the next symbol in a
sequence is made given the previous N symbols. In the symmetric Shannon game the model
is given both past and future symbols and is asked to predict the current one. We can compute
this distribution exactly since we need only normalize over the missing symbol and not all
strings of symbols. For models based on directed acyclic graphs, such as an HMM, it is easy to
compute the probability of the next symbol in a sequence given the symbols so far. Somewhat
surprisingly, this is not true for undirected models like a PoHMM. If the data after time t is
missing, the posterior distribution over paths through each HMM up to time t depends on
how easily these paths can be extended in time so as to reach agreement on future data.

Table 6 shows a comparison of several PoHMM models with a single large HMM. They
were scored on a set of 60 hold-out sentences with an equal number of upper and lower case.
The product of a 2-state and 30-state HMM with 2728 parameters, while capturing the compo-
nential structure we were hoping for, does not outperform a single 32 state HMM which has
been roughly matched for the number of parameters (2848 parameters). This is mainly an op-
timization problem, because if we train a 2-state model alone and a 30-state model on uni-case
text, and then use their parameters to initialize the PoHMM then it does much better than the
single HMM. If we use a product of many, simple HMM’s then the optimization problem is
eased. A product of 10, 4-state HMM’s, which has still fewer parameters (2440), performs as
well as a hand initialized product of 2 HMM’s. Increasing, the number of HMM’s in the prod-
uct provides further improvements while the parameters and computation time scale linearly
with the number of HMM’s in the model.

5

a)

. −# * A B C D E

F G H I J K L M N

O P Q R S T U V W

X Y Z a b c d e f

g h i j k l m n o

p q r s t u v w x

y z

. −# * A B C D E

F G H I J K L M N

O P Q R S T U V W

X Y Z a b c d e f

g h i j k l m n o

p q r s t u v w x

y z

. − #* A B C D E

F G H I J K L M N

O P Q R S T U V W

X Y Z a b c d e f

g h i j k l m n o

p q r s t u v w x

y z

. −# * A B C D E

F G H I J K L M N

O P Q R S T U V W

X Y Z a b c d e f

g h i j k l m n o

p q r s t u v w x

y z

. −# * A B C D E

F G H I J K L M N

O P Q R S T U V W

X Y Z a b c d e f

g h i j k l m n o

p q r s t u v w x

y z

. −# * A B C D E

F G H I J K L M N

O P Q R S T U V W

X Y Z a b c d e f

g h i j k l m n o

p q r s t u v w x

y z

. − # * A B C D E
F G H I J K L M N

OP Q R S T U V W

X Y Z a b c d e f

g h i j k l m n o

p q r s t u v w x

y z

. − # * A B CD E

F G H I J K L M N

O PQ R ST U V W

X Y Z a b c d e f

g h i j k l m n o

p q r s t u v w x

y z

. − # * A B C D EF G H I J K L M N

O P Q R S T U V W

X Y Z a b c d e f

g h i j k l m n o

p q r s t u v w x

y z

. − # * A B C D E

F G HI J K L M N

OP Q R S T U V W

X Y Z a b c d e f

g h i j k l m n o

p q r s t u v w x

y z

. − # * A B C DE

F G H I J K L M N

O P Q RS T U V W

X Y Z a b c d e f

g h i j k l m n o

p q r s t u v w x

y z

. − # * AB C D E
F G H I J K L M N

OP Q R S T U V W

X Y Z a b c d e f

g h i j k l m n o

p q r s t u v w x

y z

. − # * A B C D E
F G H I J K L M N

OP Q RS T U V W

X Y Z a b c d e f

g h i j k l m n o

p q r s t u v w x

y z

. − # * A B C D E

F G H I J K LMN
O P Q RS T U V W

X Y Z a b c d e f

g h i j k l m n o

p q r s t u v w x

y z

. − # * A B C D E

F G H I J K L M N
O P Q R STU V W
X Y Z a b c d e f

g h i j k l m n o

p q r s t u v w x

y z

. − # * A B C DE

F G HI J K L MN
O P Q R S T U V W
X Y Z a b c d e f

g h i j k l m n o

p q r s t u v w x

y z

. − # * A B C D E

F G H I J K LM N
O P Q RS T U V W

X Y Z a b c d e f

g h i j k l m n o

p q r s t u v w x

y z

. − # * A B C D E

F G H I J K L M N

O P Q R STU V W
X Y Z a b c d e f

g h i j k l m n o

p q r s t u v w x

y z

. − # * A B C D E

F GH I J K L M N
O P Q R STU V W

X Y Z a b c d e f

g h i j k l m n o

p q r s t u v w x

y z

. − # * A B C D E

F G H I J K L M N

O P Q R S T U V W

X Y Z a b c d e f

g h i j k l m n op q r s t u v w x

y z

. − # * A B C D E

F G H I J K L M N

O P Q R S T U V W

X Y Z ab c d e f

g h i j k l m n o

p q r s t u v w x

y z

. − # * A B C D E

F G H I J K L M N

O P Q R S T U V W

X Y Z a b c d e f

g h i j k l mn o

p q r s t u v w x

y z

. − # * A B C D E

F G H I J K L M N

O P Q R S T U V W

X Y Z a b c d e f
g h i j k l m no

p q r st u v w x

y z

. − # * A B C D E

F G H I J K L M N

O P Q R S T U V W

X Y Z a b c d e f
g h i j k l m n o

p q r st u v w x

y z

. − # * A B C D E

F G H I J K L M N

O P Q R S T U V W

X Y Z a b c d e f
g h i j k l mn o

p q r s t u v wx

y z

. − # * A B C D E

F G H I J K L M N

O P Q R S T U V W

X Y Z a b c de f

gh i j k l m n o

p q r s t u v w x

y z

. − # * A B C D E

F G H I J K L M N

O P Q R S T U V W

X Y Z a b c d e f
g h i j k l m n o

p q r st u v w x

y z

. − # * A B C D E

F G H I J K L M N

O P Q R S T U V W

X Y Z ab c d ef

g h i j k l m n o

p q r s t u v w x

y z

. − # * A B C D E

F G H I J K L M N

O P Q R S T U V W

X Y Z a b c d e f

g h i j k l m no

p q r s t u v w x

y z

. − # * A B C D E

F G H I J K L M N

O P Q R S T U V W

X Y Z a b c d e f

g hi j k l m n o

p q r s t u v w x

y z

. − # * A B C D E

F G H I J K L M N

O P Q R S T U V W

X Y Z a b c d ef

g h i j k l m n o

p q r s t u v w x

y z

. − # * A B C D E

F G H I J K L M N

O P Q R S T U V W

X Y Z a b c d e f

g h i j k l m n o

p q r s t uv w x

y z

b)

P
u

n
ct

u
at

io
n

U
p

p
er

 C
as

e
L

o
w

er
 C

as
e

Punctuation Upper Case Lower Case

From

To

Figure 5: The 32 state HMM a) the observation probabilities of the HMM b) a diagram of the
transition matrix where the area of the square indicates the probability of going to a state.

Model Sym. Shannon (bits)
PoHMM 40 x 4-states 1.96
PoHMM 20 x 4-states 2.06
PoHMM 10 x 4-states 2.13

PoHMM (2-state +
30-state, pre-initialized) 2.14

32 State HMM 2.46
PoHMM (2-state + 30-state

random initialization) 2.73

Figure 6: Symmetric Shannon scores for several PoHMM models and a single large HMM

3.2 Modelling Simple Sentences

In the second task, matching the models for the number of parameters, we use a single HMM
with 32 states and a product of 10, 6 and 7 state HMM’s to model a set of English sentences
of the form, “Yes I am ” or “No she is not”. There are 14 legal sentences in the grammar,
including all combinations of yes and no with the pronouns (I,you,he,she,it,we,they) and their
corresponding conjugation of the verb “to be”. The sentences feature two kinds of agreement.
There is short range agreement between the subject and the verb which are always adjacent,
and there is longer range agreement between the “no” and “not” or “yes” and the null symbol
which appear at the beginning and end of the sentence, respectively. To test whether the
two types of models could capture these correlations, we created two sets of ungrammatical
sentences in which either the verbs were wrong or the ending of the sentence did not match the
beginning. We compared relative log-likelihoods of these sentences under each model, and the
results are shown in Fig. 7. Both models can discriminate the ungrammatical sentences where
short range structure is corrupted, but the single HMM cannot discriminate the cases where
the longer range structure is corrupted.

3.3 Family Trees

The final example application of PoHMM’s is one of symbolic inference in two family trees
[Hinton, 1986]. In the family trees problem we consider two families – one English and the

6

−220 −215 −210 −205 −200
−220

−215

−210

−205

−200
PoHMM Subject/Verb Agreement Discrimination

−220 −215 −210 −205 −200
−220

−215

−210

−205

−200
PoHMM No−Not Agreement Discrimination

−30 −25 −20 −15 −10 −5
−30

−25

−20

−15

−10

−5

HMM Subject/Verb Agreement Discrimination

−7 −6 −5 −4
−7

−6.5

−6

−5.5

−5

−4.5

−4
HMM No−Not Agreement Discrimination

Figure 7: Discrimination diagrams of the correct and two incorrect sentence sets under each
model. Circles below the line indicate that the model assigns higher probability to the cor-
rect sentence than the corrupted sentence. Circles on the line indicate that the model cannot
discriminate the two. (Note there is some overlap of the circles in the HMM plots.)

other Italian. There are twelve people in each family. In addition there are twelve familial
relationships such as father, daughter, uncle etc. The data set is composed of a set of triplets of
the form person relation person. While the number of allowed triplets in the dataset covers only
a small number of all the possible triplets, it is possible to generalize from training examples
to unseen testing examples because there are a small number of interacting constraints on the
data. Fig. 8 shows the two family trees. The two families have identical structure so that

Christopher = Penelope = Christine

=

= Maria = Emma

= Pietro

JamesVictoria

Andrew

Aurelio Bortolo

Giannina Doralice = Marcello

Charles=JenniferArthur=Margaret

Pierino=Grazia

Colin Charlotte

Alberto Mariemma

Figure 8: English and Italian family trees

relationships learned in one can be transferred by analogy to the other, in much the same way
that the PoHMM learns the analogical relationship between characters in the upper and lower
case text example. One can think of other rules of thumb which might be applied to this data
such as only men can be husbands, or spouses must be of the same generation.

Treating each triplet as a sequence of symbols from an alphabet of 36 symbols (24 people
and 12 relationships) we can train a PoHMM to learn transition probabilities and output prob-
abilities which capture the structure in this data. Using a large number of HMM’s, each with a
small number of hidden states, some of the models will learn to produce these rules of thumb
in their transition structure. One obvious piece of structure in the triplets is that the first and

7

Eng
 M

en

Eng
 W

om
en

Ita
l M

en

Ita
l W

om
en

P =
0.636

Path:
4 3 4

Male

Female

Spo
us

e
Chil

d

Par
en

t

Sibl
ing

Nep
he

w/N
iec

e

Unc
le/

Aun
t

Eng
 M

en

Eng
 W

om
en

Ita
l M

en

Ita
l W

om
en

Eng
 M

en

Eng
 W

om
en

Ita
l M

en

Ita
l W

om
en

P =
0.360

Path:
3 4 3

Male

Female

Spo
us

e
Chil

d

Par
en

t

Sibl
ing

Nep
he

w/N
iec

e

Unc
le/

Aun
t

Eng
 M

en

Eng
 W

om
en

Ita
l M

en

Ita
l W

om
en

Figure 9: A 4-state HMM which encodes one rule of the family trees data – English and Italian
are mutually exclusive. The display shows the path through the states and the probability of
that path.

third symbol always comes from the set of people and the second is always a relationship. We
could construct a model which builds in this restriction, but a PoHMM easily learns this. A
single model can alternate putting probability mass on the people and the relationships. The
other models are then free to model other regularities in the data.

Fig. 9 shows an example of a 4-state model taken from a PoHMM trained on the family
trees data. Since there are only a small number of paths through this HMM, they can all be
enumerated and sorted according to their probability of occurrence. The figure shows the top
two paths and their probability of occurrence. For each state in the path the output proba-
bilities of each state have been displayed to elucidate their structure. In the first and third
positions only the output probabilities over people are displayed and in the middle position
only the output probabilities over relationships. The HMM uses only states 3 and 4, but it
reuses them in a clever way. The most likely path is states 4-3-4, which puts high probability
on an Italian, uniform probability on a relationship, and high probability on an Italian. The
second most likely path, 3-4-3, shows a preference for English, followed by any relationship
followed by English. Thus, this HMM has captured the mutual exclusion of nationality in the
dataset. The Italian path is almost twice as probable as the English path, but this discrepancy
is presumably offset by slight preferences for English over Italian in other HMM’s.

While other rules are not so clear cut and easily interpretable, they express in a softer
fashion similar constraints across age, and sex. When many such soft, probabilistic rules are
applied they create a sharp distribution over the data.

4 Extensions

One concern that we have about the PoHMM is that each HMM has it’s own output distri-
bution over the data, which could include many parameters if there are a large number of
symbols. One way to deal with this is to add an extra layer of shared hidden features between
the hidden variables of the HMM and the output symbols. Sharing the output model features
among the HMM’s, it greatly reduces the number of free parameters in the PoHMM and it
has the benefit that data regularities learned by one model do not have to be re-learned again
and again in the other models. Each HMM retains it’s own transition distribution and it’s own
weights from it’s hidden states to the hidden features.

8

We parameterize the output model as a two layer network, with a linear hidden layer
and a softmax non-linearity in the output layer (Fig. 10). Note that we do not constrain the

States
HMM

Features

Symbols

Figure 10: Output model of the HMM’s

hidden layer values to be positive or sum to one. They may be positive or negative. If we
constrained the hidden features to be a proper probability distribution then this would be
equivalent to inserting a single discrete valued stochastic variable between the hidden variable
and the visible variable of the HMM. This is not as powerful a representation as allowing the
hidden features to take on independent real values. The formula for such an output model is
given by:

P (V jS; �m) = �(s0UmW) (6)

Where we treat the hidden state, s, as a column vector of indicator variables – a one in the
position of the discrete state which the hidden variable takes. � is the softmax function. U
is the matrix of weights which the states of model m place on the hidden features and W

is the matrix shared hidden features. Interestingly, this output distribution is also a product
model. The columns of W are linearly combined in the log domain and then pushed through
the softmax function to get a probability distribution. The rows of U are the weights that each
state puts on these basis distributions.

There are two ways that we can regularize or constrain the output model. One way is
to create a bottle neck by using a small number of hidden features. This is equivalent to de-
composing the stochastic output matrix as the product of two lower rank matrices. The other
way is to use a large number of hidden features, but use another regularizer on the output
weights forcing them to be small. Thus, the hidden features are restricted to be soft distribu-
tions over the output symbols. We have applied this technique to the family trees problem,
and it does help the generalization performance. We test the pattern completion performance
of the PoHMM by clamping the first two entries of a tuple and computing the predictive dis-
tribution of the third. On fifteen learning trials, with 20 HMM’s of 4 hidden states each, the
PoHMM obtained perfect completion performance on the training data and 73% on the test
data. This is competitive with the backpropagation solution, despite the fact that it is not di-
rectly optimized for this task. Also, as a generative model the PoHMM can be used to compute
a completion distribution for any of the elements of tuple, whereas feedforward networks can
only perform the completion task in the direction in which they have been trained.

5 Conclusions

Using the three datasets presented here, we have shown how to fit a PoHMM that is a better
model of sequences with componential structure than a single HMM with the same number of
parameters. Although the number of alternative distributed hidden states in a PoHMM grows

9

exponentially with the number of models, the computational complexity of each approximate
gradient step in the fitting only grows linearly.

On a simple language modelling problem we also show that a PoHMM can capture longer
range structure in a time series because the individual models do not need to explain every
observation and thus they can store information about earlier parts of the sequence in their
hidden states without being distracted by other regularities that are captured by other models.

Finally, we show that the PoHMM is useful for learning the symbolic family trees prob-
lem which involves finding a set of constraints which conjunctively combine to restrict the
space of allowable data points. Further, we outline some future directions for research using
shared output models among the HMM’s to help cope with the explosion of parameters to be
estimated in problems such as large vocabulary language modelling.

Acknowledgements

We thank Zoubin Ghahramani, Sam Roweis, Brian Sallans and Chris Williams for helpful
discussions. This work has been supported by the Gatsby Charitable Foundation and NSERC.

References

[Bengio and Fransconi, 1995] Bengio, Y. and Fransconi, P. (1995). Diffusion of context and credit infor-
mation in Markovian models. Journal of Artificial Intelligence Research, 3:249–270.

[Ghahramani and Jordan, 1997] Ghahramani, Z. and Jordan, M. I. (1997). Factorial hidden Markov
models. Machine Learning, 29(2/3):245–273.

[Hinton, 1986] Hinton, G. E. (1986). Learning distributed representations of concepts. In Proceedings
of the Eight Annual Conference of the Cognitive Science Society, pages 1–12, Hillsdale, NJ. Lawrence
Erlbaum Associates.

[Hinton, 2000] Hinton, G. E. (2000). Training products of experts by minimizing contrastive diver-
gence. Technical Report GCNU TR 2000-004, Gatsby Computational Neuroscience Unit.

[Shannon, 1948] Shannon, C. E. (1948). Prediction and entropy of printed english. Bell System Techncial
Journal, 27:623–656.

[Williams and Hinton, 1991] Williams, C. K. I. and Hinton, G. E. (1991). Mean field networks that learn
to discriminate temporally distorted strings. In Touretzky, D., Elman, J., Sejnowski, T., and Hinton,
G., editors, Connectionst models: Proceedings of the 1990 summer school, pages 18–22, San Francisco, CA.
Morgan Kaufmann.

10

